本数据集由中国黄土高原会宁黄土剖面的粒度分析数据组成。我们按照约5 cm间隔对该黄土剖面开展了粒度测定分析,测定的剖面总厚度为约231米,测定的样本数量为5329个。使用的仪器为英国Malvern仪器有限公司制造的Mastersizer 3000 激光衍射粒度分析仪,该仪器测量范围为0.01 ~ 3500 μm,每个样品统计约10秒钟,准确度优于1% ,可重复性优于0.5% ,重现性优于1% 。实验分析在泰山学院山东省旅游与资源环境重点实验室完成。该数据反应了中国黄土高原会宁地区近两百万年以来黄土序列的粒度参数的变化特征,对于黄土高原古气候/古环境等方面的研究具有重要意义。
郝青振
本数据集由塞尔维亚Titel-Stari Slankamen黄土综合剖面和Stari Slankamen黄土剖面中上部样本粒度分析数据组成。其中,Titel-Stari Slankamen黄土综合剖面总厚度为约56米,43.1米以下为Stari Slankamen黄土剖面中下部(L6-S9);而Stari Slankamen黄土剖面中上部厚度为29.7米,包括了S0-S5的地层。我们按照约5 cm间隔对Titel-Stari Slankamen黄土综合剖面开展了粒度测定分析,测定的样本数量为1120个;按照约10 cm间隔对Stari Slankamen黄土剖面中上部开展了粒度测定分析,测定的样本数量为296个。使用的仪器为美国BeckmanCoulter公司制造的LS 13 320 激光衍射粒度分析仪,该仪器测量范围为0.375 ~ 2000 μm,测量过程中样品悬浊液处于循环状态,每个样品统计 5 ~ 10秒钟,每秒钟统计1000次,平行样的相对误差<1.5%。实验分析在中国科学院新生代地质与环境院重点实验室完成。该数据反应了塞尔维亚地区近一百万年以来黄土序列的粒度参数的变化特征,对于欧洲东南部古气候/古环境等方面的研究具有重要意义。
郝青振
本数据集由中国黄土高原会宁黄土剖面的磁化率分析数据组成。包含一个主剖面和两个末次间冰期黄土剖面,主剖面总厚度约为271米,两个末次间冰期黄土剖面的厚度分别约为21米和24米。我们按照约5cm间隔对上述黄土剖面开展了磁化率测定分析,测定的低频磁化率样本数量分别为5336个、436个、484个。使用的仪器为英国制的 Bartington MS2 磁化率仪,实验分析在中国科学院新生代地质与环境院重点实验室完成。该数据反应了中国黄土高原会宁地区近两百万年以来黄土序列的低频磁化率的变化特征,对于黄土高原古气候/古环境等方面的研究具有重要意义。
郝青振
本数据集由塞尔维亚Titel-Stari Slankamen黄土综合剖面和Stari Slankamen黄土剖面中上部样本磁化率分析数据组成。其中,Titel-Stari Slankamen黄土综合剖面总厚度为约56米,43.1米以下为Stari Slankamen黄土剖面中下部(L6-S9);而Stari Slankamen黄土剖面中上部厚度为29.7米,包括了S0-S5的地层。我们按照约5cm间隔对Titel-Stari Slankamen黄土综合剖面开展了磁化率测定分析,测定的低频磁化率样本数量为1129个、高频磁化率样本数量为1129个;按照约10cm间隔对Stari Slankamen黄土剖面中上部开展了磁化率测定分析,测定的低频磁化率样本数量为297个、高频磁化率样本数量为297个。使用的仪器为英国制的 Bartington MS2 磁化率仪,实验分析在中国科学院新生代地质与环境院重点实验室完成。该数据反应了塞尔维亚地区近一百万年以来黄土序列的低频磁化率和高频磁化率的变化特征,对于欧洲东南部古气候/古环境等方面的研究具有重要意义。
郝青振
