青藏高原主体是青海省和西藏自治区,其青海省和西藏自治区经济社会数据则是统筹自然科学基础数据进行分析青藏高原人口、资源、环境和经济社会可持续发展分析和评估的基础。一般情况下,各省区统计年鉴均为纸质版、光盘版,用户均需要进行二次编辑才能使用。 本数据集主要依托青海省和西藏自治区统计年鉴原始数据,进行数据转换,综合集成当前经济社会数据集。数据覆盖时间从2007年到2016年,时间分辨率为年,覆盖范围为青藏高原青海省和西藏自治区,空间分辨率为地市州行政单元。 数据包括人口、经济、财政、农林牧副渔产业、固定资产投资、教育卫生等方面。
王世金
从公元1000年到现在大气中甲烷的浓度在南北极冰芯呈现显著的上升,本数据来自澳大利亚塔斯马尼亚实验室,对冰芯样品采取湿法提取,通过对所有样品使用相同的测量程序和校准, 获取了高分辨率数据。数据结果与瑞士伯尔尼大学、丹麦哥本哈根大学以及美国俄亥俄州大学等国际著名冰芯温室气体实验室结果一致。 各变量的物理意义: 第一列:时间;第二列:甲烷浓度数值
杜志恒
微波辐射计数据集为SMMR(1978-1987)、SSM/I(1987-2009)和SSMIS(2009-2015)亮温数据,覆盖时间从1978年到2015年,空间分辨率为25 km,南极数据每个文件由316*332的栅格组成,北极冻融数据每个文件由304*448的栅格组成;微波散射计数据集为QScat(2000-2009)和ASCAT(2009-2015)后向散射系数据,覆盖时间从2000年到2015年,空间分辨率为4.45km.南极数据每个文件由1940*1940的栅格组成,北极数据每个文件由810*680的栅格组成。时间分辨率为逐日,覆盖范围为南北极冰盖。
李新武, 梁雷
利用2003-2013年11景的Modis1B数据(NSIDC网站发布的冰架Modis1B数据),采用亚像元互相关方法提取南极Amery冰架表面流速,应用COSI-Corr软件提取冰架流速,获取近十年的年均流速时间序列,由于研究区域内缺乏实地观测,因此利用稳定区域的偏移量值评估冰流结果的精度,冰流误差约为±50m/year。冰流场数据覆盖时间从2003年到2013年,时间分辨率为逐年,覆盖范围为Amery区域,空间分辨率为500m。每年的冰流场数据存放一个Geotiff文件。 数据的详细情况见Amery冰流场-数据说明。
江利明
在全球气候变暖背景下,世界范围内山地冰川消融强烈,以退缩为主,但现有野外观测发现,喀喇昆仑地区大部分冰川保持稳定或前进状态,为“喀喇昆仑异常”。冰川表面流速是研究冰川动力学和物质平衡的重要参数,研究喀喇昆仑中部区域冰川流速时空变化特征对于认识该区域冰川动力学特征及其对气候变化的响应具有重要的意义。 选取1999-2003年获取的四对Landsat 7 ETM+影像(影像获取时间分别为:1999.7.16, 2000.6.16, 2001.7.21, 2002.8.9, 2002.4.19, 2003.3.21),采用全色波段,分辨率为15 m,对每对影像进行精确配准,然后对配准后的两景影像进行互相关计算,获取1999-2003年喀喇昆仑中部区域冰川表面流速。由于研究区域内缺乏流速实地观测数据,因此利用稳定区域的偏移量值评估冰流结果的精度,冰川表面流速误差约为±7 m/year。 冰流场数据覆盖时间从1999年到2003年,时间分辨率为逐年,覆盖范围为喀喇昆仑中部区域,空间分辨率为30 m,每年的冰流场数据存放一个Geotiff文件。 数据的详细情况见喀喇昆仑中部区域冰流场-数据说明。
江利明
基于中国科学院资源环境科学数据中心全球100万基础地理数据(2010年),在GIS里提取北极八国(美国、加拿大、俄罗斯、挪威、丹麦(含Greenland格陵兰和法鲁Faro岛)、瑞典、芬兰、冰岛)铁路和公路网,分国别保存。数据格式是arcgis的shp格式,投影方式为GCS_WGS_1984.其中铁路网数据源见http://www.resdc.cn/data.aspx?DATAID=208; 道路网数据源见:http://www.resdc.cn/data.aspx?DATAID=207
杨林生, 王利
