该数据集包含了:湖南水口山和宝山花岗闪长岩样品的岩石岩性信息、样品年代学数据、样品全岩主微量元素和Sr-Nd同位素数据和样品单矿物锆石原位Hf-O同位素数据。岩石样品的年代学数据是通过对岩石单矿物分选的岩浆锆石进行激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)测定的,测试过程中91500标准锆石作为监控样品,监控整个分析测试过程的可靠性。主量元素通过将岩石粉末熔融成可以上机测试的玻璃片,用X射线荧光光谱仪(XRF)进行测定,对于标准物质GBW-07111、GBW-123、GSR-1、GSR-2和GSR-3的测量结果分析精度优于2%。微量元素通过在Perkin-Elmer ELAN 6000电感耦合等离子体质谱仪(ICP-MS)上进行。分析测试过程中对USGS标准物质(BHVO-2、GSR-1、GSR-2、GSR-3、SARM-4、AVG-2和W-2a)进行测定,作为外部测试标样校正未知样品的元素含量,分析测试精度优于3%。岩石Sr-Nd同位素通过对粉末进行酸性溶解,对所获得的溶液,在Neptune型多接收电感耦合等离子体质谱仪(MC-ICP-MS)上进行,分别采用NBS987(87Sr/86Sr = 0.71025)和Shin Etsu JNdi-1(143Nd/144Nd=0.512115)标准物质进行监控。锆石原位Hf同位素的测试是通过激光和MC-ICP-MS联用来进行。测试过程中Mud Tank和GJ-1标准锆石作为监控样品,监控整个分析测试过程的可靠性。锆石原位O同位素数据是通过对岩浆锆石进行二次离子质谱(SIMS)分析所获得的。测试过程中,Penglai标样的多次测定结果的外部精度优于0.30%(2σ)。所获得的数据用于支持含角闪石的花岗闪长岩可以通过以沉积岩为主的地壳源区的部分熔融所形成。研究成果发表于SCI期刊Journal of Asian Earth Sciences上面。
刘潇
地幔柱对克拉通的改造及后续动力学效应是关系到克拉通形成和演化的重要科学问题。峨眉山大火成岩省位于扬子克拉通西缘,是研究地幔柱对克拉通改造效应的理想窗口。在燕山期重大地质事件的深部过程与资源效应(专题号 2016YFC0600400)支持下,利用远震剪切波(SKS,SKKS和PKS)分裂获得了峨眉山大火成岩省地幔变形特征;结合波速结构、大地热流和火山岩分布等,揭示了地幔柱作用对克拉通的强化效应,以及强化的岩石圈对青藏高原东南缘现今深部过程的深刻影响;同时,也为深入认识上地幔顶部地震各向异性的起源以及软流圈-演示圈相互作用提供了新的视角。
李玮,陈赟
本文数据集包含花岗闪长岩全岩主量元素和微量元素、全岩Sr–Nd同位素、锆石Hf-O同位素、锆石U–Pb年龄数据。样品采集自青藏高原中部南羌塘地块加措地区的花岗闪长岩。锆石U-Pb年代学数据是通过激光剥蚀-电感耦合等离子体质谱仪分析获得的。岩石全岩主微量地球化学数据是通过X荧光光谱仪和电感耦合等离子体质谱仪分析获得的。岩石全岩Sr–Nd同位素是通过样品分离提纯-多接收电感耦合等离子体质谱仪分析获得的。锆石Hf同位素是通过激光剥蚀-电感耦合等离子体质谱仪分析获得的。通过获得的数据,可以限定区域内岩浆作用的时代、成因以及深部动力学机制,并对南羌塘地块侏罗世所处的构造背景提供认识。
孙鹏
该数据集主要包括西藏错那洞钨锡铍矿床中矽卡岩矿物的电子探针数据及部分原位微量元素数据。所分析的矽卡岩矿物包括石榴石,透辉石,符山石,方柱石,帘石,透闪石,金云母,电气石等。矽卡岩矿物电子探针分析在中科院地质与地球物理研究所电子探针实验室完成,原位微量元素测试在合肥工业大学原位矿物地球化学实验室完成。数据质量符合标准。电子探针分析已按照矿物化学式进行了矿物离子数计算。数据主要用以阐释错那洞矽卡岩矿物的类型及矽卡岩矿物中铍元素、锡元素的含量,并初步探索错那洞钨锡铍矽卡岩的成因机制。
何畅通
本文数据包含含矿埃达克质岩石B-Mo同位素分析数据和前人获得的部分主量和微量元素、全岩Sr–Nd同位素。样品采自中国中东部江西德兴斑岩矿区和长江中下游地区的沙溪、铜山口和封山洞斑岩矿区。岩性包括花岗闪长斑岩、石英闪长斑岩等。B-Mo同位素数据使用多收集器-电感耦合等离子体质谱(MC–ICP–MS)测定。通过获得的B-Mo同位素数据,结合前人获得的元素及Sr-Nd同位素数据,可以限定含矿埃达克质岩石的成因,并对斑岩矿化机制有所启示。
范晶晶
本数据为火山岩的锆石U-Pb年代学数据,全岩主微量地球化学数据和Sr-Nd-Hf放射成因同位素数据,矿物的主量元素地球化学数据以及锆石Hf同位素数据。样品采集西藏南羌塘改则地区去伸拉组火山岩,放射性同位素年代学数据通过激光剥蚀-电感耦合等离子体质谱仪和二次离子探针分析锆石U-Pb同位素获得,全岩主微量地球化学数据通过X荧光光谱仪和电感耦合等离子体质谱仪分析获得。Sr-Nd-Hf同位素数据通过多接收电感耦合等离子体质谱仪获得,矿物主量元素数据通过电子探针获得,锆石Hf同位素通过激光剥蚀-多接收电感耦合等离子体质谱仪获得。通过获得的数据,可以限定区域岩浆作用时代、岩石成因和动力学过程。
郝露露
该数据集是基于16个动态全球植被模式(TRENDY v8)在S2情景下(CO2+Climate)模拟的NBP,表征净生态系统生产力。数据来源于Le Quéré et al. (2019),具体信息和方法参见文章。源数据范围为全球,本数据集选取了青藏高原区域,空间上用最近邻方法插值到0.5度,时间上保持了原有的月尺度。该数据集是标准的模型输出数据,常被用作评定总初级生产力的时间和空间格局,且与其它遥感观测、通量观测等数据进行比较和参考,具有实际意义和理论价值。
Stephen Sitch
该数据集是基于16个动态全球植被模式(TRENDY v8)在S2情景下(CO2+Climate)模拟的NPP,表征生态系统净初级生产力。数据来源于Le Quéré et al. (2019),具体信息和方法参见文章。源数据范围为全球,本数据集选取了青藏高原区域,空间上用最近邻方法插值到0.5度,时间上保持了原有的月尺度。该数据集是标准的模型输出数据,常被用作评定总初级生产力的时间和空间格局,且与其它遥感观测、通量观测等数据进行比较和参考,具有实际意义和理论价值。
Stephen Sitch