闪电河流域L波段地基微波辐射计观测数据集收集了中国科学院东北地理与农业生态研究所于2018年9月在闪电河流域开展了的地基L波段移动观测实验数据。将L波段微波辐射计安装于长春净月潭遥感车升降台上,平台升高至5米,进行双极化多角度观测,微波辐射计系统的上位机系统直接将数据存储为.dat文件,可以使用Excel或Matlab进行读取处理,汇交的数据已经整理成Excel。本数据可以用于土壤水分反演方法研究。
姜涛, 郑兴明, 李晓洁
该数据集是利用气候模型COSMOS运行的,37.5-32kaBP轨道变化瞬变试验TRN40ka,来自Zhang et al(2021, Nature Geoscience,https://www.nature.com/articles/s41561-021-00846-6)。 具体的试验设计请参考原文献。 COSMOS(ECHAM5-JSBACH-MPI-OM)是德国马普所研发的海洋大气植被耦合气候模型。大气-陆面模块ECHAM5-JSBACH的空间分辨率为T31(∼3.75°),垂直19层;海洋模块MPI-OM是不规则网格,水平分辨率为 (3°×1.8°) ,垂直40层。
张旭
本植被含水量数据集来源于滦河流域土壤水分遥感试验中的地面同步观测,包括:(1)70 km×12 km 典型试验区(南北航线)的17个样区;(2)165 km×5 km复杂试验区(东北—西南航线)的8个样区;(3)地基微波辐射计观测的6个样区。地物类型包括草地、玉米、土豆、莜麦和胡萝卜。数据测量时间为2018年9月13日到2018年9月26日。植被含水量的测量方法为收获法,行播作物按照长度进行收获,草地按照面积进行收获。本数据集经过称重、烘干和植被含水量计算等步骤处理得到。
郑兴明, 姜涛
该数据集包括中国2001~2018年月尺度或年尺度的地表短波波段反照率、植被光合有效辐射吸收比、叶面积指数、森林覆盖度和非森林植被覆盖度、地表温度、地表净辐射、地表蒸散发、地上部分自养呼吸、地下部分自养呼吸、总初级生产力和净初级生产力。空间分辨率为0.1°。此外,还包括在气候驱动下(无人类干扰)的以上11个生态系统参量在2001~2018年间的时空变化。因此,该数据集可以反映气候变化与人类活动对21世纪中国陆地生产系统的影响。
陈永喆, 冯晓明, 田汉勤, 武旭同, 高镇, 冯宇, 朴世龙, 吕楠, 潘乃青, 傅伯杰
该数据集包含了2005年5月17日至2006年9月26日的清华大学位山(高营)站涡度相关系统通量及气象观测数据。站点(116.0542°E,36.6487°N,海拔30m)建于2005年3月18日,地处山东省聊城市茌平区肖庄镇境内,属于位山引黄灌区。气候为暖温带半湿润大陆性季风气候,多年平均气温13.8℃,多年平均降水量为553mm,大部分降水发生在6月至10月之间,多年平均潜在蒸发量为1950mm。站点土壤类型为粉砂壤土,表层5cm土壤饱和含水量为0.43 m3m-3,田间持水量为0.33 m3m-3,凋萎点为0.10 m3m-3。通量塔高10m,下垫面为冬小麦-夏玉米轮种制农田。冬小麦一般在10月中旬播种,次年6月初收割;收完小麦后立即播种玉米,玉米通常在9月底或10月初收割。具体的播种、收割及灌溉日期见数据集中名为Supplementary data_WeishanGaoying20052006.xlsx的文件。 地表通量数据由涡度相关系统测得,该系统由三维超声风速计(CSAT3, Campbell Scientific, Inc., Logan, UT, USA)和开路式红外气体分析仪组成(Li7500, LI-COR, Inc., Lincoln, NE, USA),安装高度为3.7m。采用Eddypro软件对原始10Hz数据进行处理后得到30分钟净生态系统碳交换量(NEE)、潜热通量(LE)、显热通量(H)数据。预处理步骤包含:野点识别和剔除,30分钟时段平均,两次坐标旋转,频谱校正,WPL密度校正并采用“0-1-2”方案对数据质量进行标记。对Eddypro处理后输出的30分钟通量值进行质量控制:(1)剔除标记为2的质量差的通量;(2)将H和LE分别限制在-200~500 W m-2和-200~800 W m-2的范围内;(3)剔除降雨时段的数据。