南极冰盖高程数据采用雷达高度计数据(Envisat RA-2)和激光雷达数据(ICESat/GLAS)制成。为提高ICESat/GLAS数据的精度,采用了五种不同的质量控制指标对GLAS数据进行处理,滤除了8.36%的不合格数据。这五种质量控制指标分别针对卫星定位误差、大气前向散射、饱和度及云的影响。同时,对Envisat RA-2数据进行干湿对流层纠正、电离层纠正、固体潮汐纠正和极潮纠正。针对两种不同的测高数据,提出了一种基于Envisat RA-2和GLAS数据光斑脚印几何相交的高程相对纠正方法,即通过分析GLAS脚印点与Envisat RA-2数据中心点重叠的点对,建立这些相交点对的高度差(GLAS-RA-2)与表征地形起伏的粗糙度之间的相关关系,对具有稳定相关关系的点对进行Envisat RA-2数据的相对纠正。通过分析南极冰盖不同区域的测高点密度,确定最终DEM的分辨率为1000 m。考虑到南极普里兹湾和内陆地区的差异性,将南极冰盖分为16个区,利用半方差分析确定最佳插值模型和参数,采用克吕金插值方法生成了1000 m分辨率的南极冰盖高程数据。利用两种机载激光雷达数据和我国多次南极科考实测的GPS数据对新的南极DEM进行了验证。结果显示,新的DEM与实测数据的差值范围为3.21—27.84 m,其误差分布与坡度密切关系。
黄华兵
未来人口情景预测以2005年为基准年,采用人口阻滞增长模型,不仅能够较好地描述人口与许多生物数量的变化规律,而且在经济领域也有广泛的应用。城市化率的预测采用城市化Logistics模型。依据已有的城市化水平序列值,通过非线性回归求出参数式中参数,建立预测模型。城市人口数量由预测的人口数乘以城镇化率求出。数据采用非农业人口。采用logistic模型预测流域未来各县市国民生产总值,然后根据未来各县市各时段经济发展水平(用人均GDP表示)设定各时段相应的产业结构情景,预测各次产业产值。我国及研究区产业结构的变化趋势滞后于GDP增长速度,因而根据设定的研究区未来产业结构情景需要进行了适当调整。
钟方雷, 杨林生
该数据集包含了2012年10月14日至2013年12月31日的黑河水文气象观测网上游阿柔超级站的大孔径闪烁仪观测数据。上游阿柔超级站分别架设了两台型号为BLS450_AR和zzlas的大孔径闪烁仪,北塔为zzlas的接收端和BLS450_AR的发射端,南塔为zzlas的发射端和BLS450_AR的接收端。其中zzlas自2012年10月14日开始观测,BLS450_AR的观测时间为2013年8月9日至2013年12月10日。站点位于青海省祁连县阿柔乡草达坂村,下垫面是高寒草地。北塔的经纬度是100.4712E,38.0568N,南塔的经纬度是100.4572E,38.0384N,海拔高度约3033m。大孔径闪烁仪的有效高度9.5m,光径路线长度是2390m,BLS450和zzlas的采样频率分别为5Hz和1Hz,平均为1min输出。 大孔径闪烁仪原始观测数据为1min,发布的数据为经过处理与质量控制的30分钟数据,其中感热通量主要是结合自动气象站观测数据,基于莫宁-奥布霍夫相似理论通过迭代计算得到。主要的质量控制步骤包括:(1)剔除Cn2达到饱和的数据(BLS450_AR:Cn2 >7.25E-14,zzlas:Cn2 >7.84 E-14);(2)剔除解调信号强度较弱的数据(BLS450_AR:Average X Intensity<1000,zzlas:Demod>-20mv);(3)剔除降水时刻的数据;(4)剔除稳定条件下的弱湍流的数据(u*小于0.1m/s)。在迭代计算过程中,对于BLS450_AR,选取Thiermann and Grassl, 1992的稳定度普适函数;对于zzlas,选取Andreas, 1988的稳定度普适函数。 关于发布数据的几点说明:(1)上游LAS数据以BLS450_AR为主,缺失时刻由zzlas观测补充,两者都缺失则以-6999标记。2012年11月10日-11月23日、2013年3月14日-4月10日由于zzlas信号出现漂移,期间数据被剔除; 2013年4月10日-5月31日由于LAS塔倾斜,期间无数据。(2)数据表头:Date/Time :日期/时间(格式:yyyy-m-d h:mm),Cn2 :空气折射指数结构参数(单位:m-2/3),H_LAS :感热通量(单位:W/m2)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考Liu et al.(2011)。