该数据集是基于16个动态全球植被模式(TRENDY v8)在S2情景下(CO2+Climate)模拟的GPP,表征生态系统总初级生产力。数据来源于Le Quéré et al. (2019),具体信息和方法参见文章。源数据范围为全球,本数据集选取了青藏高原区域,空间上用最近邻方法插值到0.5度,时间上保持了原有的月尺度。该数据集是标准的模型输出数据,常被用作评定总初级生产力的时间和空间格局,且与其它遥感观测、通量观测等数据进行比较和参考,具有实际意义和理论价值。
Stephen Sitch
本数据为岩浆岩的全岩稳定Fe同位素数据。样品采集自华南扬子板块西缘同德地区的新元古代闪长岩和辉长岩体。Fe同位素的化学处理是在中国科学院广州地球化学研究所同位素地球化学国家重点实验室完成,全流程空白是25ng,回收率高于99%。数据是通过电感耦合等离子体质谱仪分析获得,其分析误差(2σ)低于0.06‰。通过获得的数据,可以限定新元古代同德岩体演化的精细过程,为中基性岩石的Fe同位素分馏机制提供新的制约。
李奇维
本文数据包含不同类型火成岩标样(玄武岩BIR-1a, 辉绿岩W-2a, 纯橄岩DTS-2b、WPR-1和橄榄岩GPt-3)和低Mo含量淡色花岗岩Mo含量和同位素比值分析数据。淡色花岗岩采自西藏南部萨嘎、错那和正嘎地区;Mo同位素分析数据通过使用多收集器-电感耦合等离子体质谱(MC–ICP–MS)测定,获得的标样及淡色花岗岩数据用与验证所建立的低Mo含量样品分析方法的精度和准确度,以实现对更多的低含量样品进行高精度的Mo同位素分析。
范晶晶
本文数据集包含辉长岩和其包体的全岩主量元素和微量元素、矿物主量元素和微量元素、全岩Sr–Nd同位素、锆石U–Pb年龄数据。样品采集自西藏南部拉萨地块打加错地区的辉长岩及其中的包体。锆石U-Pb年代学数据是通过激光剥蚀-电感耦合等离子体质谱仪分析获得的。岩石全岩主微量地球化学数据是通过X荧光光谱仪和电感耦合等离子体质谱仪分析获得的。矿物主量元素数据是通过电子探针分析获得的,矿物微量元素数据是通过激光剥蚀-电感耦合等离子体质谱仪分析获得的。岩石全岩Sr–Nd同位素是通过样品分离提纯-多接收电感耦合等离子体质谱仪分析获得的。通过获得的数据,可以限定区域内岩浆作用的时代、成因以及深部动力学机制,并对弧岩浆的角闪石分异过程提供认识。
王军
本数据为长江下游花岗岩的全岩主、微量元素和Sr-Nd同位素地球化学数据,以及锆石U-Pb测年数据和原位Hf-O同位素,磷灰石原位主、微量元素地球化学数据。样品为采自枞阳的A型花岗岩,岩性为碱性长石花岗岩和石英碱性长石正长岩。全岩主量元素数据由XRF分析获得,F元素的含量由ISE分析获得,微量元素数据由ICP-MS分析获得,Sr-Nd同位素组成由MC-ICP-MS分析获得。锆石U-Pb同位素测年数据和微量元素数据由LA-ICP-MS分析获得,原位O同位素组成由SIMS分析获得,原位Lu-Hf同位素数据由LA-MC-ICP-MS分析获得。磷灰石的主量、微量元素数据分别由EMPA和LA-ICP-MS分析获得。以上数据已发表于高级别SCI期刊,数据真实可靠。通过获得的数据,可以研究旨A1和A2型花岗岩的源区成分和岩浆作用过程,制约长江下游地区的构造演化。
江小燕
数据集包括伊朗西部Boroujerd侵入杂岩的伟晶岩的全岩主量元素和微量元素含量,以及从伟晶岩中挑选的石榴石的主量元素和微量元素。含石榴石的伟晶岩是从Ghale Samurkhan、Ghapanvari、Ghare Dash和Sang-e Sefid的四处露头处收集。 许多伟晶岩的粗粒结构和矿物各向异性(分层)使得收集全岩地球化学分析的代表性样品变得困难。然而,所研究的Boroujerd伟晶岩都没有显示出内部的分带性,并且根据Hutchison (1974)的建议,收集了足够大的样品来克服粒度大造成的偏差。使用jaw破碎机将样品破碎四等分,使用玛瑙研磨机粉末化。样品制备和全岩主、微量元素测定在中国科学院广州地球化学研究所同位素地球化学国家重点实验室进行。将大约2克岩石粉末准确地放入陶瓷坩埚中,放入马弗炉中,在950℃下保持4小时,然后冷却并重新称重,以确定烧失量(LOI)。将1.200±0.002克等分的LOI粉末放入铂坩埚中,并与9.600±0.002克Li2B4O7助熔剂混合。使用V8C自动熔化机在1250℃熔化混合粉末,并浇铸成均匀的玻璃丸。 使用Rigaku ZSX100e X光荧光光谱仪(XRF)测量主要元素的丰度。仪器按照国际标准进行校准,包括USGS火成岩标准,分析精度优于1%,主要元素精度在5%以内;主要元素的检测限为约30 ppm。 微量元素的分析使用Perkin-Elmer Sciex ELAN 6000 ICP-MS。将大约50毫克样品粉末准确称量到聚四氟乙烯胶囊(Teflon capsules)中,加入HF-HNO3溶液,密封胶囊并将其置于高压不锈钢容器中。将容器放入马弗炉中,在250℃下加热24小时,然后淬火,回收聚四氟乙烯胶囊,松开盖子,在加热板上将内容物干燥。向聚四氟乙烯胶囊中加入一份新的HF-HNO3溶液,并重复溶解和干燥程序。将沉淀物溶解在含5 ppb Rh和5 ppb Re的3% HNO 3溶液中,该溶液用作内部标准,以监控分析过程中的信号漂移。中国国家岩石标准GSR-1和GSR-3以及美国地质勘探局标准AGV-1、W-2、G-2和GSP-1用于校准测量样品的元素浓度。分析精度一般优于5%。 使用国家海洋局第二海洋研究所(中国杭州)的JEOL JXA 8100电子探针微区分析仪(EPMA)和四个波长色散光谱仪收集石榴石的背散射电子图像和主要元素组成。使用的操作条件:15千伏的加速电压、20 nA的束流、5μm的束直径、峰值10秒和每个背景10秒的采集时间。美国标准物质公司和中国标准物质公司提供的天然硅酸盐和纯氧化物用于校准电子探针。使用的标准和检测晶体包括铁铝石榴石(Si和Al;TAP晶体)、金红石(Ti;PET晶体),赤铁矿(Fe;LIF晶体),透辉石(Mg;TAP晶体),磷灰石(Ca;PET晶体),钠长石(Na;TAP晶体),钾长石(K;PET晶体),红柱石(Mn;LIF晶体),铬铁矿(Cr;LIF晶体)。使用JEOL所属软件对数据进行了简化,该软件应用了ZAF型矩阵校正,石榴石的化学计量是通过标准化的12个氧原子成分分析中得出的。分析元素的计算检出限优于100 ppm。单个元素的分析误差取决于绝对丰度;对于丰度在0.5至1wt%之间的元素,相对1σ精度优于10%,对于丰度在1至10wt%之间的元素,相对1σ精度优于5%,对于丰度大于10wt%的元素,相对1σ精度优于1%。 