地表反照率是地表能量平衡的重要参量之一。本数据集为2020年植被生长季(6-10月)逐月的黑河流域典型站点无人机遥感地表反照率数据(花寨子站8月份的数据由于实验开展的技术问题缺失)。地表反照率算法为统计回归方法,即基于6S模型和大量的典型地物光谱反射率数据,建立的从窄波段反射率到宽波段反照率的经验回归模型。将该回归模型应用于无人机多光谱遥感传感器获得的地表反射率,最终得到0.2 m空间分辨率的地表反照率数据。本数据集经过了辐射定标、几何校正,与地面站点实测数据的验证结果显示,均方根误差为0.029。本数据集提供了超高分辨率的地表反照率数据,可以作为卫星遥感尺度和地面观测尺度之间的“桥梁”,并为从事高分辨率和超高分辨率遥感数据工作的科研工作者提供数据支持。
刘绍民, 周纪, 董惟琛
归一化植被指数结合了不同波段的光谱信息,在研究植被长势、地物分类方面有重要作用。本数据集为2020年6-10月的黑河流域典型站点无人机遥感NDVI(Normalized Differential Vegetation Index)数据,空间分辨率为0.2 m。NDVI数据获取流程为将无人机拍摄后的单幅影像通过Pix4D mapper进行拼接,并由Pix4D mapper自动进行拼接和影像的植被指数计算。
刘绍民, 周纪, 金子纯, 王子卫
地表温度是地表能量平衡的重要参量之一。本数据集为2020年6-10月逐月的黑河流域典型站点无人机遥感地表温度数据;飞行使用大疆M600 pro无人机搭载WIRIS Pro Sc热像仪,分别以湿地内的SD站、绿洲内的DM站和荒漠内的HZ站为中心,观测了地表温度获取了地表亮温图像,无人机的飞行高度约300m,热像仪的像素为336x256,图像的空间分辨率为0.4m。地表温度反演算法为改进的单通道算法,将该算法应用于无人机热红外遥感传感器获取的地表亮温数据,最终得到0.4m空间分辨率的地表温度数据。
刘绍民, 周纪, 王子卫
植被叶绿素含量的测量是为了获取不同EC站点以及不同类型植被叶绿素的含量,并实现遥感反演的叶绿素产品的真实性检验。 观测仪器: 野外采样,室内丙酮萃取法测量。 测量方式: 为了分析株高对叶绿素含量的影响,根据玉米株高记录选择不同的样方进行采样,总共选择了11个玉米样方。为了比较不同植被类型的叶绿素含量,又选取了通量矩阵内EC1下的三种蔬菜类型以及湿地的芦苇样方。总共选取了19个不同的样方进行分析,所采样方交于河西学院生命科学学院实验室,进行叶绿素萃取,分别提取出所选样方的叶绿素a、叶绿素b以及总叶绿素的含量。 数据内容: 叶绿素a、叶绿素b以及总叶绿素的含量 观测时间: 2012年7月8号
家淑珍
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件