该数据集包含青藏高原2000年所有影像可见湖泊的矢量数据,共32840个。 根据空间分辨率为14.25 m的GeoCover Landsat mosaic 2000影像数据目视解译得来。 数据格式为矢量数据,投影坐标系为Albers Conical Equal Area。 数据属性字段如下: Area:湖泊面积(km²); X:湖泊中心点经度(°); Y:湖泊中心点纬度(°); Perimeter:湖泊周长(km)。
张国庆
在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。 数据包含中国高寒网17个站点2014-2017年青藏高原地区逐日气象观测数据集(气温、降水、风向风速、相对湿度、气压、辐射和蒸发),三江源的数据有所缺失。
朱立平, 彭萍
该数据集为收集到的资源三号02星的遥感影像。资源三号02星(ZY3-02)于2016年5月30日11时17分,在我国在太原卫星发射中心用长征四号乙运载火箭成功将资源三号02星发射升空。将进一步加强国产卫星影像在国土测绘、资源调查与监测、防灾减灾、农林水利、生态环境、城市规划与建设、交通等领域的服务保障能力。文件列表: ZY302_PMS_E98.8_N37.4_20170707_L1A0000156704 ZY302_PMS_E100.4_N37.0_20171127_L1A0000217243 ZY302_TMS_E99.5_N37.0_20170717_L1A0000160059 ZY302_TMS_E100.3_N36.6_20171127_L1A0000217279 ZY302_TMS_E100.4_N37.0_20170529_L1A0000139947 文件夹命名规则:卫星名称_传感器名称_中心经度_中心纬度_获取时间_L1****
中国资源卫星应用中心
本数据集为1960-2017年间“一带一路”沿线国家人口数据。人口是一个内容复杂、综合多种社会关系的社会实体,具有性别和年龄及自然构成,多种社会构成和社会关系、经济构成和经济关系。人口的出生、死亡、婚配,处于家庭关系、民族关系、经济关系、政治关系及社会关系之中,一切社会活动、社会关系、社会现象和社会问题都同人口发展过程相关。在“一带一路”中国同各个国家协同发展中,它可以为国家政策,方案的策划与实施提供重要参考,从而加快各国经济发展。
尹君
该数据集是中国科学院西北高原生物研究所调查的三江源国家公园植物采集布位点信息。该数据集时间范围是2008年至2017年,调查范围是三江源国家公园,调查内容包括采集日期、编号、科、属、种、调查日期、采集地点、采集人、经度、纬度、海拔、生境、鉴定人等信息。对国家公园的三个园区分别进行了调查,在长江源园区调查了24个科56个属的88个种的植被,总共116条记录;在黄河源园区调查了26个科64个属110个种的植被,总共159条记录;在澜沧江源园区调查了12个科22个属30个种的植被,总共33条记录。
高庆波
“一带一路”沿线国家2000-2015年大气强迫数据集来源于CRUNCEP。CRUNCEP是一套供陆面模式使用的大气强迫场数据集。具体来说,这个长时间序列数据集(包括气温、降水、温度等)是用来长期驱动Community Land Model(CLM)土地模型的。 CRUNCEP是两个现有数据集的融合;CRU TS3.2 0.5°×0.5°月数据涵盖1901年至2002年期间,NCEP再分析2.5°×2.5°度6小时数据涵盖1948至2016年期间。融合后的CRUNCEP数据集空间分辨率为0.5°X0.5°,时间分辨率为6小时。CRUNCEP数据集被用来驱动CLM,用于研究植被生长、蒸散和初级生产力、陆-气碳交换变化趋势项目(1980-2010)以及许多其他应用。目前数据集的最新版本是版本7。
NCAR, 曹巍
该数据集为高分一号卫星遥感数据,包括2017-8-13、2017-10-5 两景PMS1相机的数据,2017-5-27日一景PMS2相机的数据,2018-9-23日WFV2和WFV3相机影像各一景。文件列表: GF1_PMS1_E99.1_N37.2_20170813_L1A0002539236 GF1_PMS1_E101.2_N36.4_20171005_L1A0002653985 GF1_PMS2_E100.3_N37.7_20170527_L1A0002384098 GF1_WFV2_E98.4_N37.6_20180927_L1A0003481737 GF1_WFV3_E100.4_N37.3_20180927_L1A0003481706
周圣明
净初级生产力(NPP)数据基于CASA模型生产,数据内容为三江源地区2010-2015年250米分辨率逐月NPP数据集。净初级生产力定义:绿色植物单位面积、单位时间内所累积的有机物数量。 单位:0.01gC/m²/月。Monthly和Yearly NPP分别表示逐月和逐年NPP。 投影信息: Albers 等积圆锥投影 中央经线:105度 第一割线:25度 第一割线:47度 坐标西偏:4000000 meter
朱伟伟
该数据集包含青藏高原1970s,1990,2000,2010年份大于1平方公里湖泊矢量数据。 湖泊水体边界根据Landsat MSS, TM, ETM+等影像目视解译而来。 数据类型为矢量数据,属性字段包括Area (km²)。 投影坐标系为Albers Conical Equal Area。 主要用于青藏高原湖泊、水文与气象变化研究。
张国庆
