1) 数据内容:本数据库包含空间范围:①我国青藏高原、新疆;②中亚(哈萨克斯坦、吉尔吉斯斯坦、塔吉克斯坦、乌兹别克斯坦);③西亚(巴基斯坦、阿富汗、伊朗);④东南亚(泰国、越南、老挝、缅甸、柬埔寨)。数据内容主要有:①1:500万地质数据集(地质体和构造);②1:100万各国地质矿产数据集(地质体、构造、矿产);②金属矿产数据集(矿床、矿点、矿化点);③新疆-中亚成矿地质背景数据集(岩石建造组合、构造分区、成矿区带、远景区、靶区、矿产);主要图件包括:泛第三极地质矿产图(1:500万)、中亚四国地质矿产图(1:150万)、巴基斯坦地质矿产图(1:100万)、阿富汗地质矿产图(1:100万)、伊朗地质矿产图(1:100万)、中国新疆-中亚廊带地质矿产图(1:250万)、中国新疆-中亚廊带成矿规律图(1:250万)、我国青藏高原地质矿产图(1:150万)。空间数据库采用ArcGIS平台,可为区域成矿规律研究、资源潜力评估、战略远景区圈定以及各类专题图件编制提供基础数据支撑。数据库格式为文件数据库(.GDB),图件包括工程文件(MXD)和栅格图(JPG),也可根据需要生成各类常见图形格式(PDF、TIF、EPS等)。泛第三极全区(1:500万)采用兰伯特等形圆锥投影,中央经线为东经84度,双纬分别为20度和55度。中国新疆-中亚廊带地质矿产数据采用兰伯特等形圆锥投影,中央经线为东经75度,双纬分别为30度和50度。中亚和西亚主要国别1:100万地质矿产数据采用采用兰伯特等形圆锥投影,中央经线和双纬根据各国所在位置具体确定。 2) 数据来源及加工方法;基础地质数据主要来源于任继舜院士编亚洲地质图(2015)(1:500万)、中欧亚构造成矿图和地质图(2008)(1:250万)、域内各国地质调查部门地质图(1:100万);②矿产数据主要来源包括全国矿产资源潜力评价项目成果(2012)、英国伦敦自然历史博物馆中亚矿产数据库及专题图(2014)、美国地质调查局阿富汗数据集(2008)、域内各国地质调查部门相关资料数据、域内矿产相关论文论著。此外,为满足各类数据修改及完善大量采用遥感数据,具体包括:ETM+、OLI、ASTER、Worldview等影像数据以及90m、30米、12.5mDEM数据等。 3) 数据质量描述;为满足泛第三极区域成矿规律研究、地质矿产图和成矿预测图编制需要,在数据空间准确性、逻辑一致性和数据完整性方面进行编辑、处理以及补充完善。具体包括:①矢量化,基于前述资料进行了大量矢量化工作,用于补充数字资料缺失区域(伊朗、巴基斯坦),同时根据资料更新程度合并、分割各类面要素和线要素,矢量化工作按照我国相关规范要求比例尺精度要求下完成;②拓扑处理,消除重叠面、空区等拓扑错误;③完善要素属性结构和补充要素属性内容,围绕区域成矿规律研究、地质矿产图和成矿预测图编制目标,依据我国相关规范,结合具体资料和数据内容,建立了相应数据模型,完善了地质体、构造、矿产要素类属性结构并完成了相应属性的填写工作;④基于以上数据处理内容,结合泛第三极研究成果和最新认识,对区内相关地质内容进行了进一步修改和完善。 4) 数据应用成果及前景:泛第三极地质矿产数据库主要服务于泛第三极全区、重要成矿带以及国别区域成矿规律研究、地质矿产图和成矿预测图编制,比例尺为1:500万(泛第三极全区)、1:250万(中国新疆-中亚廊带)、1:100万(重要成矿带、中西亚各国别)。
刘琰