中国科学院广州地球化学研究所中国科学院矿物学与成矿学重点实验室利用LA-ICP-MS测定了石榴石的微量元素组成。LA-ICP-MS仪器由Agilent 7900 ICP-MS与ReSouncials RESOlution 193nm激光器、S-155双体积样品池(旨在避免交叉污染并减少背景冲洗时间)、Squid平滑装置(用于改善激光消融脉冲诱导的消融材料的混合和均质流速)和计算机控制的高精度X-Y平台 组成。烧蚀后的样品气溶胶与氩+氮气混合,以提高分析灵敏度,并在氦载气中传输至等离子体炬。激光器在80 mJ的动态能量下工作,衰减器值为25%,激光频率为8 Hz,光斑直径为74 μm。每次分析包括25秒的背景采集(气体空白),随后从样品中采集40秒的样品数据采集。ICP-MS对微量元素的检出限大多优于10 ppb,不确定度为5-10%。每个分析批次包括在开始和结束时对NIST612标准的两次剥蚀,和其间的五个矿物样品剥蚀。NIST612标准玻璃用作外部校准标准,而NIST610则作为监测标准进行分析,以评估仪器的精度和准确度。由电子探针测定的石榴石SiO2含量是从紧邻每个激光烧蚀坑的点收集的,用作计算元素丰度的内标。背景和分析信号的离线分析和整合,以及时间漂移校正和定量校准使用ICPMSDataCal软件。 该数据集可以用于解密伟晶岩岩浆起源。伟晶岩的矿物学和地球化学特征表明,伟晶岩为过铝至偏铝质的I型花岗岩。根据矿物组合和全岩地球化学,伟晶岩被划分为白云母型伟晶岩。电子探针分析显示,石榴石具有同心的成分分带,并且是铁-锰-铝石榴石固溶体,具有较少的镁铝榴石、钙铝榴石和钙铁榴石成分。石榴石中主要元素的同心分带归因于熔体中岩浆的生长。在MnO + CaO/ FeO + MgO (wt%)图中,石榴石的成分与熔体从弱到中度结晶一致。Boroujerd伟晶岩中的石榴石的特征是从中心到边缘,钇、铪、钛、锆、铌、钽、铪和铀的含量逐渐降低。石榴石还具有高的球粒陨石标准化的重稀土含量,具有几乎平坦的模式(Ybn/Smn = 0–508),较低的轻稀土元素含量,以及负铕异常(Eu/Eu* < 0.3)。这些元素从核心到边缘的变化归因于岩浆分馏的增加。Boroujerd伟晶岩石榴石中的成分、主量和微量元素分带模式与岩浆起源和不同分馏I型岩浆结晶相一致,表明石榴石晶体化学是解密伟晶岩岩浆起源的重要工具。
丁兴
本文数据集包含闪长岩的全岩主量元素和微量元素、矿物主量元素、全岩Sr–Nd同位素、锆石U–Pb年龄和Hf同位素数据。样品采集自西藏北部可可西里地块五道梁地区的闪长岩。锆石U-Pb年代学数据是通过激光剥蚀-电感耦合等离子体质谱仪分析获得的。锆石Hf同位素数据是通过激光剥蚀-多接受电感耦合等离子体质谱仪分析获得的。岩石全岩主微量地球化学数据是通过X荧光光谱仪和电感耦合等离子体质谱仪分析获得的。矿物主量元素数据是通过电子探针分析获得的。岩石全岩Sr–Nd同位素是通过样品分离提纯-多接收电感耦合等离子体质谱仪分析获得的。通过获得的数据,可以限定区域内岩浆作用的时代、成因以及深部动力学机制,并对大陆地壳高镁安山质特征的起源提供认识。
王军
该数据集包含了2019年1月1日至2019年12月31日的青海湖流域自动气象站观测数据。共有两个站点,其中鸟岛站位于青海省海南州共和县,观测点经纬度36°58′N,99°52′E;瓦颜山站位于青海省海北州刚察县伊克乌兰乡观测点经纬度37°44′ N,100°05′ E。观测要素包括3层(1m、5m、10m)空气温度(℃)和相对湿度(%),大气压强(hpa)和光合有效辐射(W/m2)。数据基于CR1000 数据采集器收集,使用hmp155a测量空气温度与湿度,使用CS106测量大气压强, 使用LI200R测量光合辐射,每半小时进行一次数据记录。本数据集将为青藏高原重点城镇化地区生态安全屏障优化体系研究提供支持。
陈克龙, 陈治荣
本数据为铜陵地区铜官山铜-金多金属矿床埃达克岩以及其中包体的全岩主微量元素和Sr-Nd同位素地球化学数据,以及锆石原位Hf-O同位素、U-Pb测年数据和磷灰石原位主、微量元素地球化学数据。样品为埃达克质侵入岩和包体,围岩的岩性为花岗闪长岩、石英二长闪长岩,包体的岩性为石英二长闪长岩。全岩主量元素数据由XRF分析获得,微量元素数据由ICP-MS分析获得,Sr-Nd同位素组成由MC-ICP-MS分析获得。锆石U-Pb同位素测年数据及原位O同位素组成均由SIMS分析获得,原位Lu-Hf同位素数据由LA-MC-ICP-MS分析获得。磷灰石的主量、微量元素数据分别由EMPA和LA-ICP-MS分析获得。以上数据已发表于高级别SCI期刊 (Ore Geology Reviews),数据真实可靠。通过获得的数据,可以研究埃达克质岩及与其伴生的铜金矿床的成因。
江小燕
数据内容包括池州铜钼矿床辉钼矿的Re-Os同位素年龄. 试验地点位于中国地质科学院北京地质分析中心稀土Re-Os实验室,试验设备通过TJAX系列ICP-MS测定了辉钼矿的稀土Re-Os同位素组成。 Re-Os同位素年龄实验特性:每个年龄测定的不确定度约为1.5%,包括187Re衰变常数的不确定度、同位素比值测量的不确定度和尖峰标定。衰变常数为λ (187Re)=1.666×10-11 year−1。根据以上规则形成最终年代学数据。 以上数据已发表于SC期刊,数据真实可靠。上传数据为Excel表格格式。
谢建成
主微量元素数据在中国科学院广州地球化学研究所同位素地球化学国家重点实验室由ICP-MS完成测定。锆石U-Pb年龄和锆石微量均在中国科学院广州地球化学研究所中国科学院矿物学与成矿学重点实验室由LA-ICP-MS完成测定。同批次测定的国际标样和参考值在误差范围内一致,全流程空白低,数据质量准确可靠。管店岩体由石英二长岩构成,准铝质,属于高钾钙碱性系列。样品具有高SiO2 (59.15 - 62.32%),Al2O3 (14.51 - 15.39%),Sr (892 - 1184 ppm)含量,Sr/Y (56.74 - 86.32)比值,以及低Y (12.65 - 18.05 ppm)含量,这些地球化学特征类似于典型的埃达克质岩。管店岩体具有较高的K2O (2.88 - 3.86%)含量,MgO (3.89 - 5.24%)含量和Mg# (55 - 60)值,亏损高场强元素(Nb,Ta和Ti),以及Ba,Pb和 Sr正异常。LA-ICP-MS锆石U-Pb定年结果显示,锆石的加权平均年龄为129.2 ± 0.7 Ma。基于原位锆石微量元素分析,计算得出锆石Ce4+/Ce3+ = (6.97 - 145),(Eu/Eu*)N = (0.23 - 0.42)。相比于长江中下游和德兴铜矿含矿的埃达克质岩,管店岩体具有较低的氧逸度,这与该区域不含矿的事实一致。结合前人研究,我们提出:管店埃达克质岩岩体是由发生在早白垩世太平洋板块和伊泽奈崎板块的洋脊俯冲所诱发的拆沉下地壳的部分熔融所形成。在洋脊俯冲过程中,物理碰撞导致了加厚下地壳的拆沉,而热化学侵蚀引发了拆沉下地壳的部分熔融。