1)数据内容(包含的要素及意义):1979-2016青藏高原地面气象观测数据产品 2)数据来源及加工方法:tif格式,可以采用arcgis打开查看和分析 3)数据质量描述:日分辨率 4)数据应用成果及前景:在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。
朱立平, 彭萍
数据为“一带一路”沿线国家2010年铁路线长度密度资料。它是每个国家当年实际铁路运营的总长度除以该国面积的结果,同时也是衡量一个国家交通运输能力的重要指标。数据来源于世界银行,铁路密度单位为每百万平方公里铁路公里。该数据可以直接地反映出“一带一路”沿线国家的交通运输能力,也能在侧面映射出各个国家的经济发展状况,发展需求。该数据集在中国同“一带一路”沿线各国家的共同发展中起到了一个重要的参考作用。由铁路带动经济,在中国同各国密切联系的今天,离不开铁路的运输,而铁路数据就显得至关重要。
刘振伟
“一带一路”沿线国家灾害数据,主要来自全球灾害数据库。该数据库记录的灾害信息来源于联合国、政府和非政府组织、研究机构和媒体等多种途径;数据指标详细记录了灾害发生国家、灾害类型、发生日期、死亡人数和经济损失估计等信息。 本研究从该数据库逐条摘录一带一路沿线国家自然灾害记录,最终形成沿线65国9大主要灾种的灾害数据库。 搜集整理的自然灾害记录,大致可以分为9类,包括:洪涝、滑坡、极端气温、风暴、干旱、林火、地震、块体运动和火山活动等。 一带一路沿线国家,1900~2018年,总计5479条灾害记录;其中,2000~2015年,有2673条灾害记录。在此基础上,从灾害频次、死亡人口、受灾人口和经济估损等4个方面,开展沿线国家的自然灾害情况调查。 整体上看,一带一路沿线国家,1900年以来,总计发生各类自然灾害5479次,导致约1900万人死亡,造成经济损失约9500亿美元。其中,发生频次最多的是洪涝和风暴;经济损失最多的是洪涝和地震;受灾人口最多的是洪涝和干旱;死亡人口最多的是干旱和洪涝。
尹君
数据为“一带一路”沿线区域2013年水资源利用强度资料。该数据体现了一个地区区域水资源的总体现状以及用水情况,水是制约经济社会发展的重要因素,尤其在缺水地区,水的利用关乎人们的生存和发展。该数据来源于联合国粮食和农业组织。数据集描述了世界各地区的总用水量、开发利用率、各部分用水比例等。它直接反应了各个地区的水资源含量以及用水需求量,同时也间接地反应出地区经济发展状况。水资源的利用程度能看出国家和地区的发展重心,而开发利用率也在一定程度上表现了社会的发展程度。在“一带一路”各地区密切联系的今天,水资源的状况衡量了经济发展状况,同时也反射出经济制约的因素。
刘振伟
无论从全球尺度亦或是局地尺度而言,土壤数据极其重要,而由于缺乏可靠的土壤数据,土地退化评估、环境影响研究和可持续的土地管理干预措施受到了极大的瓶颈阻碍。鉴于土壤信息数据在全世界的迫切需要,特别是在气候变化公约的背景下,国际应用系统分析研究所(IIASA)及联合国粮农组织(FAO)和京都协议对土壤碳测量和联合国粮农组织/国际全球农业生态评价研究(GAEZ v3.0)共同倡导下建立了新一代世界土壤数据库(Harmonized World Soil Database version 1.2 )(HWSD V1.2)。 青藏高原2010年土壤质地数据集裁切自世界土壤库。数据格式:grid栅格格式,投影为WGS84。采用的土壤分类系统主要为FAO-90。核心土壤制度单元唯一验证标识符: MU_GLOBAL-HWSD数据库土壤制图单元标示符,连接了GIS图层。 MU_SOURCE1 和 MU_SOURCE2- 源数据库制图单元标识符 SEQ-土壤制图单元组成中的土壤单元序列; 土壤分类系统利用FAO-7分类系统或 FAO-90分类系统(SU_SYM74 resp. SU_SYM90)或FAO-85(SU_SYM85). 土壤属性表主要字段包括: ID(数据库ID) MU_GLOBAL(土壤单元标识符)(全球) SU_SYMBOL 土壤制图单元 SU_SYM74(FAO74分类); SU_SYM85(FAO85分类); SU_SYM90(FAO90土壤分类系统中土壤名称); SU_CODE 土壤制图单元代码 SU_CODE74 土壤单元名称 SU_CODE85 土壤单元名称 SU_CODE90 土壤单元名称 DRAINAGE(19.5); REF_DEPTH(土壤参考深度); AWC_CLASS(19.5); AWC_CLASS(土壤有效水含量); PHASE1: Real (土壤相位); PHASE2: String (土壤相位); ROOTS: String (到土壤底部存在障碍的深度分类); SWR: String (土壤含水量特征); ADD_PROP: Real (土壤单元中与农业用途有关的特定土壤类型); T_TEXTURE(顶层土壤质地); T_GRAVEL: Real (顶层碎石体积百分比);(单位:%vol.) T_SAND: Real (顶层沙含量); (单位:% wt.) T_SILT: Real (表层粉沙粒含量); (单位:% wt.) T_CLAY: Real (顶层粘土含量); (单位:% wt.) T_USDA_TEX: Real (顶层USDA土壤质地分类); (单位:name) T_REF_BULK: Real (顶层土壤容重); (单位:kg/dm3.) T_OC: Real (顶层有机碳含量); (单位:% weight) T_PH_H2O: Real (顶层酸碱度) (单位:-log(H+)) T_CEC_CLAY: Real (顶层粘性层土壤的阳离子交换能力); (单位:cmol/kg) T_CEC_SOIL: Real (顶层土壤的阳离子交换能力) (单位:cmol/kg) T_BS: Real (顶层基本饱和度); (单位:%) T_TEB: Real (顶层交换性盐基);(单位:cmol/kg) T_CACO3: Real (顶层碳酸盐或石灰含量) (单位:% weight) T_CASO4: Real (顶层硫酸盐含量);(单位:% weight) T_ESP: Real (顶层可交换钠盐);(单位:%) T_ECE: Real (顶层电导率)。 (单位:dS/m) S_GRAVEL: Real (底层碎石体积百分比);(单位:%vol.) S_SAND: Real (底层沙含量); (单位:% wt.) S_SILT: Real (底层淤泥含量); (单位:% wt.) S_CLAY: Real (底层粘土含量); (单位:% wt.) S_USDA_TEX: Real (底层USDA土壤质地分类); (单位:name) S_REF_BULK: Real (底层土壤容重); (单位:kg/dm3.) S_OC: Real (底层有机碳含量); (单位:% weight) S_PH_H2O: Real (底层酸碱度) (单位:-log(H+)) S_CEC_CLAY: Real (底层粘性层土壤的阳离子交换能力); (单位:cmol/kg) S_CEC_SOIL: Real (底层土壤的阳离子交换能力) (单位:cmol/kg) S_BS: Real (底层基本饱和度); (单位:%) S_TEB: Real (底层交换性盐基);(单位:cmol/kg) S_CACO3: Real (底层碳酸盐或石灰含量) (单位:% weight) S_CASO4: Real (底层硫酸盐含量);(单位:% weight) S_ESP: Real (底层可交换钠盐);(单位:%) S_ECE: Real (底层电导率)。 (单位:dS/m) 本数据库分两层,其中以顶层(T)土壤厚度为(0-30cm),底层(S)土壤厚度为(30-100cm)。 其他属性值请参考说明HWSD1.2_documentation文档.pdf,The Harmonized World Soil Database (HWSD V1.2) Viewer-中文说明及HWSD.mdb。
Food and Agriculture Organization of the United Nations(FAO)
本数据库依据能值理论分析对2008-2014年17个“一带一路”沿线典型国家(哈萨克斯坦、吉尔吉斯斯坦、塔吉克斯坦、乌兹别克斯坦、土库曼斯坦、蒙古、俄罗斯、巴基斯坦、孟加拉国、阿富汗、尼泊尔、泰国、缅甸、乌克兰、摩尔多瓦、白俄罗斯、阿塞拜疆)包括环境资源流量、自然资本存量、人类生产活动在内的各种生态经济资源的详细信息、商品和服务数据以太阳能值为基准进行计算、评估。数据库由3个表格构成,分别为主要资源能值分析表、主要资源类别综合能值流分析表和系统能值指标分析表。主要资源能值分析表中所有的能值转换率都根据GEB2016进行了更新。以数据库中的基础数据为依据,能有效计算包括基于能值的可持续性指数(Emergy-based sustainability index, ESI)在内的能值指标体系,并有根据性的给出分析结果产生的原因、解决方案及未来规划方向,对国家生态经济系统的发展具有重要意义,并为政府完善生态经济系统可持续发展决策提供科学依据。
李海涛
祁连山流域社会经济发展数据集包含祁连山流域的5个地级市、14个区县的1949-2015年长时间序列社会经济发展指标,如产业结构、人口规模、劳动力、就业等。分别为祁连山流域地级市社会经济发展数据子集、祁连山流域县级社会经济发展数据子集。 数据来源于甘肃省统计年鉴、甘肃发展年鉴、青海省统计年鉴、青海省国民经济与社会发展统计公报、全国农产品成本收益资料汇编、西宁市统计年鉴。 因数据源为公开发布的省级、市级统计年鉴,尚未对数据进行交叉验证,有待在数据分析与应用过程中进行数据的一致性检验和精度验证。 该数据集是反映祁连山流域社会经济发展的宏观数据集,覆盖面全,时间序列长,可对祁连山流域的社会经济发展变化提供基础信息。
吴锋
本数据集包含青海近50年的自然灾害信息,包括干旱、洪灾、冰雹、连阴雨、雪灾、寒潮和强降温、低温冻害、大风沙尘暴、虫灾、鼠灾、地质灾害等自然灾害产生的时间地点及所造成的后果。 青海省地处青藏高原东北部,总面积72 万平方千米。境内河流纵横,冰川广布,湖泊众多,因中华民族的两条母亲河长江、黄河及著名国际河流澜沧江发源于此而素有"中华水塔"之称;全省有可利用草地33.5 万平方千米,天然草场面积仅次于内蒙古、西藏和新疆而居全国第四位,草场类型多样,草地资源十分丰富,拥有青藏高原独特气候条件下生长发育的、并对高原生态环境特征具有较强代表性的维管束植物113 科、564 属、2100 种左右。青海省作为青藏高原的主体部分,是我国生物物种形成、演化的中心之一,也是国际科技界瞩目的研究气候和生态环境变化的敏感区和脆弱带。青海境内地形、地貌复杂,高山、谷地、盆地交错,多年积雪、冰川、戈壁、沙漠、草原等广有分布。复杂的地形条件,高峻的海拔高度和严酷的气候条件决定了青海是一个气象灾害十分频繁的省份。其主要的气象灾害有干旱、洪灾、冰雹、连阴雨、雪灾、寒潮和强降温、低温冻害、大风沙尘暴等。 数据摘录自《中国气象灾害大典·青海卷》,属于人工录入总结校对。
青海省统计局