李新, 车涛, 徐自为, 张阳, 谭俊磊
采用供需平衡的分析方法,分别计算流域总体及各县区水资源供给量及需求量的基础上,评估流域水资源系统脆弱性。采用IPAT等式设置未来水资源需求情景,即通过设定未来的人口增长率、经济增长速度、单位GDP耗水量等变量来建立需水情景。以2005年为基准年,预测未来2010-2050年的各县市水资源需求情景。人口规模、经济规模采用配套预测数据。应用瑞典水文气象研究所HBV概念性水文模型的基本结构,设计了在气候变化下流域变化趋势的模型,以冰川融化情景为模型的输入,构建气候变化下出山径流情景。依据流域水资源配置的国家地方规定设置配水方案,综合计算水资源供给量。综合供需情况,以缺水率为指标评价水资源系统脆弱性。通过计算流域主要县市的(小麦生产)土地压力指数,分析了流域气候变化、冰川融化及人口增长情景下土地资源的供需平衡,评价了农业系统脆弱性。分别运用迈阿密公式及HANPP模型计算了未来情景下,流域各主要县市净初级生物生产量及初级生物量的人类占用,以供需平衡角度评估生态系统脆弱性。
杨林生, 钟方雷
该数据为2005年格陵兰岛地区ENVISAT-1卫星ASAR传感器获取的Wide Swath模式Level 1B级SAR数据,幅宽400km,空间分辨率为75m,绝对定位精度约为200米。 该SAR数据在存储时都是以时间增长为序的方式存储的,这使的下行轨道的图象为左右镜象,而上行轨道的图象为上下镜象。 该数据的命名规则如下例所示: ASA_IMS_1PPIPA 20050402_095556_000000162036_00065_16151_0388.N1 ASA: 产品标识,ASAR传感器 IMS: 数据的接收、处理信息(成像模式,如WS,WSS,IM,...) 1PPIPA:订制的编号 20050402: 数据获取的时间(UTC时间) 095556:地理位置(开始、结束) 000000162036:卫星轨道信息 00065:产品信任数据 16151:产品大小、结构信息 0388 => 校验码
惠凤鸣
南北极细菌分布数据集提供了南北极细菌分布特征。样品采集时间为13/12/2005至8/12/2006,包含北极3个地区52个样品(Spitsbergen Slijeringa,Spitsbergen Vestpynten,及Alexandra Fjord_Highlands),南极5个地区171个样品(Mitchell Peninsula,Casey station main power house,Robinsons Ridge,Herring Island,Browning Peninsula)。土壤表层样品采集后用液氮保存,运回悉尼实验室,通过FastPrep DNA试剂盒提取。提取后的DNA样品使用27F (5'-GAGTTTGATCNTGGCTCA-3' and 519R (5'-GTNTTACNGCGGCKGCTG-3')扩增16S rRNA基因片段。扩增后的片段通过454方式测序,原始数据通过Mothur软件分析。首先去除测序质量不佳序列,之后进行排序并去除嵌合体序列。之后计算序列之间相似度,相似度在97%以上的序列聚类为一个OTU,并定义OTU代表序列。OTU代表序列通过与Silva数据库进行比对,在可靠性大于>80%的情况下鉴定到属一级水平。本数据系统的比较了南极东部以及北极微生物的多样性,对研究微生物在南北极的分布具有重大意义。
计慕侃
北极阿拉斯加站点气溶胶光学厚度数据是基于美国能源部大气辐射观测计划在北极阿拉斯加站点的观测数据产品而形成,数据覆盖时间从1998年到2016年,时间分辨率为逐小时,覆盖站点为北极阿拉斯加站点,经纬度坐标为(71°19′22.8″N, 156°36′32.4″ W)。观测数据来源为MFRSR仪器观测的辐射数据反演获得,所包含光学特征变量为气溶胶光学厚度,观测反演误差范围约为15%。数据格式为nc格式。
