数据集是基于CESM2.1.3模式进行数值模拟数据集。数据集为全球多情景逐月气候数据。空间分辨率为1.9x2.5度,时间为2015年1月-2100年12月(里面还包含了历史数据1850-2014),数据为NetCDF格式。 数据集包括1850-2014年的历史数据(简称为Hist)以及SSP情景(SSP126、SSP245、SSP370、SSP585),其中每个情景包含三组(默认排放数据CMIP6(简称为CMIP6)、中国区域CO2排放实现碳中情景(简称为CNCN)和中国区域实现碳中和情景下,且CH4和N2O的伴随着碳中和情景下的变化(简称为CNCNext),数据集地理空间范围:90°N–90°S,180°E–180°W。
李龙辉
中国区域354座城市通用热舒适度指数白天和夜晚的月均值数据。该数据时间范围包括2012年1月至2021年12月,时间分辨率为逐月,空间分辨率为1km。 该数据主要是基于MODIS数据集提供的MYD07大气廓线数据和MYD11地表温度数据,并融合了ERA5再分析数据提供的风速数据,最终计算得的了中国区域范围内354座城市的通用热气候指数(Universal Thermal Climate Index, UTCI)数据值。其中城市边界采用Global Urban Boundary-GUB提供的2018年城市边界数据进行划定,为保持空间分辨率的统一,所有数据空间分辨率全部重采样至1km。 在全球变暖和快速城市化的背景下,该数据有利于研究城市热舒适度的时空变化规律及相关分析。
王晨光, 占文凤
《中国数字山地图》的数据从宏观尺度刻画中国山地空间格局和复杂形态特征,其中包含我国山地分布、山地分类、形态要素与山地面积比例等信息,是山地区划、山地成因分类及资源环境关联分析的基础数据。 山地承载着巨大的自然资源供给、生态服务与调节功能,在我国生态文明建设和社会经济发展中有着重要的地位和作用。前期,中国科学院、水利部成都山地灾害与环境研究所的李爱农研究员等,在中国山地空间范围定量界定、山地起伏度计算尺度分析及地形自适应算法、山地综合制图等研究的基础上,形成了“中国数字山地图”数据集,具体包括: (1)中国山地空间范围数据,(2)中国山地类型数据,(3)山脉数据(山脉走向、等级与山脊形态),(4)山峰数据,(5)山地面积按一级行政区统计表,(6)中国地势等高面数据,(7)山地形成类型分区数据,(8)中国山地分区数据,(9)主要山峰列表。山地空间界定范围与分类的原始DEM空间分辨率约90m,数据边界已套合中高分辨遥感影像做必要的修订,与山地地形晕渲图有良好的空间一致性;山脉走向与山地散列要素的制图综合精度为1∶100万,为定性的辅助数据。该数据集将山地从地貌制图中单独列出,具有更高的空间分辨率和针对性,可为山地环境及山地灾害地带性研究、山区国土空间分析等提供可靠的本底数据,服务于我国面向山区的宏观决策。
南希, 李爱农, 邓伟
我们提供了中国范围内1km高质量的土壤湿度数据集-SMCI1.0(Soil Moisture of China by in situ data, version 1.0),SMCI1.0是包含2000-2020年、日尺度、以10厘米为间隔10层深度(10-100cm)的高时空分辨率土壤湿度。该数据集是以中国气象局提供的1,648个站点观测10层土壤湿度作为基准,使用ERA5_Land时间序列数据、叶面积指数(LAI)、土地覆盖类型(Landtypes)、地形(DEM)和土壤特性(Soil properties)作为协变量,通过机器学习方式获得。我们进行了两组实验以验证SMCI1.0的精度,时间尺度上:ubRMSE为0.041-0.052,R为0.883-0.919;空间尺度上:ubRMSE为0.045-0.051,R为0.866-0.893。 由于SMCI1.0是基于实地观测的土壤湿度,它可以作为现有基于模型和卫星数据集的有效补充。该数据产品可用于各种水文、气象、生态分析和建模,尤其在需要高质量、高分辨率土壤湿度的应用上至关重要。有关数据集的引用及详细描述,请阅读说明文档。为便于使用,我们提供了两种不同分辨率的版本:30 秒(~1km)和0.1度(~9km)。
上官微, 李清亮, 石高松
Sugita (2007)提出的 REVEALS 模型,通过引入不同种属花粉产量,考量不同花粉类型的传播能力,以及不同沉积类型和沉积盆地大小对花粉源区的影响,将花粉组合定量转化为植被盖度,使得基于花粉的REVEALS植被重建结果更加接近真实的植被盖度。本文利用REVEALS 模型,基于94个高质量的湖泊/泥炭化石花粉数据,定量重建了我国温带和北亚热带区域的1˚x1˚空间分辨率的全新世植被覆盖变化。11.7 - 0.7 ka 时段,重建结果的分辨率为500年;0.7 ka至今,重建结果分辨率依次提高为350年(0.7˗0.35 ka),250年(0.35˗0.1 ka)和100年(0.1 ka 至今)。 研究区涵盖了75个1˚x1˚栅格范围,基于REVEALS的植被重建数据包含25个时间窗口内27个种属,两种植被功能型合并方式:6个植被功能型和10个植被功能型,以及3种土地覆盖类型的植被盖度数据及误差。元数据文件包含了重建样点名称、现代植被类型、年代个数、经纬度及海拔、沉积盆地的大小和类型等信息。本数据可被耦合到古气候模拟的模型中,也可用于评价和校正古植被模拟及土地利用模型。
李芙蓉