基于MODIS 2000年至2018年生长季平均的NDVI(空间分辨率250m),利用Mann-Kendall趋势检测方法,计算了NDVI的变化趋势。对三江源国家公园的三个园区都进行了计算(CJYYQ:长江源园区;HHYYQ:黄河源园区;LCJYYQ:澜沧江源园区)。CJYYQ_NDVI_trend_2000_2018_ok.tif:长江源园区NDVI变化趋势。CJYYQ_NDVI_trend_2000_2018_ok_significant.tif:长江源园区NDVI变化趋势,剔除了不显著(p>0.05)的区域。CJYYQ_gs_avg_NDVI_2000.tif:长江源园区2000年生长季平均NDVI。单位为NDVI变化每年。
王旭峰
该数据集为收集到的资源三号卫星的遥感影像。资源三号卫星(ZY-3)于2012年1月9日成功发射。该卫星的主要任务是长期、连续、稳定、快速地获取覆盖全国的高分辨率立体影像和多光谱影像,为国土资源调查与监测、防灾减灾、农林水利、生态环境、城市规划与建设、交通、国家重大工程等领域的应用提供服务。文件列表: ZY3_MUX_E99.8_N36.6_20171011_L1A0003817398 ZY3_MUX_E99.9_N37.0_20171011_L1A0003817397 ZY3_MUX_E100.0_N37.4_20171011_L1A0003817396 ZY3_MUX_E100.1_N36.6_20170625_L1A0003738882 ZY3_MUX_E100.8_N36.6_20170710_L1A0003748776 ZY3_MUX_E100.9_N37.0_20170710_L1A0003748775 ZY3_NAD_E99.8_N36.6_20171011_L1A0003817439 ZY3_NAD_E99.9_N37.0_20171011_L1A0003817438 ZY3_NAD_E100.0_N37.4_20171011_L1A0003817437 ZY3_NAD_E100.1_N36.6_20170625_L1A0003746917 ZY3_NAD_E100.8_N36.6_20170710_L1A0003748580 ZY3_NAD_E100.9_N37.0_20170710_L1A0003748579
中国资源卫星应用中心
中国土地利用现状遥感监测数据库是在国家科技支撑计划、中国科学院知识创新工程重要方向项目等多项重大科技项目的支持下经过多年的积累而建立的覆盖全国陆地区域的多时相土地利用现状数据库。 数据集包括1980年代末期,1990年、1995年、2000年、2005年、2010年,2015年七期,数据生产制作是以各期Landsat TM/ETM遥感影像为主要数据源,通过人工目视解译生成。数据缺少南海部分岛屿数据。 空间分辨率1公里,投影参数:Albers_Conic_Equal_Area 中央经线105,标准纬线1: 25,标准纬线2: 47。 中国土地利用现状遥感监测数据库是目前我国精度比较高的土地利用遥感监测数据产品,已经在国家土地资源调查、水文、生态研究中发挥着重要作用。 土地利用类型包括耕地、林地、草地、水域、居民地和未利用土地6个一级类型以及25个二级类型。
中国科学院资源环境科学数据中心(http://www.resdc.cn/)
该数据集是中国科学院西北高原生物研究所在三江源国家公园野生动物多样性本底调查过程获得的野生动物分布位点信息。该数据集时间范围是2017年,调查范围是三江源国家公园,调查物种包括藏野驴(Equus kiang)、狼(Canis lupus)、赤狐(Vulpes vulpes)、马鹿(Cervus elaphus)、雀鹰(Accipiter nisus)、红腹红尾鸲(Phoenicurus erythrogastrus)、豹猫(Prionailurus bengalensis)、大鵟(Buteo hemilasius)、藏原羚(Procapra picticaudata)、藏雪鸡(Tetraogallus tibetanus)、高原山鹑(Perdix hodgsoniae)、猎隼(Falco cherrug)等多种珍稀野生动物。
张同作
草地地上生物量采用的方法为分区分类型模型,数据年份为2000、2010、2015年,为8月上旬的地上植被鲜重。地上生物量定义为单位面积内地面以上实存生活的植被有机物质总量。单位:克/平方米(g/m²)。该数据产品是中国科学院遥感与数字地球研究所基于MODIS的植被指数采用统计模型计算得到。空间分辨率为250m×250m。该数据集是三江源国家公园植被监测的重要数据源。 投影信息: Albers 等积圆锥投影 中央经线:105度 第一割线:25度 第一割线:47度 坐标西偏:4000000 meter
朱伟伟
该数据集包含青藏高原地区各县区1980-2015年农业经济相关数据,具体涵盖农村总户数、总人口、农业人口、农村劳动力、耕地面积、水田面积、旱地面积、农机动力、农用汽车、机耕面积、灌溉面积、化肥施用量、用电量、农业收入、农林牧渔业总产值、牛、猪、羊、肉、禽、鱼等的产量、粮食播种面积、粮棉油的及各类作物的产量、特色农产品和畜产品产量等相关数据。数据来源于青藏高原所含各省统计年鉴。数据质量优良,可用于青藏高原社会经济和农业发展分析。
吕昌河
本数据集包含三江源国家公园内各个县的社区情况统计表,具体内容包括: 表一包括:行政村个数、自然村个数、户数、人口数、农村劳动力人数、一二三产业总值、人均纯收入、家畜数量; 表二包括:人口民族组成(各名族人口数)、教育的相关统计(中小学个数及学生人数)、卫生相关的统计(医院、卫生室以及医护人员个数)、人口受教育水平的统计(不同教育程度的人数); 表三包括:草地(草地总面积、可利用草场面积、中度以上退化面积、草原植被覆盖度)、林地(总面积、乔木林面积、灌木林面积和疏林地面积)、水域(总面积、河流面积、湖泊面积、冰川面积、雪山面积和湿地面积)。 总共设计四个县:玛多、曲麻莱、杂多和治多县。该数据来自政府部门的统计数据。