采用三种广泛使用的基于模型的蒸散发数据集,包括ERA5,MERRA2和GLDAS2-Noah再分析数据,使用变异系数选取具有高一致性的融合区域,基于可靠性集合平均法融合获得了空间分辨率为0.25°的长序列(1980-2017年)全球逐日蒸散发产品(REA ET)。以GLEAM3.2a和通量塔观测数据作为参考数据和验证数据,结果表明,融合产品很好地捕捉了不同地区的蒸散发趋势,在所有植被覆盖情景下表现良好。数据集以NetCDF格式存储,包含变量E,代表陆地实际蒸散发,以毫米(mm)为单位。数据集包含三个维度:经度、纬度和时间,经度范围为-179.875E~179.875E,纬度范围为-59.875N~89.875N。完整时间覆盖范围为1980年1月1日~2017年12月31日。
陆姣, 王国杰, 陈铁喜, 李世杰, Daniel Fiifi Tawia Hagan, Giri Kattel, 彭建, 姜彤, 苏布达
利用野外调查和文献调研收集到的青海沙蜥(Phrynocephalus vlangalii)分布点,结合五个来自于WorldClim数据库的气候因子,分别将当前(1960-1990年)和未来(2061-2080年)的气候数据输入训练好的物种分布模型,对当前和未来的适宜栖息地进行预测。预测结果表明,在青海沙蜥在气候变化下将会丧失大量原有栖息地,针对青海沙蜥的保护措施应重点关注青藏高原东缘,柴达木盆地北部和东部这些地区。模型也预测在气候变化后,新的适宜栖息地将在原本不适宜青海沙蜥生存的地区出现。然而,由于爬行动物的扩散能力非常有限(文献记录的最大年扩散距离不足500m),新出现的适宜栖息地不一定能被青海沙蜥利用。同时,通过野外工作收集三个海拔种群青海沙蜥的生理、生活史、行为及形态数据并结合微气候数据,利用机制生态位模型预测了气候变化在当前适宜分布区对青海沙蜥造成的生理后果。模型预测的结果表明,无论在SSP245还是SSP585气候变化情景下,青海沙蜥的活动时间在当前适宜分布区的大部分范围(> 93%)内都会增加,热安全阈在当前适宜分布区的所有地点都会减少。高海拔种群的活动时间增幅小于低海拔种群,而其热安全阈减少的幅度却大于低海拔种群。研究结果揭示了气候变化可能对分布在高海拔地区的蜥蜴种群造成更大影响。
曾治高
数据内容:伊塞克湖流域2019年种植结构数据集。 数据来源及加工方法:从2019年中提取出5月-6月,7月-8月和9月-10月三个时间段,将每个时间段内云量最少,质量最高的哨兵2号数据拼接为一张完整地图,得到咸海流域三期哨兵2号遥感影像。在此基础上求出三期影像的NDVI结果,以哨兵2数据的不同波段和NDVI结果为基础,再结合耕地数据和实地采样数据,用随机森林算法对其分类,最终得到每个地块上的种植结构类型。 数据质量:空间分辨率为10m×10m,时间分辨率为年,Kappa系数0.8。 数据应用成果:可用于农作物产量估算和水资源利用效率计算。
刘铁
数据内容:咸海流域2019年归一化植被指数数据。 数据来源及加工方法:来源于美国国家航空航天局中分辨率成像光谱仪,提取MOD13A2产品第一波段作为归一化植被指数数据,乘以比例因子0.0001。 数据质量:空间分辨率为1000m×1000m,时间分辨率为一个月,每个像元的值为每个月的归一化植被指数的平均值。 数据应用成果:在气候变化背景下,可用于气象要素和植被特征相关关系分析,也可以与其它植被数据相结合分析某种植被类型的区域分布。
刘铁
数据内容:咸海流域2019年反照率数据。 数据来源及加工方法:来源于美国国家航空航天局中分辨率成像光谱仪,提取MCD43A1产品中的"BRDF_Albedo_Parameters_nn. Num_Parameters_01",“BRDF_Albedo_Parameters_nn. Num_Parameters_02“和“BRDF_Albedo_Parameters_nn. Num_Parameters_03”波段,参考MODIS官方算法,计算得出白天反照率和夜间反照率,乘以比例因子0.001。 数据质量:空间分辨率为500m×500m,时间分辨率为8天,每个像元的值为八天地表反照率的平均值。 数据应用成果:作为重要参数可反演地表蒸散发。
