结合MODIS积雪产品Terra/Aqua(500 m)与IMS(4 km),发展了青藏高原每日无云高分辨率积雪产品 (TAI, 500 m)。其相对于原始的MODIS Terra(云覆盖46.6%)和Aqua(55.1%)、及MODIS Terra-Aqua结合(37.3%),将云遮蔽全部去除。同时,提高了积雪成图,新生成的TAI产品的积雪面积为19.1%,相对于原始的MODIS Terra/Aqua及MODIS Terra-Aqua结合(积雪面积4.7%~8.1%),显示了大大的提高。与青藏高原105个站点雪深数据验证表明,TAI产品的总精度为94%,相对于MODIS Terra(55%)、MODIS Aqua(50%)、及MODIS Terra-Aqua结合(64%),都显示了较大的提高,特别是雪深大于4 cm时效果较好。
张国庆
利用长时间序列Landsat遥感数据(1976年的KH-9数据为辅助数据),人工目视解译获取了念青唐古拉山西段近40年(1970s-2018)共5期冰湖数据,对大于0.0036平方千米的冰湖从类型、规模、海拔、流域4个方面的变化特征进行了详细分析。研究发现,念青唐古拉山西段冰湖持续扩张,数量从1976年的192个增加到2018年的299个,增加了107个(+56%),相应地总面积由原来的6.75±0.13平方千米扩张到9.12±0.13平方千米,增加了2.37平方千米 (+35%);冰湖的类型正发生明显的变化;较小规模的冰湖变化较快;冰湖的扩张正向更高海拔发展。
罗玮, 张国庆
利用长时间序列Landsat遥感数据,获取了整个青藏高原近50年(1970s~2021)共15期湖泊观测数据,对大于1平方公里湖泊的数量及面积变化进行了详细分析。研究发现青藏高原湖泊数量从1970年代的1080个增加到2021年的~1400个。相应地,湖泊面积从1970年代的4万平方公里增加到了2021年的5万平方公里,净增加了1万平方公里。青藏高原湖泊并非持续单调地增加。在1970s至1995年间,大部分湖泊呈现萎缩状态;但在1995年之后,除2015年外,青藏高原湖泊的数量和面积总体呈现出持续增加趋势。流域尺度上,除雅鲁藏布流域外,均在扩张。
张国庆
积雪面积比例(fractional snow cover, FSC)是定量描述单位像元内积雪覆盖面积(Snow Cover Area SCA)与像元空间范围的比值。本数据集涵盖区域为北极地区(北纬35°至北纬90°),使用Google Earth Engine平台,采用的初始数据为MOD09GA 分辨率为1000m的全球地表反射率产品,数据制备时间为2000年2月24日至2019年11月18日。方法为:在训练样本区域,使用Landsat 8地表反射率的数据和SNOMAP算法制备FSC的参考数据集,将该数据集作为训练样本区域FSC真值,从而建立训练样本区域FSC与基于MODIS地表反射率产品的雪被指数NDSI之间的线性回归模型。使用该模型,将MODIS全球地表反射率产品作为输入,制备北极地区积雪面积比例时序数据。该数据集可为区域气候模拟、水文模型等提供积雪分布的定量信息。
马媛, 李弘毅
青藏高原多源遥感合成1km积雪覆盖数据集(1995-2018)基于国家卫星气象中心的青藏高原光学仪器遥感1km积雪覆盖数据集(1989-2018)和美国雪冰中心的25km近实时逐日全球冰密集度与积雪范围NISE产品数据集(1995-2019)合成得到,覆盖时间从1995年到2018年(每年1-4月和10-12月两个时段),时间分辨率为逐日,覆盖范围为青藏高原(17°N -41°N,65°E -106°E),采用等经纬度投影,空间分辨率为0.01°×0.01°。数据集以日产品表征了卫星观测时刻的地面是否为积雪所覆盖。输入数据源为NOAA或MetOp卫星AVHRR逐日积雪覆盖产品,TERRA卫星MODIS替代AVHRR对应观测通道生成的逐日积雪覆盖产品,以及DMSP卫星SSM/I或SSMIS逐日全球冰密集度和积雪范围NISE产品。数据集合成方法:以青藏高原光学仪器遥感1km积雪覆盖产品为基础,完全信任其积雪和晴空无雪信息,对有云覆盖、无法判识、缺少卫星观测等区域,在相对高空间分辨率海陆模板的辅助下,利用NISE的陆地有效判识结果进行替换。对于部分水陆边界,因NISE产品空间分辨率较低,合成结果有可能仍存在极少量的云覆盖或者无观测数据区域。基于多年地面气象台站雪深观测资料验证表明,本数据集对晴空条件下地面有无积雪的总体判识准确率在91%以上。数据采用标准的HDF4格式存储,内部有积雪覆盖和质量码两个SDS,维度均为4100列×2400行,且文件内部有完备的属性描述。
郑照军, 曹广真
青藏高原光学仪器遥感1km积雪覆盖数据集(1989-2018)基于星载光学仪器观测数据云雪判识方法制作,覆盖时间从1989年到2018年(每年1-4月和10-12月两个时段),时间分辨率为逐日,覆盖范围为青藏高原(17°N -41°N,65°E -106°E),采用等经纬度投影,空间分辨率为0.01°×0.01°。数据集以日产品表征了卫星观测时刻晴空无云或透明薄云下的地面是否为积雪所覆盖。输入数据源为NOAA与MetOp卫星的AVHRR L1数据,以及从TERRA/MODIS对应于AVHRR通道的L1数据。产品处理方法为独立于云掩模产品的动态阈值决策树算法(DT),即算法同时判别云雪,且其云检测强调保留雪信息,特别是透明卷云下的雪。DT算法针对不同情况,考虑了多种判识手段,如水云上的冰云,森林和沙地的积雪,薄雪或融雪等;根据地表类型、DEM和季节设定动态阈值;采用多种质量控制手段,如在重度气溶胶或烟尘覆盖的低纬度森林中剔除伪雪,参考最大月雪线和最小雪面亮度温度剔除伪雪;优化不同种类型云雪和晴空无雪陆地的判识流程。DT算法在正常情况下能区分大部分云雪,但会低估10月份青藏高原的积雪。基于多年地面气象台站雪深观测资料验证表明,本数据集对晴空条件下地面有无积雪的总体判识准确率在95%以上。数据采用标准的HDF4格式存储,内部有积雪覆盖和质量码两个SDS,维度均为4100列×2400行,且文件内部有完备的属性描述。