该数据由“中国1:100万湿地数据”剪裁而来。 “中国1:100万湿地数据”主要反映2000年代全国沼泽湿地信息,采用十进制度为单位的地理坐标表示,主要内容包括:沼泽湿地的类型、湿地的水源补给类型、土壤类型、主要植被类型、所属地理区域等。执行了《中国可持续发展信息共享系统信息分类与编码标准》。本数据库数据源:1:20沼泽图(内部版)、青藏高原1:50万沼泽图(内部版)、沼泽调查数据1:100万和全国1:400万沼泽图;处理步骤为:数据源选择、预处理、沼泽湿地要素数字化与编码、数据编辑处理、建立拓扑关系、接边处理、投影转换、与地名等属性数据库连结并获取属性数据。
张树清
本数据集包括中国地区2002-2008年,经纬度投影,0.25度分辨率的被动微波遥感亮度温度数据。 1、数据处理过程: NSIDC produces AMSR-E gridded brightness temperature data by interpolating AMSR-E data (6.9 GHz, 10.7 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz, and 89.0 GHz) to the output grids from swath space using an Inverse Distance Squared (ID2) method。 2、数据格式: Brightness temperature files: two-byte unsigned integers, little-endian byte order Time files: two-byte signed integers, little-endian byte order 3、数据命名: ID2rx-AMSRE-aayyyydddp.vnn.ccc(China-ID2r1-AMSRE-D.252002170A.v03.06V) ID2 Inverse Distance Squared r1 Resolution 1 swath input data AMSRE Identifies this an AMSR-E file D.25 Identifies this as a quarter degree file yyyy Four-digit year ddd Three-digit day of year p Pass direction (A = ascending, D = descending) vnn Gridded data version number (for example, v01, v02, v03) ccc AMSR-E channel indicator: numeric frequency (06, 10, 18, 23, 36, or 89) followed by polarization (H or V) 4、切割范围: Corner Coordinates: Upper Left ( 60.0000000, 55.0000000) ( 60d 0'0.00"E, 55d 0'0.00"N) Lower Left ( 60.0000000, 15.0000000) ( 60d 0'0.00"E, 15d 0'0.00"N) Upper Right ( 140.0000000, 55.0000000) (140d 0'0.00"E, 55d 0'0.00"N) Lower Right ( 140.0000000, 15.0000000) (140d 0'0.00"E, 15d 0'0.00"N) Center ( 100.0000000, 35.0000000) (100d 0'0.00"E, 35d 0'0.00"N) Origin = (60.000000000000000,55.000000000000000) 5、数据投影: GEOGCS["WGS 84", DATUM["WGS_1984", SPHEROID["WGS 84",6378137,298.257223563, AUTHORITY["EPSG","7030"]], TOWGS84[0,0,0,0,0,0,0], AUTHORITY["EPSG","6326"]], PRIMEM["Greenwich",0, AUTHORITY["EPSG","8901"]], UNIT["degree",0.0174532925199433, AUTHORITY["EPSG","9108"]], AUTHORITY["EPSG","4326"]]
Mary Jo Brodzik, Matthew Savoie, Richard Armstrong, Ken Knowles
中国长序列地表冻融数据集——决策树算法(1987-2009)是利用被动微波遥感 SSM/I亮度温度资料通过决策树分类提取得到。 该数据集采用EASE-Grid投影方式(等积割圆柱投影,标准纬线为±30°),空间分辨率25.067525km,提供逐日的中国大陆主体部分的地表冻融状态分类结果。数据集按年份存放,共由23个文件夹组成,从1987到2009。每个文件夹里包含当年的逐日地表冻融分类结果,为ASCII码文件,命名规则为:SSMI-frozenYYYY***.txt,其中YYYY代表年,***代表儒略日(001~365/366)。冻融分类结果txt文件可直接用文本程序打开察看,还可用ArcView + Spatial Analyst扩展模块或者Arcinfo的Asciigrid命令打开。 提取地表冻融的原始数据来源于由美国国家雪冰数据中心(NSIDC)处理的1987 年以来的逐日被动微波数据,这一数据集采用EASE-Grid(等面积可扩充地球网格)作为标准格式。 中国地表冻融长时间序列数据集——决策树算法(1987-2009)属性由该数据集的时空分辨率、投影信息、数据格式组成。 