罗泽彬
本文数据集包含火山岩的全岩主量元素和微量元素、矿物主量元素、全岩Sr–Nd-Hf同位素、锆石U–Pb年龄和O同位素数据。样品采集自西藏中部羌塘雁石坪地区的玄武岩和流纹岩。锆石U-Pb年代学数据和氧同位素数据是通过二次离子探针质谱仪获得的。岩石全岩主微量地球化学数据是通过X荧光光谱仪和电感耦合等离子体质谱仪分析获得的。矿物主量元素数据是通过电子探针获得的。岩石全岩Sr–Nd-Hf同位素是通过样品分离提纯-多接收电感耦合等离子体质谱仪分析获得的。通过获得的数据,可以限定区域内岩浆作用的时代、成因以及深部动力学机制。
王军
青藏高原城镇化地区水质调查数据主要包括湟水流域以及其他青藏高原重点城镇化地区的水质调查数据。数据主要是在2020年7-8月期间,利用哈希DR900水质测量仪对湟水流域各河段以及流经青藏高原主要城镇河流的上下游河段水质进行实地测量获取。主要参数指标包括:总氮、总磷、氨氮、化学需氧量、溶解氧含量、pH值、硬度、浊度和色度。其中,化学指标(总氮、总磷、氨氮、化学需氧量)于科考结束后在实验室统一测定,使得水样采集与水质测定的时间相距过久,氨氮含量已失准,因此部分水样的氨氮未进行测量。此外,由于测试费预算限制,仅测定了高原城镇出水口单个采样点的化学指标,其余水样仅现场测定了物理指标。本数据集将为青藏高原重点城镇化地区生态安全屏障优化体系研究和相关生态水文模型验证提供支持。
何春阳, 刘志锋, 夏沛
数据内容包括池州地区花岗闪长岩(斑岩)的Nd、Sr同位素组成及其LA-MC-ICP-MS锆石Hf同位素组成。 Rb-Sr和Sm-Nd同位素数据测算地点位于中国科学技术大学放射成因同位素地球化学实验室,使用仪器为Finnigan-MAT-262热电离质谱仪。 锆石的Lu-Hf同位素组成测算地点位于南京大学矿床研究国家重点实验室,利用海王星多采集器ICP-MS(LA-MC-ICP-MS)上的193nm激光进行测算。 以上数据已发表于SCI高级别期刊,数据真实可靠。数据通过Excel表格上传。
谢建成
在池州地区,对样品花岗闪长岩(斑岩)全岩进行分析,测算其主量元素与微量元素组成。 地球化学结果表格中,包括对主量元素,以及微量元素的化学分析结果,以及全岩的δEu 和δCe值的分析结果分析结果。 其中δEu 和δCe值的计算公式为δEu=EuN/(SmN×GdN)1/2, δCe=2Ce/(La+Pr) 全岩主微量元素试验地点是位于中国科学院广州ALS实验室组,主量元素采取X射线荧光法测算,微量元素及稀土元素采用ICP-MS作为分析仪器。 以上数据已发表于SCI高级别期刊,数据真实可靠。数据以Excel表格形式上传。
谢建成
地震观测数据可用于构建地壳和上地幔地震波速结构、约束壳幔变形特征。伊朗高原东南缘是大陆碰撞和大洋俯冲的过渡地区,对该地区的研究可以为认识汇聚板缘作用及其板内构造响应的联系提供重要依据。数据来源于本课题组布设的流动地震台阵,选址要求严格,所有台站均配备Trillium 120PA地震计(120 s-175 Hz)及Taurus数字采集器。本数据集为P波初至前100 s至后200 s的波形数据,事件震级大于等于5.0级,震中距范围为30°- 90°。数据可用于认识俯冲-碰撞转换带的深部动力学过程。
陈凌
数据集为青藏高原吉隆-尼玛跨喜马拉雅造山带GPS活动变形重复测量原始数据。该数据为2018年和2019年两次的测量结果,包括13个台站数据,数据质量良好。通过这些测点的观测数据,结合项目研究团队已经在喜马拉雅造山带沿亚东-谷露布设的连续GPS观测剖面数据可以揭示印度大陆向北汇聚的应变在喜马拉雅造山带关键部位的水平、垂直分布特征;认识喜马拉雅造山带现今隆升状态,与水平运动的关联;结合活动断层运动位错理论,研究震间应变在主边界断裂(MBT)、主中央断裂(MCT)等的定量分配,震间的应变累积特征、断层闭锁范围、断层闭锁程度,为评价研究区活动断层地震危险性提供重要约束;结合2015年尼泊尔地震破裂模型,从运动学到动力学视角研究青藏高原南缘岩石圈流变学特征。
何建坤
在池州地区,对样品花岗闪长岩(斑岩)中的副矿物磷灰石进行提取筛选,测算其主量元素与微量元素组成。 地球化学结果表格中,包括对主量元素,以及微量元素的化学分析结果,以及全岩的δEu 和δCe值的分析结果分析结果。 其中δEu 和δCe值的计算公式为δEu=EuN/(SmN×GdN)1/2, δCe=2Ce/(La+Pr) 主量元素试验地点位于合肥工业大学资源与环境工程学院,实验仪器为JEOL-JXA-8230M电子探针。微量元素试验地点是位于中国科学院广州地球化学研究所同位素地球化学国家重点实验室,采用LA-ICP-MS作为分析仪器。 以上数据已发表于SCI高级别期刊,数据真实可靠。数据以Excel表格形式上传。
谢建成
本数据为长江中下游花岗岩的全岩主、微量元素和Sr-Nd同位素地球化学数据,以及锆石U-Pb-O同位素及测年数据和磷灰石原位主、微量元素地球化学数据。样品为采自青阳-九华山地区的I型和A型花岗岩,岩性包括花岗斑岩、花岗闪长岩、碱性花岗岩和二长花岗岩,以及其中的暗色包体。全岩主量元素数据由XRF分析获得,微量元素数据由ICP-MS分析获得,Sr-Nd同位素组成由MC-ICP-MS分析获得。锆石U-Pb同位素测年数据及原位O同位素组成均由SIMS分析获得。磷灰石的主量、微量元素数据分别由EMPA和LA-ICP-MS分析获得。以上数据已发表于高级别SCI期刊,数据真实可靠。通过获得的数据,可以研究庆阳-九华山杂岩体的成因和演化过程,约束岩浆形成过程的物理化学条件,制约其形成的构造环境。
江小燕