刘铁
数据内容:咸海流域2019年地表温度数据。 数据来源及加工方法:来源于美国国家航空航天局中分辨率成像光谱仪,提取MOD11A2产品第一波段作为地表温度数据,乘以比例因子0.02。 数据质量:空间分辨率为1000m×1000m,时间分辨率为8天,每个像元的值为八天地表温度的平均值。 数据应用成果:在气候变化背景下,可用于气象要素和植被特征相关关系分析,也可以与其它气象数据相结合分析某种植被类型的区域分布。
刘铁
(1)本数据集包含多介质中多种重金属浓度数据,对水体重金属污染评价与重金属在水体中分配内在关系的探究有重要意义;(2)数据来源为实地采集湟水河及其支流水体、土壤、作物等样品,送至实验室后经过前处理,用相关仪器完成检测;(3)该数据集具有较高质量,采样过程规范,样品收集后迅速放入-4℃冰箱保存,并送至实验室检测,检测过程遵循相关标准严格进行;(4)该数据集主要可应用于生态风险及健康风险评价、空间分布分析、源解析、相关性分析等用途。
张丰松
本数据集为未来50年黄河源和祁连山区水量平衡数据集(径流、降水、蒸散发、土壤液态含水量),采用基于地貌的生态水文模型GBEHM模拟获取,数据集变量包含月径流、月降水、月蒸散发、月均5cm土壤液态含水量以及月均50cm土壤液态含水量,数据时间范围为2020-2070年,空间分辨率为1km。模型输入数据包含气象驱动、植被、土壤、土地利用等,气象驱动采用38个CMIP6模型SSP2-4.5情景下的集合平均结果,模拟结果能够较好反映黄河源区与祁连山区水文变量的时空变异特征。数据集可进一步用于黄河源区与祁连山区生态-水文过程相关研究,为“山水林田湖草”系统优化调配提供科学依据。
王泰华, 杨大文
数据内容:咸海流域2019年土壤湿度数据。 数据来源及加工方法:来源于美国国家航空航天局,对每天的土壤湿度数据相加得到各月土壤湿度之和,再除以天数得到每月土壤湿度的平均值。 数据质量:空间分辨率为0.25°×0.25°,时间分辨率为月,每个像元的值为每月土壤湿度的平均值。 数据应用成果及前景:在气候变化背景下,可用于气象要素和植被特征相关关系分析,也可以与其它气象数据相结合分析某种植被类型的区域分布
刘铁
冰川区域内的近地表气温变化和温度预测的可靠性是水文和冰川学研究的重要问题,由于缺乏高海拔观测,这些问题仍然难以捉摸。本研究基于从 6 个不同流域的 12 个自动气象站、43 个温度记录仪和 6 个国家气象站收集的 2019 年气温数据,展示了不同冰川/非冰川地区的气温变化,并评估了不同温度预测的可靠性,以减少消融估计中的误差。结果表明,不同气候背景下温度递减率 (LRs) 的空间异质性很大,最陡峭的 LRs 位于寒冷干燥的青藏高原西北部,最低的 LRs 位于受暖湿季风影响的青藏高原东南部。青藏高原西部和中部高海拔冰川区的近地表气温受下降风的影响较小,因此可以从冰川外的记录中线性预测。相比之下,青藏高原东南部温带冰川上盛行的局地降风风对环境气温的降温作用明显,因此,冰川上气温明显低于同等海拔的非冰川地区。因此,来自低海拔非冰川站的线性温度预测可能导致正度日数高估 40%,特别是对于流线距离长且冷却效果显着的大型冰川。这些发现提供了值得注意的证据,表明在估算青藏高原冰川融化时,应仔细考虑不同气候条件下高海拔冰川的不同 LR 和相关冷却效应。
杨威