郑照军, 除多
包括塔里木河的降水、蒸发、水储量变化以及土壤水变化逐月数据,降水数据来源于ECMWF,蒸发数据通过基于彭曼公式的能量模型计算,水储量数据通过GRACE重力卫星数据反演得到,GLDAS数据通过美国NOAH的陆面过程模式模拟得到,NDVI数据来自MODIS数据产品。降水和蒸发分辨率为0.5°*0.5°,水储量和土壤水变化数据分辨率为1°*1°。数据为水资源管理和决策提供参考依据。植被数据可为生态变化评估提供基础数据。
许民
中国长序列地表冻融数据集——决策树算法(1987-2009)是利用被动微波遥感 SSM/I亮度温度资料通过决策树分类提取得到。 该数据集采用EASE-Grid投影方式(等积割圆柱投影,标准纬线为±30°),空间分辨率25.067525km,提供逐日的中国大陆主体部分的地表冻融状态分类结果。数据集按年份存放,共由23个文件夹组成,从1987到2009。每个文件夹里包含当年的逐日地表冻融分类结果,为ASCII码文件,命名规则为:SSMI-frozenYYYY***.txt,其中YYYY代表年,***代表儒略日(001~365/366)。冻融分类结果txt文件可直接用文本程序打开察看,还可用ArcView + Spatial Analyst扩展模块或者Arcinfo的Asciigrid命令打开。 提取地表冻融的原始数据来源于由美国国家雪冰数据中心(NSIDC)处理的1987 年以来的逐日被动微波数据,这一数据集采用EASE-Grid(等面积可扩充地球网格)作为标准格式。 中国地表冻融长时间序列数据集——决策树算法(1987-2009)属性由该数据集的时空分辨率、投影信息、数据格式组成。 时空分辨率:时间分辨率为逐日,空间分辨率为25.067525km,经度范围为60°~140°E,纬度为15°~55°N。 投影信息:全球等积圆柱EASE-Grid投影,关于EASE-Grid投影的详细信息见数据准备中关于这种投影的说明。 数据格式:数据集由1987到2009共23个文件夹组成,每个文件夹里包括当年的逐日地表冻融分类结果,按日存储为txt文件。文件命名规则:例如SMI-frozen1994001.txt代表1994年第1天的地表冻融分类结果。该数据集的ASCII码文件是由头文件和主体内容构成。头文件包括行数、列数、x-轴左下点坐标、y-轴左下点坐标、栅格大小、无数据区标值等6行描述信息组成;主体内容为根据行数列数组成的二维数组,以列为优先进行排列,数值为整数型,从1到4,1代表冻结,2代表融化,3代表沙漠,4代表降水。因为该数据集中的所有ASCII码文件所描述的空间为我国全国范围,所以这些文件的头文件是不变的,现将头文件摘录如下(其中xllcenter, yllcenter和cellsize单位为m): ncols 308 nrows 166 xllcorner 5778060 yllcorner 1880060 cellsize 25067.525 nodata_value 0 该数据集中的所有ASCII码文件可以直接用文本程序(如记事本)打开。除了头文件,主体内容为数值表征地表冻融的状态:1代表冻结,2代表融化,3代表沙漠,4代表降水。如果要用图示来显示的话,我们推荐用ArcView + 3D 或 Spatial Analyst 扩展模块来读取,在读取过程中会生成grid格式的文件,所显示的grid文件就是该ASCII码文件的图形表达。读取方法: [1] 在ArcView软件中添加3D或Spatial Analyst扩展模块,然后新建一个View; [2] 将View激活,点击File菜单,选择Import Data Source选项,弹出Import Data Source选择框,在此框中的Select import file type:中选择ASCII Raster,自动弹出选择源ASCII文件的对话框,点击寻找该数据集中的任一个ASCII文件,,然后按OK键; [3] 在Output Grid对话框中键入的Grid文件名字(建议使用有意义的文件名,以便以后自己查看)和点击存放此Grid文件的路径,再次按Ok键,然后按Yes(要选择整型数据),Yes(把生成grid文件调入到当前的view中)。生成的文件可以按照Grid文件标准进行属性编辑。这样就完成了显示将ASCII文件显示成Grid文件的过程。 [4] 批处理时,可以使用ARCINFO的ASCIIGRID命令,编写成AML文件,再用Run命令在Grid模块中完成: Usage: ASCIIGRID <in_ascii_file> <out_grid> {INT | FLOAT}
晋锐, 李新
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件