数据集包括利国铁-铜-金矿床利国侵入体的全岩主微量元素、Sr-Nd同位素组成、磷灰石的主微量元素以及磷灰石的Sr-O同位素组成。全岩主微量元素在澳实分析检测(广州)有限公司分析,经过偏硼酸锂熔融,使用X射线荧光(XRF)光谱仪分析主量元素,分析准确度和精确度在1%以内,微量元素用ICP-MS分析,分析准确度和精确度在5%以内。Sr-Nd同位素组成在中国科学院广州地球化学研究所用MC-ICP MS分析,测量的143Nd/144Nd和87Sr/86Sr比分别标准化标与标准样品的标准值非常一致。采用标准的破碎、筛分、重液分离和磁分离技术从全岩石样品中收集磷灰石,然后安装在一个环氧树脂盘中,并抛光到近一半的部分,以暴露内部结构。磷灰石主量元素在国家海洋局第而海洋研究所使用电子探针分析。微量元素在中国科学院广州地球化学研究所矿物学与成矿学重点实验室通过原位LA ICP-MS进行分析。仪器工作条件为,消融时间40s,激光斑点直径为43μm,重复频率为6Hz。使用NIST610作为主要的外部校准标准,使用43Ca(由定量电子微探针法确定)作为内部标准。漂移校正、离线选择、集成背景和分析信号,以及微量元素的定量校准都使用ICP-MS DataCal软件进行校准。磷灰石原位Sr同位素分析在西北大学地质系大陆动力学国家重点实验室,仪器工作条件为,消融时间为50s,激光斑点直径为60μm,重复频率为6Hz。根据Sr987和Alfa Sr标准校准磷灰石的同位素成分。测量的磷灰石标准Sr987的87Sr/86Sr比值和AlfASr的分别为0.71025±21(n=29,2σ)和0.70727±32(n=30,2σ)。在北京SHRIMP中心测量了磷灰石原位氧同位素分析。SHRIMP IIe/MC配备了可拆卸的Cs主离子源、电子枪、多集电器和亥姆霍兹线圈,以获得高精度的O同位素测量。每18O/16O分析取约7min,斑点直径为23μm。用Durango磷灰石的同位素成分进行了校准。Durango磷灰岩实测δ18O平均值为9.81±0.66‰(2σ),与以往误差范围内的研究结果相似。因此以上数据均具有可靠性。 该数据集包括含矿岩体以及其磷灰岩地球化学和同位素特征,可以帮助我们了解它的岩石成因和矿化的控制因素。来自I组和II组的磷灰岩都是岩浆成因的含氟磷灰岩,其特征为负Eu异常、富集LREE、亏损HREE。同时,两组均具有较高的Sr/Y和δEu,表明了源岩的斑岩埃达克岩特征。与整个岩石的同位素相比,两组磷灰岩的变量87Sr/86Sr(0.70250-0.71262)和δ18O(6.22-9.00)值表明了地幔、地壳和/或沉积物衍生物的贡献。虽然I组磷灰石和II组磷灰岩具有相似的地球化学特征,但I组磷灰石先于斜长石结晶,无Sr-(La/Yb)N/(La/Sm)N/(Sm/Yb)N相关性,而II组磷灰石与斜长石结晶一致,呈正相关。这些对氧化还原环境敏感的元素(δEu、δCe、MnO、V)的地球化学表明,显示出高氧逸度(在HM和NNO之间),I组磷灰石系统的氧逸度高于II组磷灰石。更重要的是,第一组磷灰石和第二组磷灰石之间不同的微量元素和氧逸度特性可以作为矿化指标,首次绘制出铁-铜-金矿化范围。此外,母岩浆中估计的F和Cl含量(F=1300-2446ppm,Cl=140-4780ppm)高于原始地幔和平均大陆地壳中的含量,表明来F和Cl的富集过程。根据上述埃达克岩特征、高氧逸度、高氟氯含量,推测太平洋板块俯冲可能是利国成岩和矿化的主要动力机制。
丁兴
表格内容包括池州地区花岗闪长岩(斑岩)的锆石年代学及微量元素地球化学数据分析结果等信息。实验方法是LA-ICP-MS。利用合肥工业大学资源与环境工程学院的agilent7500a-ICP-MS仪器和compexpro102193nm波长ArF准分子激光源,对锆石的U-Pb同位素组成进行了分析。分析使用了80mj的激光能量和6hz的重复频率,频率为32μm光斑大小和50秒消融时间。锆石同位素比值用icpmsdatacalv计算。此数据可为池州地区花岗闪长岩(斑岩)日后地球化学模型分析提供数据支持。 以上数据已发表于SCI高级别期刊,数据真实可靠。数据以Excel表格形式储存。
谢建成
本表格内容主要对池州地区花岗闪长岩(斑岩)样品特征进行描述,表格元素包括岩体名称、采样位置、岩石类型、结构、主要矿物、相关矿床年龄研究方法、岩石年龄数据等相关数据。通过对前人学者的研究总结,对于相关岩石年代研究方法包括LA-ICP-MS、SIMS、SHRIMP等,池州地区花岗闪长岩(斑岩)样品年龄主要处于139.6±2.1至149.4±1.2之间。岩石的主要矿物组成为20-30%石英,20-25%钾长石,35-40%斜长石,10%黑云母,5%角闪石。 以上数据已发表于SCI高级别期刊,数据真实可靠。数据以Excel表格形式储存。
谢建成
本数据包括Excel以及Jpg格式图。Excel数据包括:全岩常量和微量元素、Rb-Sr和Sm-Nd的含量和同位素比值。 使用传统技术将所有样品粉碎至小于200目。在中国广州ALS Minerals/ALS Chemex实验室进行了全岩常量和微量元素分析。 在中国科学技术大学壳幔物质与环境重点实验室,采用同位素稀释法测定了Rb-Sr和Sm-Nd的含量和同位素比值。 Jpg图片格式数据包括:(1)张八岭和肥东侵入岩的野外照片和显微照片(交叉偏振光)。(2)张八岭侵入岩样品中典型锆石的阴极发光(CL)图像。(3)研究区域的简化地质图(a) 研究区域及周边地区(b) 研究区包括张八岭和肥东地区。(4)张八岭侵入体锆石U-Pb同位素的一致性图。(5)肥东侵入体锆石U-Pb同位素一致性图。(6)TAS火成岩图解 (7)MgO与SiO2(a)和Mg#与SiO2(b)的关系图(8)球粒陨石标准化稀土模式(9)Sr/Y与Y)和(La/Yb)N与YbN图表(10)张八组中生代岩浆岩(La/Yb)N和YbN代表La/Yb和Yb归一化的球粒陨石。 (11)张八组晚中生代岩浆岩的初始Sr–Nd同位素组成。大别高Sr/Y花岗岩类资料 (12)晚中生代铅的初始同位素组成 (13)张八组岩浆岩年龄分布图组 (14)锆石张八组侵入岩的Hf(t)与U–Pb年龄图以及其他地区岩石的数据。 (15)张八组晚中生代岩浆岩。 通过本数据库可为研究张八岭北部和肥东南部两个地区的深部地壳过程和构造亲缘关系提供依据。
闫骏, 黎乙希