本数据集为过去40年黄河源和祁连山区水量平衡数据集(径流、降水、蒸散发、土壤液态含水量),采用基于地貌的生态水文模型GBEHM模拟获取,数据集变量包含月径流、月降水、月蒸散发、月均5cm土壤液态含水量以及月均50cm土壤液态含水量,数据时间范围为1980-2019年,空间分辨率为1km。模型输入数据包含气象驱动、植被、土壤、土地利用等,模拟结果能够较好反映黄河源区与祁连山区水文变量的时空变异特征。数据集可进一步用于黄河源区与祁连山区生态-水文过程相关研究,为“山水林田湖草”系统优化调配提供科学依据。
王泰华, 杨大文
数据内容:咸海流域2019年叶面积指数数据。 数据来源及加工方法:来源于美国国家航空航天局中分辨率成像光谱仪,提取MOD15A2产品第二波段作为叶面积指数数据,乘以比例因子0.1。 数据质量:空间分辨率为500m×500m,时间分辨率为8天,每个像元的值为八天叶面积指数的平均值。 数据应用成果:在气候变化背景下,可用于气象要素和植被特征相关关系分析,也可以与其它植被数据相结合分析某种植被类型的区域分布。
刘铁
数据内容:咸海流域2019年蒸散发数据集。 数据来源及加工方法:借助IDL平台,利用SEBS算法和美国国家航空航天局中分辨率成像光谱仪(MODIS)相关数据,求出2019年咸海流域蒸散发结果。 数据质量:空间分辨率为1000m×1000m,时间分辨率为8天。 数据应用成果及前景:在气候变化背景下,可用于气象要素和植被特征相关关系分析,也可以与其它植被数据和生态数据相结合分析土地退化和水资源利用效率情况。
刘铁
(1)数据内容:该数据集包含了咸海流域2000-2020年的土地利用情况;(2)数据来源及加工方法:该数据集来源于欧洲航天局的气候变化倡议土地覆盖地图(http://maps.elie.ucl.ac.be/CCI),在此基础上用咸海流域的边界数据进行掩膜处理,提取出咸海流域的土地利用,同时,根据一定的规则进行合并,将原始的二级类数据合并为包含7个土地利用类型的一级类数据,坐标系为:WGS-1984;(3)数据质量描述:根据现有研究,该数据集的整体准确率达到80%;(4)该数据集可以为生态保护和环境评估提供基础数据支撑,也可以做为土地利用模拟的原始数据。
刘铁
采用样方调查方法,在西藏江湖源区布设天然草地、围栏天然草地、人工草地等样方,调查草地类型、盖度、物种构成、地上生物量以及土壤温度、土壤容重、土壤含水量、土壤质地、土壤pH、土壤有机质、土壤全P、土壤全K,对比分析不同草地利用方式下的植被群落和土壤质量特征,研究草地利用对植被和土壤环境的影响。数据采集年份为2019年8月-2021年8月,采集地点为江湖源区及周边地区。样点海拔为GPS记录数据,植被类型为样点在中国植被图中的映射,土壤温湿度为土壤4参数速测仪数据,土壤容重为样点实测数据,草本物种数、草地盖度、地上生物量为样方调查数据,土壤粒径、有机质和养分含量为样品实验室分析数据。
徐增让, 靳茗茗, 乔添
于2020年8月~9月在西藏自治区的河湖源区开展规范的野外调查和土壤样品采集工作,采集土壤样品共150个。数据集包括序号、样地号、经纬度、海拔、土壤含水量、容重、有机质、全氮、全磷、全钾、pH和机械组成(砂粒、粉粒和粘粒含量),数据格式为Excel表。各项土壤性质的测定参考《土壤环境质量监测技术规范》的要求,通过野外采样和室内测试获得。土壤容重分别测量5–10 cm和15-20 cm土层。机械组成根据国际制分类标准,划分为砂粒(2–0.02 mm)、粉粒(0.02–0.002 mm)和粘粒(< 0.002 mm)。土壤去除石砾、根系等杂质并粉碎,土壤有机质、全氮、全磷、全钾的测定是全样。pH用电位法测定,水土比为2.5:1。土壤样品的采集参照土壤样品采集规范,室内分析测试参照标准的分析方法,通过测定重复样品和标准样品对数据质量进行控制。此数据可以为综合评估典型土地利用变化的环境效应提供数据支撑。