之后,采用REddyproc软件对低湍流混合状况下的数据进行剔除(即根据摩擦风速u*对通量数据进行过滤),对数据序列中的空缺值进行插补,然后采用夜间分割法将NEE分割成生态系统呼吸(Reco)和总初级生产力(GPP)。 发布的观测数据包括:年(year),月(month),日(day),时间(time),大气压(P),红外地表温度(Tsurf),风速(Ws),风向(Wd),2m处空气温度(Tair)和相对湿度(rH),向下短波辐射(Rsd),向上短波辐射(Rsu),向下长波辐射(Rld),向上长波辐射(Rlu),净辐射(Rn),太阳光合有效辐射(PAR_dn),反射光合有效辐射(PAR_up),降雨量(precip),地下水位(GW),5cm/10cm/20cm/40cm/80cm/160cm土壤含水量(soil_VW_5cm/10cm/20cm/40cm/80cm/160cm)及土壤温度(soil_T_5cm/10cm/20cm/40cm/80cm/160cm),5cm深度处的土壤热通量(soil_G),净生态系统碳交换量原始值(NEE_raw),潜热通量原始值(LE_raw),显热通量原始值(H_raw),净生态系统碳交换量插补值(NEE_f),潜热通量插补值(LE_f),显热通量插补值(H_f),生态系统呼吸插补值(Reco_f),总初级生产力插补值(GPP_f)。数据均为30分钟时间间隔,以.xlsx格式存储。数据集中空值用NA表示。 具体的站点信息及观测仪器型号请参考Lei and Yang (2010a, 2010b)。
雷慧闽
格拉丹东地区是青藏高原重要的、典型的大江大湖源区。本数据集提供了不同时间尺度,不同分辨率的,覆盖长江和色林错源区冰川的DEM,用以计算源区冰川表面高程的季节变化和年代际变化。数据集包括了2016-2017年7景不同月份5米分辨率的TanDEM-X数据,可用以冰川表面高程的季节性变化计算;包括了1景1976年30米分辨率的KH-9 DEM,5景2011年30米分辨率的TanDEM-X,1景2014年和3景2017年30米分辨率的TanDEM-X,可用以计算1976-2000,2000-2011,2011-2017年期间冰川表面高程变化。同时采用Landsat ETM数据勾画,并按照RGI6.0分割了1976年的冰川轮廓数据;右图显示了该数据集的空间和时间覆盖信息,底图为正射校正后KH-9影像。
陈文锋
华北平原是中国最重要的产粮基地之一,然而该地区水资源缺乏、供需矛盾突出。 在全球气候变化及用水需求日益增加的背景下, 该地区水循环过程变得愈加脆弱。 因此如何准确估算蒸散发、 掌握蒸散发的时空变化规律, 进而合理配置水资源、提高农业用水效率、维持粮食产量是迫在眉睫的问题。 本研究利用支持向量回归模型,基于华北平原及周边的8个通量站点,并结合气象及遥感数据,对华北平原农田区域的蒸散发进行估算,并生产了年限为2001-2015年,空间分辨率为1km,时间分辨率为8天的蒸散发数据集。该模型在交叉验证试验中表现良好, 说明其空间泛化能力较强,适用于区域蒸散发模拟。
雷慧闽
华北平原是中国最重要的产粮基地之一,然而该地区水资源缺乏、供需矛盾突出。 在全球气候变化及用水需求日益增加的背景下, 该地区水循环过程变得愈加脆弱。 因此如何准确估算蒸散发、 掌握蒸散发的时空变化规律, 进而合理配置水资源、提高农业用水效率、维持粮食产量是迫在眉睫的问题。 本研究利用支持向量回归模型,基于华北平原及周边的8个通量站点,并结合气象及遥感数据,对华北平原农田区域的蒸散发进行估算,并生产了年限为1982-2015年,空间分辨率为1/12°,时间分辨率为8天的蒸散发数据集。该模型在交叉验证试验中表现良好, 说明其空间泛化能力较强,适用于区域蒸散发模拟。
雷慧闽