该数据集包含了:云南腾冲地块早白垩纪高镁闪长岩和花岗闪长岩样品的经纬度、岩石岩性信息、样品年代学数据和O同位素组成、样品主微量元素和Sr-Nd同位素组成。岩石样品的年代学数据是通过对岩石单矿分选的岩浆锆石进行二次离子质谱(SIMS)测定的,测试过程中,Qinghu 标准锆石作为监控样品,监控整个分析测试过程中的可靠性。 主量元素通过将岩石粉末熔融成可上机测试的玻璃片,用X射线荧光光谱仪(XRF)进行测定,对于标准物质GBW-07111、 GBW-123、 GSR-1、 GSR-2 和 GSR-3 的测量结果分析精度优于 2%;微量元素通过在 Perkin-Elmer ELAN 6000电感耦合等离子体质谱仪(ICP-MS)上进行。分析测试过程中对USGS 标准物质(BHVO-2、 AVG-2、 GSR-1、 GSR-2、 GSR-3、 GSD-9 和 SARM-4) 进行测定,作为外部测试标样较正测试样品的元素含量,分析测试精度优于 3%。氧同位素数据是通过对碎屑锆石进行二次离子质谱(SIMS)所获得的,测试过程中,Penglai 标样的多次测定结果的外部精度优于 0.30‰(2σ, n = 24)。岩石Sr-Nd同位素通过对粉末进行酸性溶解,所获得的溶液,进行在 Neptune 型多接收电感耦合等离子体质谱仪(MC-ICP-MS)上进行,分别采用 NBS987( 87Sr/86Sr = 0.71025) 和 Shin Etsu JNdi-1( 143Nd/144Nd =0.512115)标准物质进行监控。所获得的数据用于在腾冲地块东缘识别与俯冲沉积物相关的早白垩世高镁闪长岩,为班公湖-怒江缝合带东南延伸提供了证据。研究成果发表于国际知名期刊Lithos上。
马鹏飞
该数据集包含了:云南哀牢山构造带二叠纪-三叠纪玄武岩、闪长岩、花岗闪长岩和花岗岩样品的经纬度、岩石岩性信息、样品年代学数据和O同位素组成、样品主微量元素和Sr-Nd同位素组成。岩石样品的年代学数据是通过对岩石单矿分选的岩浆锆石进行二次离子质谱(SIMS)测定的,测试过程中,Qinghu 标准锆石作为监控样品,监控整个分析测试过程中的可靠性。 主量元素通过将岩石粉末熔融成可上机测试的玻璃片,用X射线荧光光谱仪(XRF)进行测定,对于标准物质GBW-07111、 GBW-123、 GSR-1、 GSR-2 和 GSR-3 的测量结果分析精度优于 2%;微量元素通过在 Perkin-Elmer ELAN 6000电感耦合等离子体质谱仪(ICP-MS)上进行。分析测试过程中对USGS 标准物质(BHVO-2、 AVG-2、 GSR-1、 GSR-2、 GSR-3、 GSD-9 和 SARM-4) 进行测定,作为外部测试标样较正测试样品的元素含量,分析测试精度优于 3%。氧同位素数据是通过对碎屑锆石进行二次离子质谱(SIMS)所获得的,测试过程中,Penglai 标样的多次测定结果的外部精度优于 0.30‰(2σ, n = 24)。岩石Sr-Nd同位素通过对粉末进行酸性溶解,所获得的溶液,进行在 Neptune 型多接收电感耦合等离子体质谱仪(MC-ICP-MS)上进行,分别采用 NBS987( 87Sr/86Sr = 0.71025) 和 Shin Etsu JNdi-1( 143Nd/144Nd =0.512115)标准物质进行监控。所获得的晚二叠纪的富Nb玄武岩年代学数据、锆石O同位素、全岩主微量元素和Sr-Nd同位素可用来指示古特斯哀牢山洋俯冲与峨眉山地幔柱相互作用的过程,并发表于国际知名期刊Geophysical Research Letters上。所获得的闪长岩-花岗闪长岩的锆石年代学数据、锆石O同位素、全岩主微量元素和Sr-Nd同位素用来示踪古特斯哀牢山洋东向俯冲过程,为洋盆的东向俯冲提供了新的证据,并发表于国际知名期刊Lithos上。所获的A型花岗岩的年代学数据、锆石Hf-O同位素数据和全岩主微量数据和Sr-Nd同位素数据可被用于指示古特斯哀牢山俯冲与峨眉山地幔柱相互作用过程,并发表于国际知名期刊GSA Bulletin上。
徐健
本数据为长江下游A型花岗岩的全岩主、微量元素、Nd同位素地球化学数据,以及锆石原位Hf-O同位素数据和磷灰石主、微量元素地球化学数据。样品为采自安徽花园巩岩体的正长花岗岩和石英正长岩。全岩主量元素数据由XRF分析获得,微量元素数据由ICP-MS分析获得,Nd同位素组成数据由MC-ICP-MS分析获得。锆石原位O同位素组成由SIMS分析获得,锆石原位Lu-Hf同位素组成的测试选择与O同位素相同的位置点进行,数据由LA-MC-ICP-MS分析获得。磷灰石的主量、微量元素数据分别由EMPA和LA-ICP-MS分析获得。以上数据已发表于高级别SCI期刊,数据真实可靠。通过获得的数据,可以研究A1和A2型花岗岩共存的成因,以及中生代晚期长江中下游地区A型花岗岩形成的构造环境。
江小燕
本数据为埃达克质侵入岩的全岩主微量元素、Sr-Nd同位素地球化学数据以及锆石原位微量元素数据、Hf-O同位素和U-Pb测年数据。样品为采自西藏地区冈底斯南部的冲江矿床(钻孔CJZK1407与CJZK1119)的黑云母二长花岗质斑岩。采自钻孔CJZK1407的样品全岩主量元素数据由XRF分析获得,而采自钻孔CJZK1119的样品的全岩主量元素数据由ICP-AES分析获得。全岩样品的微量元素数据均是由ICP-MS分析获得。全岩样品的Sr-Nd同位素数据由MC-ICP-MS分析获得。锆石U-Pb同位素测年以及微量元素数据由LA-ICP-MS分析获得。锆石O同位素数据由SHRIMP分析获得,原位Lu-Hf同位素数据由LA-MC-ICP-MS分析获得。以上数据已发表于高级别SCI期刊,数据结果真实可靠。通过获得的数据可以研究埃达克岩的成因,约束冲江斑岩铜矿的成因及构造背景。
胡永斌
该数据集包含了:云南哀牢山构造带二叠纪-三叠纪以及保山地区寒武纪-志留纪碎屑地层的沉积岩样品的经纬度、岩石岩性信息、样品年代学数据和O同位素组成、样品主微量元素组成。岩石样品的年代学数据是通过对碎屑锆石进行激光剥蚀等离子体质谱(LA-MC-ICPMS)测定的,对标准样品单颗粒锆石91500测试的误差优于5%;主量元素通过将岩石粉末熔融成可上机测试的玻璃片,用X射线荧光光谱仪(XRF)进行测定,对于标准物质GBW-07111、 GBW-123、 GSR-1、 GSR-2 和 GSR-3 的测量结果分析精度优于 2%;微量元素通过在 Perkin-Elmer ELAN 6000电感耦合等离子体质谱仪(ICP-MS)上进行。分析测试过程中对USGS 标准物质(BHVO-2、 AVG-2、 GSR-1、 GSR-2、 GSR-3、 GSD-9 和 SARM-4) 进行测定,作为外部测试标样较正测试样品的元素含量,分析测试精度优于 3%。氧同位素数据是通过对碎屑锆石进行二次离子质谱(SIMS)所获得的,测试过程中,Penglai 标样的多次测定结果的外部精度优于 0.30‰(2σ, n = 24)。所获得的的哀牢山二叠纪-三叠纪碎屑沉积岩的碎屑锆石年龄谱,以及主微量元素组成可以用来有效限制古特提斯哀牢山洋从俯冲到闭合的演化过程,目前已经发表在国际知名期刊Tectonics、GSA Bulletin和Journal of Asian Earth Sciences,和国内著名期刊《大地构造与成矿》之上。数据将来可被广泛引用,用于限制古洋盆的演化历史研究。所获得的的保山地区的寒武纪-泥盆纪碎屑岩的碎屑锆石年龄谱以及Hf同位素数据可以用来有效限制保山地块在早古生代的大地构造位置,相关数据已经发表在国内知名期刊《岩石学报》上,数据将来可被广泛引用,用于进行冈瓦纳大陆重建的工作中去。