时空分辨率:时间分辨率为逐日,空间分辨率为25.067525km,经度范围为60°~140°E,纬度为15°~55°N。 投影信息:全球等积圆柱EASE-Grid投影,关于EASE-Grid投影的详细信息见数据准备中关于这种投影的说明。 数据格式:数据集由1987到2009共23个文件夹组成,每个文件夹里包括当年的逐日地表冻融分类结果,按日存储为txt文件。文件命名规则:例如SMI-frozen1994001.txt代表1994年第1天的地表冻融分类结果。该数据集的ASCII码文件是由头文件和主体内容构成。头文件包括行数、列数、x-轴左下点坐标、y-轴左下点坐标、栅格大小、无数据区标值等6行描述信息组成;主体内容为根据行数列数组成的二维数组,以列为优先进行排列,数值为整数型,从1到4,1代表冻结,2代表融化,3代表沙漠,4代表降水。因为该数据集中的所有ASCII码文件所描述的空间为我国全国范围,所以这些文件的头文件是不变的,现将头文件摘录如下(其中xllcenter, yllcenter和cellsize单位为m): ncols 308 nrows 166 xllcorner 5778060 yllcorner 1880060 cellsize 25067.525 nodata_value 0 该数据集中的所有ASCII码文件可以直接用文本程序(如记事本)打开。除了头文件,主体内容为数值表征地表冻融的状态:1代表冻结,2代表融化,3代表沙漠,4代表降水。如果要用图示来显示的话,我们推荐用ArcView + 3D 或 Spatial Analyst 扩展模块来读取,在读取过程中会生成grid格式的文件,所显示的grid文件就是该ASCII码文件的图形表达。读取方法: [1] 在ArcView软件中添加3D或Spatial Analyst扩展模块,然后新建一个View; [2] 将View激活,点击File菜单,选择Import Data Source选项,弹出Import Data Source选择框,在此框中的Select import file type:中选择ASCII Raster,自动弹出选择源ASCII文件的对话框,点击寻找该数据集中的任一个ASCII文件,,然后按OK键; [3] 在Output Grid对话框中键入的Grid文件名字(建议使用有意义的文件名,以便以后自己查看)和点击存放此Grid文件的路径,再次按Ok键,然后按Yes(要选择整型数据),Yes(把生成grid文件调入到当前的view中)。生成的文件可以按照Grid文件标准进行属性编辑。这样就完成了显示将ASCII文件显示成Grid文件的过程。 [4] 批处理时,可以使用ARCINFO的ASCIIGRID命令,编写成AML文件,再用Run命令在Grid模块中完成: Usage: ASCIIGRID <in_ascii_file> <out_grid> {INT | FLOAT}
晋锐, 李新
本数据集:主编:侯学煜 编图:候学煜,孙世洲,张经炜,何妙光.王义凤,孔德珍,王绍庆 出版:地图出版社 发行:新华书店 时间:1979年 比例尺:1:4000000 自1972年5月至1976年7月历时五年完成的。在制订图例和具体编图过程中,参考了我国1949年以后的绝大部分植被考察资料(包括图件和文字资料),举行了十几次所内外有关研究人员参加的制图讨论会。在编图工作完成后的发排期间,又补充了许多新的考察资料,特别是西藏西部地区的植被资料。 本图的性质基本上市属于现状植被图,包括自然植被和农业植被两部分,自然植被的图例是按照七个植被群系纲组排列的,他们主要是根据植物群落的外貌并结合一定的生态特征而划分的。农业植被群落的概念,同自然植物群落一样,也具有一定的生活型(外貌、结构、层片),种类组成和一定的生态地段。 1990年,中国科学院地理研究所资源与环境信息系统国家重点实验室完成了该图的数字化工作,并撰写了相关的数据说明文档,数字化后的数据也采用等积圆锥投影,并可利用GIS软件转换为其他投影. 本数据包括1个e00格式的矢量文件,中国植被编码设计说明, 数据集说明,植被数据层属性数据表和扫描的《中华人民共和国植被图--简要说明》等文件。 数据投影: Projection: Albers false_easting: 0.000000 false_northing: 0.000000 central_meridian: 110.000000 standard_parallel_1: 25.000000 standard_parallel_2: 47.000000 latitude_of_origin: 0.000000 Linear Unit: Meter (1.000000) Geographic Coordinate System: Unknown Angular Unit: Degree (0.017453292519943299) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Unknown Spheroid: Clarke_1866 Semimajor Axis: 6378206.400000000400000000 Semiminor Axis: 6356583.799999999800000000 Inverse Flattening: 294.978698213901000000
侯学煜, 孙世洲, 张经炜, 何妙光, 王义凤, 孔德珍, 王绍庆
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件