新的北半球多年冻土图利用基于规则的GIS模型融合了新的多年冻土范围(Ran et al., 2021b)、气候条件、植被结构、土壤和地形条件以及富冰和富含有机质多年冻土图(yedoma)。与之前的多年冻土图不同,根据多年冻土与气候和生态系统的复杂交互作用,我们将北半球多年冻土分为五种类型:气候驱动型、气候驱动型/生态系统改造型、气候驱动型/生态系统保护型、生态系统驱动型和生态系统保护型。除去冰川和湖泊,北半球这五种类型的面积分别为3.66×106km2、8.06×106km2、0.62×106km2、5.79×106km2和1.63×106km2。北半球81%的多年冻土区受到生态系统的改造、驱动或保护,表明生态系统在北半球多年冻土稳定性中的主导作用。气候驱动的多年冻土只占北半球多年冻土区的19%,主要分布在高北极和高山地区,如青藏高原。
冉有华, M. Torre Jorgenson, 李新, 金会军, 吴通华, 李韧, 程国栋
充分了解中国温带半干旱草地蒸散发的时空变化,可以提高我们对全球半干旱区气候、水文和生态过程的认识。本研究基于区域内13个站点的涡度相关系统观测数据,结合气象及遥感数据,利用机器学习方法(支持向量机),生产了年限为1982-2015年,空间分辨率为1km,时间分辨率为8天的长序列中国温带半干旱草地蒸散发数据集。该数据集在站点实测数据的验证和流域水量平衡的对比中,均表现较好。(详细过程请参阅参考文献)
雷慧闽
公里级、空间完整(无缝)的地表温度产品在全球变化等领域具有广泛的应用需求。基于遥感观测反演的地表温度具有较高的可信度,融合从热红外和微波观测反演的地表温度,是获取具有一定精度、空间完整地表温度的有效途径。基于这一指导思想,作者发展了反演中国区域1km、无缝地表温度的方法框架,并生成了相应的数据集(2002-2020). 首先采用基于查找表的AMSR-E/AMSR2 地表温度反演算法反演得到AMSR-E/AMSR2 地表温度,之后采用地理加权回归对AMSR-E/AMSR2 地表温度进行降尺度,得到1km 地表温度,最后使用多尺度卡尔曼滤波融合AMSR-E/AMSR2 1km地表温度和MODIS地表温度,生成1km无缝地表温度数据集。 地面验证评价结果表明,该LST的均方根误差(RMSE)约为3K,空间分布于MODIS LST、CLDAS LST的一致性较好。
程洁, 董胜越, 施建成
本数据集来源于根河生态保护区复杂地形混交林精细光学遥感试验,实验地点位于根河生态站(内蒙古大兴安岭森林生态系统国家野外科学观测研究站)附近,数据获取时间为2016年8月7日9点-17点(北京时间),采样间隔为0.5小时。测量设备为FLIR T440成像仪,通过图像监督分类提取了光照叶片、阴影叶片、光照树干、阴影树干、光照背景和阴影背景共六种组分的亮度温度。经过反射项贡献的去除和发射率校正最终得到六个组分的辐射温度。本数据集有望应用于热红外建模、组分温度反演、蒸散发估算等方面。
卞尊健, 曹彪, 历华, 杜永明, 范闻捷, 肖青, 柳钦火
海冰表面的积雪控制着能量收支,影响海冰的生长和消融,具有重要的气候作用。积雪厚度作为积雪的重要属性之一,对于理解气候变化、估算海冰参量等具有重要意义。被动微波数据可以获取逐日半球尺度的积雪厚度观测数据,但是原先提出的估算方法会产生明显的低估,限制了该方法的进一步应用。我们构建了一个新的且鲁棒的线性回归公式,通过引入低频信号明显改进了被动微波反演积雪厚度的效果,并且基于AMSR-E,AMSR-2和SSMIS被动微波辐射计亮温数据,应用该方法生成了2002—2020年逐日南极海冰表面积雪厚度数据集。采用7年的机载Operation IceBridge (OIB) 飞行计划获取的积雪厚度测量数据进行回归分析,发现采用垂直极化下37和19 GHz的亮温计算得到的极化梯度率(gradient ratio, GR),即GR(37/7),是用于南极海冰表面积雪厚度估算的最优极化梯度率,均方根偏差约为8.92厘米,相关系数为-0.64,并获取了相应的线性回归公式系数。