徐健
本数据为锡石的U-Pb年龄和原位主、微量地球化学数据。样品来自于中国西南部个旧地区的高松锡铜矿田,其中样品GS-1采自矽卡岩中的锡石-硫化物矿床,样品LTB-1与LTB-2采自碳酸盐岩中的锡石-氧化铁±硫化物矿床。锡石的主量元素地球化学数据是通过电子探针分析获得,锡石的原位U-Pb年龄和微量元素地球化学数据是通过激光剥蚀-电感耦合等离子体质谱仪分析获得。通过获得数据可以约束高松锡铜矿床中锡矿化的时间和锡石的沉淀环境,从而得出层状锡石-氧化铁±硫化物矿石的成因。
郭佳
数据集包含川藏铁路沿线泥流阶地分布数据与川藏铁路沿线碎屑散粒体分布数据,川藏铁路沿线泥流阶地分布数据基于近几年我国高分二号数据,采用深度学习分类方法,结合人工目视解译修正,生产出的川藏沿线冻融泥流阶地分布图。最大单块泥流阶地1030043 m2,位于康定市境内,距离川藏铁路新都桥站约12km,最小单块泥流阶地1102 m2,位于乃东区境内,距离川藏铁路甲村站约3.3km,沿线泥流阶地平均面积为45013 m2,沿线泥流阶地主要分布在康定市、察雅县以及桑日县境内。 川藏铁路沿线碎屑散粒体分布数据基于研究区高分二号遥感影像资料,解译了川藏铁路理塘至林芝区间段广泛发育的斜坡散粒体,斜坡散粒体将其根据流动特征和结构模式,划分为活动型和原位风化型。目前该研究区共识别出斜坡散粒体病害2308条,覆盖面积达1283.21km2,平均面积0.56km2,最小上图面积为600m2,集中分布在海拔3700m~5500m之间,平均海拔为4767.78m。研究区范围内的斜坡散粒体约95%的单块斜坡散粒体面积小于2.0×104m2,平均面积在55.5×104m2,面积最大单块斜坡散粒体面积为9148×104m2;斜坡散粒体主要分布在高程值4500-5400m之间,占总斜坡散粒体块数的87.9%,其中高程值在5000-5400m的斜坡散粒体块数占为47.7%,平均高程值为4945m,海拔最低的单块斜坡散粒体其高程值为3241m;研究区范围内的斜坡散粒体坡度值主要介于30-70°之间之间,占总斜坡散粒体块数的89.5%。该数据集制定数字加工操作规范。加工过程中,规定操作人员严格遵守操作规范,同时由专人负责质量审查。经多人复查审核,其数据完整性、逻辑一致性、位置精度、属性精度、接边精度、现势性均符合国家测绘局制定的有关技术规定和标准的要求,质量优良可靠。为冻融泥流发育规律和古气候研究提与川藏工程走廊斜坡散粒体地理分布特点提供了研究基础。
江利明, 黄荣刚, 王慧妮
本文数据包含火山岩的全岩主量元素和微量元素、锆石U–Pb年龄和Hf同位素数据和碎屑锆石U-Pb年龄数据。样品采集自西藏西部盐湖地区的玄武岩和安山岩。锆石U-Pb年代学、锆石微量和锆石Hf同位素数据是通过激光剥蚀-电感耦合等离子体质谱仪获得的。岩石全岩主微量地球化学数据是通过X荧光光谱仪和电感耦合等离子体质谱仪分析获得的。通过获得的数据,结合已有文献数据资料,可以限定区域内岩浆作用的时代、成因和形成背景。
帅雪, 李世民, 朱弟成
本文数据包含火山岩的全岩主量元素和微量元素、全岩Sr–Nd-Pb同位素和锆石U–Pb年龄和Hf同位素数据和碎屑锆石U-Pb年龄数据。样品采集自西藏西部盐湖地区的玄武岩和安山岩。锆石U-Pb年代学和锆石Hf同位素数据是通过激光剥蚀-电感耦合等离子体质谱仪获得的。岩石全岩主微量地球化学数据是通过X荧光光谱仪和电感耦合等离子体质谱仪分析获得的。岩石全岩Sr–Nd-Pb同位素是通过样品分离提纯-多接收电感耦合等离子体质谱仪分析获得的。通过获得的数据,可以限定区域内岩浆作用的时代、成因和形成背景。
李世民, 王青, 朱弟成
该数据集主要内容为G317和G318国道沿线边坡及路面工程病害调查数据集,通过现场调查获得,调查时间为2020年1月9日-1月19日,2020年8月10日至2020年9月2日。调查对象为川藏北线G317(那曲-甘孜)和川藏南线G318(拉萨-新都桥)。调查的病害类型主要包括冻融诱发的边坡病害及灾害(落石、危岩体及碎屑坡)、路面裂缝类病害、松散类病害、坑槽类病害、路基变形类病害以及冬季的涎流冰病害。采用人工调查的方法,观察各类病害破损情况,按要求详细记录路面各种破坏类型的数量(范围)、破坏程度及所在位置。该数据集可为全面了解川藏工程走廊主要公路工程冻融病害情况及相关研究提供依据。
牛富俊
本数据集主要包括对中国东部中生代以来玄武岩Li同位素分析结果,地点包括东北地区诺敏河和五大连池地区,华北昌乐、蓬莱和山旺地区,华南明溪、闽清、龙海、旗尾山、藩坑和青龙山等,Li同位素数据在全岩样品经过酸消解和离子交换树脂分离后通过MC-ICPMS测试获得,测试精度好于0.3‰。玄武岩Li同位素的数据将对了解中国东部地幔的演化提供重要的数据支撑。数据结果显示部分中生代玄武岩由于较长的地表暴露经历了风化,还有的受到外界热液流体的影响而蚀变。新生代玄武岩的地幔源区和亏损地幔间并未存在较大的分馏,部分偏低的Li同位素组成可能是源区地幔受到沉积物来源熔体的交代。
王洋洋