国家统计局
北极的两个区域是由北极监测和评估方案工作组和北极人类发展报告确定的。 AMAP北极的地理覆盖范围从高北极地区一直延伸到加拿大、丹麦王国(格陵兰和法罗群岛)、芬兰、冰岛、挪威、俄罗斯联邦、瑞典和美国的亚北极地区,包括相关海域。阿拉斯加北极包含所有《阿拉伯国家、加拿大北部60°N与魁北克省北部和拉布拉多,格陵兰岛,法罗群岛,和冰岛,北县的挪威、瑞典和芬兰。俄罗斯的局势很难用简单的语言来描述。 人口学家划定的区域包括:摩尔曼斯克大爆炸区、涅涅茨人、亚马朗涅茨人、泰梅尔和楚科塔自治州、科米共和国的沃库塔市、克拉斯诺亚尔斯基克雷的诺里尔斯克和伊戈尔卡,以及萨哈共和国边界最接近北极圈的地区。
Arctic Monitoring And Assessment Programme
本数据集为青藏高原黄河源区2015年逐像素年内最大植被覆盖度空间分布图,该区域的面积约为4.4万平方公里。此数据是基于2015年MODIS(空间分辨率250米) 和Landsat-8 OLI(空间分辨率30米)植被生长季(5月初-9月末)的时间序列影像,并利用最大值合成方法、像元二分模型和时间插值等方式获得。植被覆盖度空间分布图的空间分辨率为30米,采用WGS 1984 UTM 投影,数据格式为grid格式。
王广军
该数据集主要是第四版本由 CIAT(国际热带农业中心)利用新的插值算法得到的SRTM地形数据,此方法更好的填补了SRTM 90的数据空洞。插值算法来自于Reuter et al.(2007). SRTM的数据组织方式为:每5度经纬度方格划分一个文件,共分为24行(-60至60度)和72列(-180至180度),数据分辨率90米。 数据使用: SRTM的数据是用16位的数值表示高程数值的(-/+/32767米),最大的正高程9000米,负高程(海平面以下12000米),空值用-32767来表示。
Food and Agriculture Organization of the United Nations(FAO)
本数据集为扎陵湖-鄂陵湖附近黄河源区沼泽空间分布图,面积约2.1万平方公里。数据集由Landsat 8 影像通过专家决策树分类,并经人工目视解译修正获得。影像的空间分辨率为30 m,采用WGS 1984 UTM 投影坐标系,数据格式为grid格式。影像区分为5种地类,地类1为“水体”,地类2为“高盖度植被”,地类3为“裸地”,地类4为“低盖度植被”,地类5为“沼泽”,其中低盖度植被及高盖度植被通过植被覆盖度进行区分,阈值选取0.1至0.4为低盖度植被,0.4至1为高盖度植被。
王广军
本数据集包括了青藏高原祁连山地区自从1980年到2013年以来的逐月的2m高的气温数据。本数据集来源于欧洲中期天气预报中心的第三代ERA-Interim再分析资料,该数据集采用四维变分分析,结合卫星数据误差校正等技术,实现了再分析资料的质量提升。数据集的空间分辨率为0.125°。本数据集是祁连山地区过去30多年以来的气温的网格数据集,可以为祁连山地区的气温变化、生态系统发展演替及相关地球系统模型的研究提供基础依据。
吴晓东
1)数据内容包括泛第三极地区65国以及中国西部抽样单元布设图。2) 从北纬70°-南纬10°,东经180°-西经180°在泛第三极范围布设抽样调查单元;纬度70°以上不布设样点;纬度60°-70°范围内,按照0.5纬度*1经度布设样点,即约为55km*55km-55km*38km网格布点;纬度40°-60°范围内,按照0.5纬度*0.75经度布设样点,即约为55km*63km-55km*42km网格布点;纬度40°以下范围内,按照0.5纬度*0.5经度布设样点;青藏高原范围内,按照0.25纬度*0. 25经度布设样点;中国西部的新疆、青海、甘肃、四川、云南5省份采用第一次全国水利普查水土保持普查中布设的调查单元。样点总数为29651个,其中青藏高原点数为4052个,中国西部普查样点数为8771个,中国以外65国样点数为16828个。 3)所选抽样单元分布均匀,数据质量良好。4)抽样调查单元布设图对研究泛第三极土壤侵蚀现状,更好的贯彻“一带一路”发展政策具有重要的意义。
魏欣
青藏高原作为亚洲“水塔”为亚洲主要河流提供水资源。由生物质和化石燃料燃烧排放的BC气溶胶对辐射具有极强的吸收作用,进而对地球系统的能量收支和分布具有重要的影响,是气候环境变化不可忽视的影响因子。青藏高原周边地区排放的黑碳气溶胶经大气环流可被传输至高原内部,并沉降到雪冰表面,对降水和冰川物质平衡产生重要影响。分别在青藏高原5个台站架设黑碳仪,在线测量大气黑碳含量。这对评估黑碳对青藏高原的气候环境影响和大气污染物的跨境传输提供数据基础。
王茉
本数据集包括了青藏高原祁连山地区自从1980年到2013年以来的逐月的地表平均温度数据。本数据集来源于欧洲中期天气预报中心的第三代ERA-Interim再分析资料,该数据集采用四维变分分析,结合卫星数据误差校正等技术,实现了再分析资料的质量提升。数据集的空间分辨率为0.125°。本数据集是祁连山地区过去30多年以来地表温度网格数据集,可为祁连山地区的气候变化、生态系统发展演替及相关地球系统模型的研究提供数据基础。
吴晓东