赵传峰
全南极高分辨率遥感影像镶嵌图利用美国陆地卫星7号于1999-2003年间拍摄的1073幅影像以及覆盖南纬82.5度以南的中分辨率MODIS影像(拍摄于2005年)处理合成得到。基于该镶嵌图,结合南极科研需求,采用计算机自动解译和人工辅助相结合的方法,将南极洲地表覆盖划分为6大类:蓝冰、裂隙、裸岩、水体、冰碛、粒雪。经统计得到上述各类的面积和所占比例分别为:225207.29平方千米(1.651%),7153.36平方千米(0.052%),72958.04平方千米(0.535%),189.43平方千米(0.001%),310.76平方千米(0.003%),13337392.66平方千米(97.758%)。该地图为近似真彩色合成的卫星影像图,各地表覆盖类型采用不同的色块表示。该图主要为极地各学科科学研究、地理教育及科普等提供参考。
惠凤鸣
青藏高原湖水微生物多样性数据。样品采集时间为2015年7月1日至7月15日,包含28个湖泊(巴木措,白马湖,班戈盐湖,班公湖,崩错,别若则错,错萼措,错愕(平措北),达瓦措,当穹错,当惹雍措,洞措,鄂雅错琼,公珠措,果根错,甲热布错,玛旁雍错,纳木错,聂尔错(盐湖),诺尔玛措,朋彦错,蓬错,枪勇,色林错,吴如错,物玛错,扎日南木措,扎西措,),138个样品。盐度梯度为0.07-118 ppm。 DNA提取方法:湖水过滤到0.45膜上,然后通过MO BIO PowerSoil DNA试剂盒提取DNA。16S rRNA基因片段扩增引物为515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 909r (5'-GGACTACHVGGGTWTCTAAT-3')。测序方式为Illumina MiSeq PE250,原始数据通过Mothur软件分析,包括quality filtering, chimera removal, 序列分类依据Silva109数据库,古菌、真核和未知来源序列已被移除。OTU以97%相似度分类,然后只在数据库中出现一次的序列被移除。最后每个样品被重取样到7,230序列/样品。 GPS坐标,进化信息,环境因子见数据内。
计慕侃
南北极冰盖冻融数据集采用微波辐射计和微波散射计两种数据获取。微波辐射计数据覆盖时间从1978年到2015年,空间分辨率为25 km;微波散射计数据覆盖时间从2000年到2015年,空间分辨率为4.45km.时间分辨率为逐日,覆盖范围为南北极冰盖。基于微波辐射计的遥感反演方法采用改进的基于小波冰盖冻融探测算法,算法考虑冰盖冻融亮温特性在时间上的变化,首先利用小波变换对格陵兰所有冰盖区域的长时间亮度温度数据进行小波多尺度分解,在不同尺度下对边缘信息进行分析。再次,采用方差分析的方法将冰盖融化和重新冻结过程产生的边缘信息从噪声中分离出来。基于已提取的冰盖长时间亮度温度变化边缘信息,利用广义高斯模型来确定干雪和湿雪分类的最优边缘阈值, 从而探测出格陵兰冰盖发生融化的区域。最后,基于空间自动纠错的原理,运用空间邻域纠错算子对由噪音引起的错误结果进行探测,并进行人工纠错。长时间序列星载被动微波亮度温度数据来自SMMR、SSM/I和SSMI/S三个传感器。为保证不同传感器亮度温度在时间上的一致性,在冻融提取之前对不同传感器亮度温度进行了交叉订正。通过实测站点的验证表明格陵兰冰盖冻融探测精度在70%以上。基于微波辐射计的遥感反演方法考虑积雪特性在时空和空间上的变化,首先提取散射计数据的DVPR时间序列数据,有效利用散射计数据的高时间分辨率,同时利用通道差去除地形带来的影响;随后利用广义高斯模型对每一个采样点时间序列的方差值进行拟,以此来区分出干湿雪点,即确定融化范围,这种广义高斯模型相比于传统的双高斯模型需要的输入参数少,得到的阈值也具有唯一性;最后利用移动窗分割算法来精确找到湿雪点的融化开始时间、 结束时间以及持续时间, 可以有效地去除融化或非融化时期的温度突变所带来的影响。长时间序列星载微波散射计数据来自QSCAT和ASCAT两个传感器。通过实测站点的验证表明南极冰盖冻融探测精度在70%以上。数据每一天存放一个bin文件,基于微波辐射计的南极冻融数据每个文件由316*332的栅格组成,格陵兰冰盖冻融数据每个文件由304*448的栅格组成;基于微波散射计的南极冻融数据每个文件由810*680的栅格组成,格陵兰冰盖冻融数据每个文件由810*680的栅格组成(0值:非融化区域,1值:融化区域)。