本数据集对栏杆玄武岩进行了详细的地球化学分析,主要包括全岩主/微量元素、Sr-Nd-Pb同位素分析,锆石U-Pb定年、Hf同位素分析以及硅酸盐熔体包裹体主/微量元素分析。其中主量元素测试同时使用X射线荧光光谱仪(XRF)进行分析,数据误差小于5%。全岩微量元素分析使用电感耦合等离子体质谱仪(ICP-MS),分析结果误差小于5-10%。通过主、微量元素组成特征,可以有效判断栏杆玄武岩分类及成因。全岩Sr-Nd-Pb同位素采用多接收电感耦合等离子质谱仪(MC-ICP-MS)完成,测试结果包括86Sr/88Sr、146Nd/144Nd、206Pb/204Pb、207Pb/204Pb以及208Pb/204Pb比值。Sr-Nd-Pb同位素作为很好的岩浆源区示踪剂,能够示踪栏杆玄武岩源区组成。相比于全岩成分,早期结晶的矿物捕获的硅酸盐熔体包裹体能够代表最初始的熔体组成。本文通过激光剥蚀电感耦合等离子体质谱仪LA-ICPMS分析测试了单个熔体包裹体组成,分析误差小于5%。通过熔体包裹体组成可以判断形成栏杆玄武岩的初始熔体具有更难熔的特征。锆石,作为常用的定年副矿物,已经被广泛用于U-Pb定年。通过LA-ICPMS原位分析技术,有效测定栏杆玄武岩中分选的锆石颗粒,其定年结果指示栏杆玄武岩形成于侏罗纪时期。锆石原位Hf同位素能够有效示踪形成锆石的物质来源,本文锆石Hf同位素采用高分辨率Nu Plasma II MC-ICP-MS进行分析,在分析过程中, 标准锆石(91500)和蓬莱(Penglai)锆石的176Hf/177Hf比值分别为0.282301±0.000017(2σ,n = 15)和0.282915±0.000014 (2σ, n=18),与前人报道的一致。Hf同位素分析结果显示存在富集组分的加入,结合全岩元素和同位素组成进而判断栏杆碱性玄武岩可能是由于俯冲板片脱水交代上覆岩石圈地幔发生部分熔融形成的。
王晓霞
本文数据包含火山岩和花岗质岩石的全岩主量元素和微量元素、全岩Sr–Nd同位素和锆石U–Pb年龄和Hf–O同位素数据和碎屑锆石U-Pb年龄数据。样品采集自西藏中部达如错地区的花岗闪长岩、二长花岗岩、正长花岗岩、安山岩、英安岩、流纹岩、砂岩和板岩。锆石U-Pb年代学和锆石Hf同位素数据是通过激光剥蚀-电感耦合等离子体质谱仪获得的。岩石全岩主微量地球化学数据是通过X荧光光谱仪和电感耦合等离子体质谱仪分析获得的。岩石全岩Sr–Nd同位素是通过样品分离提纯-多接收电感耦合等离子体质谱仪分析获得的。锆石O同位素地球化学数据是通过二次离子探针获得的。通过获得的数据,可以限定区域内岩浆作用的时代、成因和形成背景,进行沉积岩物源分析。
李世民, 王青, 朱弟成
经过整理的有文献资料的和卫星影像上能观察到的泥石流-堰塞湖-溃决洪水灾害链编目数据与分布图。在数据中泥石流被分为一般泥石流与冰川泥石流两种类型,发生时间从1953年到2019年不等。该数据主要通过文献资料调查结合遥感判识确定灾害链发生的位置、类型等信息,再整理成表格与生成矢量数据。数据由调查文献资料与遥感目视解译生成。由于无法判断许多灾害的确切发生时间,因此难以评价数据的完整性。灾害点编号为野外科考区域代码+河流流域名称首字母代码+灾害链类型代码+四位顺序数字编号。详见Excel数据文件。
周丽琴, 唐晨晓
本文数据为花岗岩的岩石全岩主量元素和微量元素、全岩Sr–Nd–Pb–Hf同位素和锆石U–Pb年龄和Hf–O同位素数据。样品采集自西藏北部唐古拉地区的正长花岗岩和二长花岗岩。放射性同位素年代学数据是通过激光剥蚀-电感耦合等离子体质谱仪和二次离子探针分析锆石U-Pb同位素获得的。岩石全岩主微量地球化学数据是通过X荧光光谱仪和电感耦合等离子体质谱仪分析获得的。岩石全岩Sr–Nd–Pb–Hf同位素是通过样品分离提纯-多接收电感耦合等离子体质谱仪分析获得的。锆石Hf-O同位素地球化学数据是通过激光剥蚀-多接收等离子体质谱仪分析获得的。通过获得的数据,可以限定区域内岩浆作用的时代、成因和形成背景。这些新数据,结合文献数据,进一步证实唐古拉大型花岗岩基侵位于南–北羌塘地体的同碰撞过程。其富集的Sr–Nd–Pb–Hf–O同位素组成指示其主要来源于再循环浅表物质的部分熔融,并有幔源物质加入。本文的研究表明同碰撞期间也可形成大型花岗质岩浆活动。
宋绍玮, 朱弟成, 王青
横断山多尺度致灾、孕灾、承灾数据时空统一数据集包含了由高程数据衍生的一系列地貌数据、年均归一化植被指数数据、年均气温与降雨数据、VIIRS夜间灯光数据。其中地貌数据覆盖横断山地区,植被与气候相关数据覆盖青藏高原,夜间灯管指数数据覆盖全国范围。数据收集时间根据来源不同而异,最早为2000年,最晚为2018年。该数据集主要是为了进行灾害、风险评价而准备。本数据集将这些数据整理进行了重采样、空间校正、光学校正、地貌因子计算、空间统计等流程加工,数据精度与其数据源的原始精度数据一致,未经过降采样等模糊处理。处理过程中采用了科学标准流程,区分了连续与不连续型数据,将处理过程中的数据损失降到最低。
唐晨晓
本数据集主要包括南岭地区水口山和西华山花岗岩的磷灰石原位Sr-Nd同位素和锆石原位Hf-O同位素数据,漂塘钨矿床黑钨矿微量元素数据及单个流体包裹体LA-ICP-MS成分分析数据,西华山钨矿床黑钨矿石英稳定O同位素数据及单个流体包裹体LA-ICP-MS成分分析数据。利用相关数据,结合流体包裹体原位分析和精细矿物学研究,揭示了华南地区黑钨矿沉淀的过程与机制,发现了赋存在岩体内部的黑钨矿由水-岩相互作用所致,而赋存于岩体外部的黑钨矿则由岩浆流体沸腾冷却形成,并非以往人们认为两种类型黑钨矿具有相同的沉淀过程,这为深入理解脉型黑钨矿矿床提供了新认识,丰富和发展了钨成矿理论体系,拓宽了找矿思路。
阳杰华, 刘亮
本数据集主要包括东南沿海花岗岩的锆石U-Pb同位素测年、原位Hf同位素数据,岩石全岩主微量地球化学数据以及Sr-Nd同位素数据。数据来自国内外权威实验室分析测试,且数据质量符合标准。利用该数据限定了燕山早期陆缘弧典型花岗岩(福建锦城和浙江梵音洞花岗岩)的成因,并结合东南沿海燕山早期岩浆岩的现有研究数据,厘定中国东南部早-中侏罗世陆缘弧岩浆岩带,限定太平洋与特提斯构造转换具体时限,这为深入理解古太平洋板块俯冲的早期历史提供了新的认识。
刘亮
本数据集主要包括马来西亚花岗岩的锆石U-Pb同位素定年、微量元素、原位Hf同位素数据,锡石U-Pb定年数据,岩石全岩主微量地球化学数据以及磷灰石原位Nd同位素数据。数据来自国内外权威实验室分析测试,且数据质量符合标准。利用该数据限定马来西亚的多期S型花岗岩,指出这类花岗质岩浆富氟和还原性的特征对锡成矿作用极为有利,并建立岩浆与古特提斯洋的俯冲、中缅马苏地块—印支地块碰撞的具体联系。通过矿石矿物锡石的U-Pb定年和成矿花岗岩研究,直接限定了三期重要锡成矿事件,首次建立了东南亚锡成矿年代学格架,确定了锡成矿的控制因素,明确了锡成矿与特提斯的演化关系。
刘亮, 阳杰华
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件