采用温湿指数开展绿色丝绸之路沿线国家气候适宜性评价。相对湿度是计算温湿指数的基础参数之一。在参考唐焰等(2008)计算温湿指数公式的基础上,基于国家气象信息中心提供的1981-2017年气象站点观测数据,计算各站点相对湿度的多年平均数据。基于GIS技术,采用克里格方法对分布在绿色丝绸之路沿线国家的气象站点多年平均数据进行插值,得到1km×1km的栅格数据集。该数据集空间分辨率高,基于该数据集计算得到的气候适宜性评价结果更能凸显区域差异。
封志明
青藏高原在中国境内的部分涉及西藏、青海、新疆、云南、甘肃、四川六个省份,包括了西藏、青海全境,以及新疆、云南、甘肃、四川的部分地区。水土资源匹配研究旨在揭示一定区域尺度水资源和土地资源时空分配的均衡状况与丰缺程度。区域水资源与耕地资源分配的一致性水平越高,其匹配程度就越高,农业生产的基础条件就越优越。采用单位耕地面积的广义农业水资源量测度方法来反映研究区农业生产的水资源供给量和耕地资源空间适宜性的量比关系。 数据集的Excel文件中包含青藏高原在中国境内的市级行政区2008-2015年的广义农业水土资源匹配系数数据,矢量数据为2004年青藏高原在中国境内的市级行政区矢量边界数据,栅格数据像元值即所在地区当年广义农业水土资源匹配系数。
董前进, 董凌霄
本数据集包括大气气溶胶颗粒物的PM2.5质量浓度(单位为μg/m3)和当时的温度(摄氏度)、相对湿度(%)、大气压(hPa)。气溶胶PM2.5细颗粒物是指环境空气中空气动力学当量直径小于等于 2.5 微米的颗粒物。它能较长时间悬浮于空气中,对空气质量和能见度等有重要的影响,其在空气中含量浓度越高,就代表空气污染越严重。PM2.5的浓度特性数据以每5 min获取一组数据的频率进行产出,能实现小时、昼夜、季节和年际等不同时间尺度气溶胶质量浓度的分析,这为青藏高原地区不同位置的气溶胶质量浓度在不同时间尺度上的变化及其影响因素分析,以及当地空气质量评价,提供了重要的数据支撑。
邬光剑
本数据包含黄河源园区、澜沧江源园区、长江源园区内的乡界矢量数据。本数据根据青海省测绘地理信息局发布的青海省电子地图册中三江源国家公园所在县的电子地图数字化得到。数据为ARCGIS的shp格式,属性数据中主要包含三个属性,乡镇名称:各个乡镇的名字(如:花石峡镇);PAC:是行政区划代码(如:513230);NAME:是属县的名称(如玛多县)。数据采用2000国家大地坐标系和1985国家高程基准。该数据是三江源国家公园重要的基础地理数据,为该区域的制图、调查提供基本信息。
青海省基础地理信息中心
数据集主要是用在文章2018GC007986的研究中,包含了利用布设在青藏高原东北部海原台阵11个台站和中国地震局48个固定台站记录的远震波形数据计算得到的S波接收函数。 数据集压缩为zip格式的文件,包含了1个文件夹,两个文件:NETibet_SRF.QBN和NETibet_SRF.QHD。 时间域的脉冲反褶积方法被用来计算S波接收函数,所有的S波接收函数数据已经被可视化检查,去掉了一些和大多数接收函数明显不同的坏记录。 数据主要用来调查岩石圈结构,揭示高原东北部扩展的深部动力学过程。
徐强
该数据集共包含717个文件,其中station.txt文件主要描述716个站的站点信息,每列分别对应为:经度、纬度和高程;另外以站号命名的716个文件对应716个站的数据,文件中每列分别为:年、月、日和日平均太阳辐射。 该数据是基于中国气象局常规气象观测要素:温度、湿度、气压和日照时数等估算得到的。估算方法采用两个模型得到,分别为:人工神经网络模型和Yang混合模型。Yang混合模型在晴天情况下考虑了气溶胶散射和吸收、瑞利散射、水汽吸收、臭氧吸收和均一混合气体吸收五中衰减过程,云天情况下通过日照时数来参数化云对辐射的影响;而人工神经网络模型利用ANN模型在每个辐射站上建立了辐射和地面常规气象变量的关系。由于人工神经网络模型精度要比Yang混合模型估算精度高,因此通过人工神经网络模型估算值在月尺度上动态校正Yang混合模型估算值最终得到数据集合。
唐文君
采用温湿指数开展绿色丝绸之路沿线国家气候适宜性评价。温度是计算温湿指数的基础参数之一。在参考唐焰等(2008)计算温湿指数公式的基础上,基于国家气象信息中心提供的1981-2017年气象站点观测数据,计算各站点温度的多年平均数据。基于GIS技术,在考虑海拔、经纬度要素对温度影响的基础上,采用克里格方法对分布在绿色丝绸之路沿线国家的气象站点多年平均数据进行插值,得到1km×1km的栅格数据集。该数据集空间分辨率高,基于该数据集计算得到的气候适宜性评价结果更能凸显区域差异。
林裕梅
基于Google earth高清卫星影像,根据青藏高原矢量图,通过目视解译获取青藏高原全区2018年设施农业用地。所用影像拍摄时间集中于2017.11—2018.11。其中,基于2018年影像提取的设施农业面积约占总面积的70.47%;基于2017年11月以来拍摄影像提取的设施农业面积占比更是高达86.87%;部分地区影像拍摄时间相对较早,但多人烟稀少,没有或很少有设施农业分布,对研究结果影响不大。该数据有利于充分摸清青藏高原全区设施农业的空间分布情况,有利于当地设施农业空间规划调整。
吕昌河, 魏慧
1)数据内容包括西藏11个小流域5米分辨率2017年的土壤水蚀模数数据。2)采用中国土壤侵蚀模型CSLE方法,在面图层降雨侵蚀力R、土壤可蚀性K、坡度坡长因子LS、植被盖度FVC、轮作分区抽样调查单元的基础上,分别计算40个抽样单元土壤水蚀模数,评估土壤侵蚀状况。通过空间数据运算(包括图表链接及转换、矢栅转换、重采样等),将区域专题图降雨侵蚀力、土壤可蚀性、DEM转换为抽样单元的R、K、LS因子;通过半月FVC、NPV、半月降雨侵蚀力权重、其他地类B因子表分别计算抽样单元内各地类的B因子;通过遥感解译结果、工程措施因子表,计算抽样单元工程措施因子值;通过耕作分区图及耕作措施表获取抽样单元内耕作因子值,进而计算各抽样单元内土壤侵蚀模数。11个小流域的选取依据泛第三极地区抽样单元布设图。 3)通过和同年同区域已有土壤侵蚀强度数据对比,无明显差异,数据质量良好。4)土壤侵蚀模数数据对研究泛第三极土壤侵蚀现状,更好的贯彻“一带一路”发展政策具有重要的意义。