李新武, 梁雷
该数据集包含了黑河水文气象观测网上游阿柔站的大孔径闪烁仪通量观测数据。上游阿柔站分别架设了两台型号为德国BLS450_AR和国产zzlas的大孔径闪烁仪,北塔为zzlas的接收端和BLS450_AR的发射端,南塔为zzlas的发射端和BLS450_AR的接收端。其中zzlas观测时间段为2014年1月1日至2014年12月31日,BLS450_AR的观测时间为2014年1月19日至2014年12月12日。站点位于青海省祁连县阿柔乡草达坂村,下垫面是高寒草地。北塔的经纬度是100.4712E,38.0568N,南塔的经纬度是100.4572E,38.0384N,海拔高度约3033m。大孔径闪烁仪的有效高度9.5m,光径长度是2390m,采样频率是1min。 大孔径闪烁仪原始观测数据为1min,发布的数据为经过处理与质量控制后的30min数据,其中感热通量主要是结合自动气象站观测数据,基于莫宁-奥布霍夫相似理论通过迭代计算得到,主要的质量控制步骤包括:(1)剔除Cn2达到饱和的数据(BLS450_AR:Cn2 >7.25E-14,zzlas:Cn2 >7.84 E-14);(2)剔除解调信号强度较弱的数据(BLS450_AR: Average X Intensity<1000,zzlas: Demod>-20mv);(3)剔除降水时刻的数据;(4)剔除稳定条件下的弱湍流的数据(u*小于0.1m/s)。在迭代计算过程中,对于BLS450_AR,选取Thiermann and Grassl, 1992的稳定度普适函数;对于zzlas,选取Andreas, 1988的稳定度普适函数。详细介绍请参考Liu et al.(2011, 2013)。 关于发布数据的几点说明:(1)上游LAS数据以BLS450_AR为主,缺失时刻由zzlas观测补充,两者都缺失则以-6999标记。(2)缺失时段:2014年8月10日至16日、2014年10月3日至13日、2014年10月17日至20日由于仪器故障,期间数据缺失。(3)数据表头:Date/Time :日期/时间(格式:yyyy-m-d h:mm),Cn2 :空气折射指数结构参数(单位:m-2/3),H_LAS :感热通量(单位:W/m2)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储,详细信息请查参考文献。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考Liu et al.(2011)。
刘绍民, 李新, 车涛, 徐自为, 张阳, 谭俊磊
该数据集包含了黑河水文气象观测网上游阿柔站的大孔径闪烁仪通量观测数据。上游阿柔站分别架设了两台型号为BLS450和zzlas的大孔径闪烁仪,北塔为zzlas的接收端和BLS450的发射端,南塔为zzlas的发射端和BLS450的接收端。其中zzlas观测时间段为2015年1月1日至12月31日; BLS450前期观测时间为2015年1月13日至2015年3月16日,后期更换为另一台BLS450,观测时间为2015年4月15日至2015年12月31日。站点位于青海省祁连县阿柔乡草达坂村,下垫面是高寒草地。北塔的经纬度是100.4712E,38.0568N,南塔的经纬度是100.4572E,38.0384N,海拔高度约3033m。大孔径闪烁仪的有效高度9.5m,光径长度是2390m,采样频率是1min。 