GR(37/19)用于基于SSMIS的积雪厚度估算,用来填补AMSR-E和AMSR-2之间的观测空白。不同辐射计估算的积雪厚度进行了一致性校正。基于高斯误差传递法估算的积雪厚平均不确定度约为3.81厘米,占积雪厚度的12%左右。与Australian Aantarctic Data Centre发布的实测数据对比发现提出的方法明显优于原有的方法,平均差异和均方根偏差约为5.64厘米和13.79厘米,而原有方法的平均差异和均方根偏差约为-14.47厘米和19.49厘米。与Antarctic Sea Ice Processes and Climate 计划发布的船载观测数据对比发现提出的方法略优于原有方法(均方根偏差分别为16.85厘米和17.61厘米),并且该方法在海冰生长期和融化期有着相似的精度,表明该方法也可以应用于消融季。基于该套数据,我们发现2002—2020年在南极所有海域和季节内海冰表面积雪厚度均呈现降低趋势。该数据可以进一步用于再分析数据的评估,海冰厚度估算和气候模式等方面。
沈校熠, 柯长青
地表温度(Land Surface Temperature,LST)是地表能量平衡研究的关键参数,被广泛用于气象、气候、水文、农业和生态等领域研究。卫星(热红外)遥感作为获取全球和区域尺度LST信息的重要手段,容易受到云层覆盖和其他大气条件的影响,导致LST遥感产品时空不连续,极大限制了LST遥感产品在相关研究领域的应用。 本数据集的制备首先基于经验正交函数插值方法,利用Terra/Aqua MODIS 地表温度产品重建理想晴空条件下的LST,然后使用累积分布函数匹配方法融合 ERA5-Land再分析数据获取全天候条件下的LST。该方法充分利用了原始MODIS遥感产品的时空信息以及再分析数据中的云影响信息,缓解了云层覆盖对LST估算的影响,最终重建得到较高质量的全球0.05°时空连续的理想晴空和全天候LST数据集。 本数据集不仅实现了时空无缝覆盖,并且具有良好的验证精度。重建的理想晴空LST数据在全球17种土地覆盖类型实验区内,平均相关系数(R)为0.971,偏差(Bias)为-0.001 K至0.049 K,均方根误差(RMSE)为1.436 K至2.688 K。重建的全天候 LST 数据与地面站点实测数据的验证结果:平均 R 为 0.895,Bias为0.025 K 至 2.599 K, RMSE为4.503 K至7.299 K。 本数据集的时间分辨率为逐日4次,空间分辨率为0.05°,时间跨度为2002年-2020年,空间范围覆盖全球。
赵天杰, 余沛
按照雅安-昌都,昌都-林芝,林芝-拉萨等分区段,分组分段对川藏铁路新线、川藏公路沿线10km范围内泥石流开展野外调查,填写泥石流调查表,拍摄照片。基于调查的泥石流数据,为川藏交通廊道孕灾背景特征和分布规律提供基础数据,同时该数据详细调查了泥石流危害方式和对公路、铁路等交通线路的危害方式;进而在区域尺度、重点路段和典型灾害等不同尺度,沿川藏铁路新线开展泥石流为危险性、易损性和风险评估,为川藏铁路的选线提供支撑。
陈华勇, 杨东旭, 柳金峰, 陈兴长
本地表粗糙度数据集来源于滦河流域土壤水分遥感试验中的地面同步观测,分别覆盖(1)70 km×12 km 典型试验区(南北航线)的30个样区以及(2)165 km×5 km复杂试验区(东北—西南航线)的8个样区。数据分别于2018年9月17日、2018年9月18日和2018年9月20日获取,试验测量了每个样区中典型地物的东西(或平行垄)方向和南北(或垂直垄)方向的粗糙度。地表粗糙度以均方根高度和相关长度进行表示,其中均方根高度是垂直方向上粗糙程度的度量,自相关长度作为粗糙程度在水平方向上的度量。本数据集经过土壤表面高度数字化、斜度校正、周期校正、粗糙度计算等步骤处理得到。
郭鹏
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件