杨勤科
采用WRF模式制备的青藏高原近地表大气驱动和地表状态数据集,时间范围:2000-2010,空间范围:25-40 ºN,75-105 ºE,时间分辨率:逐时,空间分辨率:10 km,格点数为150*300。 总计有33个变量,其中包含的近地表大气变量11个: 地面上2m高度的温度、 地面上2m高度的比湿、地面气压、地面上10m风场的纬向分量、地面上10m风场的经向分量、固体降水比例、累积的积云对流降水、累积的格点降水、地表处的向下短波辐射通量、地表处的向下长波辐射通量、累计的潜在蒸发。 包含的地表状态变量有19个:各层土壤温度、各层土壤湿度、 各层土壤液态水含量、雪相态改变的热通量、土壤底部温度、地表径流、地下径流、植被比例、地面热通量、雪水当量、实际雪厚、雪密度、冠层中的水、地表温度、反照率、背景反照率、更低边界处的土壤温度、地表面处向上的热量通量(感热通量)、地表面处向上的水量通量(感热通量)。 其他变量3个:经度、纬度和行星边界层高度。
潘小多
2017年“一带一路”沿线64国民族人口占总人口的比重。数据来源:作者整理。数据质量良好。数据可在“一带一路”经济、社会、人口、治理结构等综合研究方面具有广阔的前景。“一带一路”涵盖亚太、欧亚、中东、非洲地区等,包括65个国家,总人口超过44亿,占全世界人口的63%。同时,“一带一路”沿线的民族人口分布众多,本数据集将“一带一路”不同区域,各个国家的主要民族人口比重进行阐述,一期为“一带一路”的系统研究与综合应用做出贡献。
宋涛
无论从全球尺度亦或是局地尺度而言,土壤数据极其重要,而由于缺乏可靠的土壤数据,土地退化评估、环境影响研究和可持续的土地管理干预措施收到了极大的瓶颈阻碍。受到土壤信息数据在全世界的迫切需要,特别是在气候变化公约的背景下,国际应用系统分析研究所(IIASA)及联合国粮农组织(FAO)和京都协议对土壤碳测量和联合国粮农组织/国际全球农业生态评价研究(GAEZ v3.0)共同倡导下建立了新一代世界土壤数据库(Harmonized World Soil Database version 1.2 )(HWSD V1.2)。其中,中国地区数据源为1995年全国第二次土地调查由南京土壤所所提供的1:1,000,000土壤数据。分辨率为30秒(约0.083度,1km)。采用的土壤分类系统主要为FAO-90。 核心土壤制度单元唯一验证标识符: MU_GLOBAL-HWSD数据库土壤制图单元标示符,连接了GIS图层。 MU_SOURCE1 和 MU_SOURCE2- 源数据库制图单元标识符 SEQ-土壤制图单元组成中的土壤单元序列; 土壤分类系统利用FAO-7分类系统或 FAO-90分类系统(SU_SYM74 resp. SU_SYM90)或FAO-85(SU_SYM85). 土壤属性表主要字段包括: ID(数据库ID) MU_GLOBAL(土壤单元标识符)(全球) SU_SYMBOL 土壤制图单元 SU_SYM74(FAO74分类); SU_SYM85(FAO85分类); SU_SYM90(FAO90土壤分类系统中土壤名称); SU_CODE 土壤制图单元代码 SU_CODE74 土壤单元名称 SU_CODE85 土壤单元名称 SU_CODE90 土壤单元名称 DRAINAGE(19.5); REF_DEPTH(土壤参考深度); AWC_CLASS(19.5); AWC_CLASS(土壤有效水含量); PHASE1: Real (土壤相位); PHASE2: String (土壤相位); ROOTS: String (到土壤底部存在障碍的深度分类); SWR: String (土壤含水量特征); ADD_PROP: Real (土壤单元中与农业用途有关的特定土壤类型); T_TEXTURE(顶层土壤质地); T_GRAVEL: Real (顶层碎石体积百分比);(单位:%vol.) T_SAND: Real (顶层沙含量); (单位:% wt.) T_SILT: Real (表层粉沙粒含量); (单位:% wt.) T_CLAY: Real (顶层粘土含量); (单位:% wt.) T_USDA_TEX: Real (顶层USDA土壤质地分类); (单位:name) T_REF_BULK: Real (顶层土壤容重); (单位:kg/dm3.) T_OC: Real (顶层有机碳含量); (单位:% weight) T_PH_H2O: Real (顶层酸碱度) (单位:-log(H+)) T_CEC_CLAY: Real (顶层粘性层土壤的阳离子交换能力); (单位:cmol/kg) T_CEC_SOIL: Real (顶层土壤的阳离子交换能力) (单位:cmol/kg) T_BS: Real (顶层基本饱和度); (单位:%) T_TEB: Real (顶层交换性盐基);(单位:cmol/kg) T_CACO3: Real (顶层碳酸盐或石灰含量) (单位:% weight) T_CASO4: Real (顶层硫酸盐含量);(单位:% weight) T_ESP: Real (顶层可交换钠盐);(单位:%) T_ECE: Real (顶层电导率)。 (单位:dS/m) S_GRAVEL: Real (底层碎石体积百分比);(单位:%vol.) S_SAND: Real (底层沙含量); (单位:% wt.) S_SILT: Real (底层淤泥含量); (单位:% wt.) S_CLAY: Real (底层粘土含量); (单位:% wt.) S_USDA_TEX: Real (底层USDA土壤质地分类); (单位:name) S_REF_BULK: Real (底层土壤容重); (单位:kg/dm3.) S_OC: Real (底层有机碳含量); (单位:% weight) S_PH_H2O: Real (底层酸碱度) (单位:-log(H+)) S_CEC_CLAY: Real (底层粘性层土壤的阳离子交换能力); (单位:cmol/kg) S_CEC_SOIL: Real (底层土壤的阳离子交换能力) (单位:cmol/kg) S_BS: Real (底层基本饱和度); (单位:%) S_TEB: Real (底层交换性盐基);(单位:cmol/kg) S_CACO3: Real (底层碳酸盐或石灰含量) (单位:% weight) S_CASO4: Real (底层硫酸盐含量);(单位:% weight) S_ESP: Real (底层可交换钠盐);(单位:%) S_ECE: Real (底层电导率)。 (单位:dS/m) 本数据库分两层,其中以顶层(T)土壤厚度为(0-30cm),底层(S)土壤厚度为(30-100cm)。 其他属性值请参考说明HWSD1.2_documentation文档.pdf,The Harmonized World Soil Database (HWSD V1.2) Viewer-中文说明及HWSD.mdb。
何永利
本研究以青藏高原范围内土地资源为评价对象,阐明区域内适宜于农、林、牧业生产的现状及其后备土地资源数量、质量及其分布情况。通过实地调查,收集整理研究区域的相关数据,结合相关文献和专家经验确定评价因子(海拔、坡度、年降水量、积温、日照时数、土壤有效深度、质地、侵蚀强度、植被类型、NDVI)并对其分等定级和标准化,通过主成分分析法确定各评价因子的权重,采用加权指数和模型确定评价单元总分值,最后用ArcGis自然间断点分级法得出青藏高原宜农、宜林以及宜牧用地的适宜等级,输出90m分辨率的青藏高原农业适宜性图纸,并对结果校验分析。
姚明磊
1)数据内容包括青海11个小流域30米分辨率2017年的土壤水蚀模数数据。2)采用中国土壤侵蚀模型CSLE (A=R•K•LS•B•E•T)方法,在面图层降雨侵蚀力R、土壤可蚀性K、坡度坡长因子LS、植被盖度FVC、轮作分区抽样调查单元的基础上,分别计算11个抽样单元土壤水蚀模数,评估土壤侵蚀状况。通过空间数据运算(包括图表链接及转换、矢栅转换、重采样等),将区域专题图降雨侵蚀力、土壤可蚀性、DEM转换为抽样单元的R、K、LS因子;通过半月FVC、NPV、半月降雨侵蚀力权重、其他地类B因子表分别计算抽样单元内各地类的B因子;通过遥感解译结果、工程措施因子表,计算抽样单元工程措施因子值;通过耕作分区图及耕作措施表获取抽样单元内耕作因子值,进而计算各抽样单元内土壤侵蚀模数。11个小流域的选取依据泛第三极地区抽样单元布设图。 3)通过和同年同区域已有土壤侵蚀强度数据对比,无明显差异,数据质量良好。4)土壤侵蚀模数数据对研究泛第三极土壤侵蚀现状,更好的贯彻“一带一路”发展政策具有重要的意义。
章文波
2017年“一带一路”沿线65国宗教人口占总人口的比重。数据来源:作者整理。数据质量良好。数据可在“一带一路”经济、社会、人口、治理结构等综合研究方面具有广阔的前景。“一带一路”涵盖亚太、欧亚、中东、非洲地区等,包括65个国家,总人口超过44亿,占全世界人口的63%。同时,“一带一路”沿线的不同宗教人口分布众多,本数据集将“一带一路”不同区域,各个国家的主要宗教人口比重进行阐述,以期为“一带一路”的系统研究与综合应用做出贡献。
宋涛
该数据集是2017年河湖源考察期间昂拉仁错的水质多参数数据,用于获取湖泊基本理化指标数据,为后续湖泊现代观测研究作准备。 数据观测时间为2017年8月29日至2017年8月30日。测量仪器为YSI EXO2水质多参数测量仪。仪器在每次测量之前都根据湖面海拔高度和当地气压进行校正,测量的时间间隔定为0.25s, 投放速度较慢,保证高连续性地获取数据;得到的原始数据包括了水面以上暴露在空气中的测量数据,在后期处理中予以剔除。数据以excel文件存储。
王君波
遥感影像解译标志也称判读要素,它能直接反映判别地物信息的影像特征,解译者利用这些标志在图像上识别地物或现象的性质、类型或状况,因此它对于遥感影像数据的人机交互式解译意义重大。本数据建立解译标志所采用的影像避免了植被覆盖度高的夏季,也避免了积雪较多、云层遮盖或烟雾影响较大的数据,并按照基础地理信息数据提取要求选择遥感影像波段组合顺序及与全色波段进行融合。在对数据进行增强处理时,避免引起信息损失。在影像上选择典型的标志建立区的要求是:范围适中以便反映该类地貌的典型特征,尽可能多的包含该类地貌中的各种基础地理信息要素类且影像质量好。标志区的选取完成后,寻找标志区内包含的所有基础地理信息要素类,然后选择各类典型图斑作采集标志,然后去实地进行野外校验,通过均匀布点采样设计(约52km为间隔均匀采点),收集整理了采样参考点3429个,照片数1870个,建立了解译标志库,并对不合理的部分进行修改,直到与实地相符为止。同时拍摄该图斑地面实地照片,以便于影像和实际地面要素建立关联,表达遥感影像解译标志的真实性和直观性,加深使用者对解译标志的理解。
刘铁
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件