大孔径闪烁仪原始观测数据为1min,发布的数据为经过处理与质量控制后的数据,其中感热通量主要是结合自动气象站观测数据,基于莫宁-奥布霍夫相似理论通过迭代计算得到,主要的质量控制步骤包括:(1)剔除Cn2达到饱和的数据(BLS450:Cn2 >7.25E-14,zzlas:Cn2 >7.84 E-14);(2)剔除解调信号强度较弱的数据(BLS450:Average X Intensity<1000(2015.1.13- 2015.3.16),Mininum X Intensity <50(2015.4.15-2015.12.31);zzlas:Demod>-20mv);(3)剔除降水时刻的数据;(4)剔除稳定条件下的弱湍流的数据(u*小于0.1m/s)。在迭代计算过程中,对于BLS450,选取Thiermann and Grassl(1992)的稳定度普适函数;对于zzlas,选取Andreas, 1988的稳定度普适函数。详细介绍请参考Liu et al(2011, 2013)。 关于发布数据的几点说明:(1)上游LAS数据以BLS450为主,缺失时刻由zzlas观测补充,两者都缺失则以-6999标记。(2)数据表头:Date/Time :日期/时间(格式:yyyy/m/d h:mm),Cn2 :空气折射指数结构参数(单位:m-2/3),H_LAS :感热通量(单位:W/m2)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储,详细信息请查参考文献。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考Liu et al. (2011)。
刘绍民, 李新, 车涛, 徐自为, 张阳, 谭俊磊
黑河流域月均植被指数数据是基于MODIS 的1km及250m NDVI产品,从250m产品中提出黑河流域格点值作为精度控制,对1km产品利用HASM方法修正。利用HASM方法对多源NDVI数据进行融合获得的黑河流域2001-2011年月均植被指数。分辨率:1KM*1KM 黑河流域平均降水数据集采用黑河计划数据管理中心提供的黑河流域及周边地区21个气象常规观测站及黑河周边13个全国基准站的站点数据信息,对逐日降水进行统计整理,计算逐个站点的1961-2010年多年逐日降水数据。对其进行空间平稳性分析,计算变异系数,若变异系数大于100%,则采用地理加权回归计算站点与地理地形因素关系,得逐日降水分布趋势;若变异系数小于等于100%,则采用普通最小二乘回归计算站点降水值与地理地形因素(经纬度、高程)的关系,得逐日降水分布趋势;对去掉趋势后的残差采用HASM(High Accuracy Surface Modeling Method)进行拟合修正。最后将趋势面结果与残差修正结果相加即得1961-2010年黑河流域多年日平均降水分布。时间分辨率:1961-2010年多年日平均降水。空间分辨率:500m。
岳天祥, 赵娜
该数据集包含了2015年1月1日至2017年7月31日黑河中下游绿洲植被生态属性的观测数据,共包含355条数据,其中,胡杨208条,柽柳147条。生态属性包括4组生态参数共15类74个指标,具体如下: 植被结构参数(5类25个指标): 盖度:总盖度、乔灌草三层分盖度、冠幅平均直径; 高度:乔灌草三层高度、冠层厚度、凋落物厚度、苔藓层厚度、最大根深; 密度:乔木层密度、乔木平均胸径; 叶面积指数:乔灌草三层最大叶面积指数、最小叶面积指数; 物候期:开始展叶期、盛叶期、开始落叶期、完全落叶期。 植被生产力参数(3类16个指标): 地上生物量:总生物量、乔灌草三层茎生物量、叶生物量; 根生物量:根生物量、0-5、5-15、15-30、30-50、50-100、100-250cm细根生物量; 其他生物量:凋落物层、苔藓层生物量和碳储量。 生理生态参数(4类24个指标): 生物量分配:根茎叶分配比例; 元素含量:根茎叶碳含量、碳氮比、凋落物碳含量、苔藓碳含量; 叶片形状:比叶面积、叶片长宽、叶倾角; 气体交换特征:叶水势、净光合速率、气孔导度、蒸腾速率、气温、胞间CO2浓度、光合有效辐射等; 植被水文参数(3类9个指标): 降雨再分配:最大截留能力、冠层截留、穿透雨、树干茎流‘ 产流:产流量、产流系数; 蒸发散:植物蒸腾量、土壤蒸发量、土壤蒸发深度。
李小雁, 赵文武
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件