汪霞
2019年3月,中科院南古所与巴基斯坦Comsats大学学者组成的联合科考团队对巴基斯坦南部盐岭地区开展合作研究,研究的目的是揭示特提斯喜马拉雅北缘在二叠纪晚期的地层的演化和动物群的演化并建立和西藏藏南的对比关系。此次测量的剖面是科考团队在野外用米尺测量并高分辨率采集有孔虫化石。共测量了2个剖面, 分别是Zaluch Nala A和B剖面。有孔虫化石是通过实验室切片并制成薄片,在显微镜下观察并鉴定。该数据集包含了Zaluch Nala A剖面和B剖面中的䗴类和小有孔虫动物群的鉴定名单。该区二叠系剖面露头出露良好,主要由Amb组、Wargal组和Chhidru组组成。Amb组主要以钙质砂岩为主,仅含有一个䗴类Monodiexodina kattaensis. 时代相当于中二叠世。Wargal组下段是以中薄层灰岩为主,上部是薄层瘤状灰岩。Chhidru组中主要是以灰岩夹有砂岩为主。Wargal组和Chhidru组中的䗴类主要有Codonofusiella, Nankinella, Nanlingella, Reichelina组成,分异度较低。小有孔虫类是以Colaniella, Climacammina, Multidiscus等为主。有孔虫显示Wargal组中上部和Chhidru组的时代是晚二叠世。盐岭地区位于冈瓦纳北缘,因此,从古生物地理上来看,中晚二叠世的有孔虫的分异度要比西藏拉萨地块、雅鲁藏布江中灰岩外来体要低的多,但它比西藏南部色龙和曲布一带晚二叠世中的环境暖,因为后者在晚二叠世完全处于冷水环境中,并不发育䗴类化石。
张以春
于2020年8月~9月在西藏自治区的河湖源区开展规范的野外调查,共调查样点25个,75个样方。数据集包括样点编号、样方号、经纬度、海拔、样方的地上生物量、物种数和盖度,数据格式为Excel表。调查样方面积为100cm*100cm,每个样点(site)有3个样方,命名为Plot1、Plot2、Plot3。数据全为实地采集和测量数据,野外调查按照植被调查规范确保数据质量完好。该数据集为合理利用草地资源提供理论依据,并为综合评估典型土地利用变化的环境效应提供数据支撑。
汪霞
2019年3月,中科院南古所与巴基斯坦Comsats大学学者组成的联合科考团队对巴基斯坦南部盐岭地区开展合作研究,研究的目的是揭示特提斯喜马拉雅北缘在二叠纪晚期的地层的演化和动物群的演化并建立和西藏藏南的对比关系。此次测量的剖面是科考团队在野外用米尺测量并高分辨率采集有孔虫化石。共测量了2个剖面。Zaluch Nala A和B剖面位于盐岭地区Mianwali市的东北方向。该剖面保存了Amb组、Wargal组的上部和Chhidru组的地层。其中A剖面包含了Wargal组上部的Kalabagh段以及Chhidru组;B剖面位于A剖面的层位之下,主要包括Wargal组的下部和Amb组。Amb组主要以钙质砂岩为主,仅含有一个䗴类分子Monodiexodina kattaensis,时代属于中二叠世;Wargal组下段是以中薄层灰岩为主,从Wargal组中下部出现Pseudocolaniella,指示时代已经进入晚二叠世。Wargal组上部(A剖面)是薄层瘤状灰岩,称为Kalabagh段;Chhidru组中主要是以灰岩夹有砂岩为主。Wargal组上部和Chhidru组中含有Reichelina, Codonofusiella, Reichelina等,动物群的时代属于晚二叠世。
张以春
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件