青藏高原作为亚洲“水塔”为亚洲主要河流提供水资源。由生物质和化石燃料燃烧排放的BC气溶胶对辐射具有极强的吸收作用,进而对地球系统的能量收支和分布具有重要的影响,是气候环境变化不可忽视的影响因子。青藏高原周边地区排放的黑碳气溶胶经大气环流可被传输至高原内部,并沉降到雪冰表面,对降水和冰川物质平衡产生重要影响。分别在青藏高原5个台站架设黑碳仪,在线测量大气黑碳含量。这对评估黑碳对青藏高原的气候环境影响和大气污染物的跨境传输提供数据基础。
王茉
本数据集包括了青藏高原祁连山地区自从1980年到2013年以来的逐月的地表平均温度数据。本数据集来源于欧洲中期天气预报中心的第三代ERA-Interim再分析资料,该数据集采用四维变分分析,结合卫星数据误差校正等技术,实现了再分析资料的质量提升。数据集的空间分辨率为0.125°。本数据集是祁连山地区过去30多年以来地表温度网格数据集,可为祁连山地区的气候变化、生态系统发展演替及相关地球系统模型的研究提供数据基础。
吴晓东
采用温湿指数开展绿色丝绸之路沿线国家气候适宜性评价。相对湿度是计算温湿指数的基础参数之一。在参考唐焰等(2008)计算温湿指数公式的基础上,基于国家气象信息中心提供的1981-2017年气象站点观测数据,计算各站点相对湿度的多年平均数据。基于GIS技术,采用克里格方法对分布在绿色丝绸之路沿线国家的气象站点多年平均数据进行插值,得到1km×1km的栅格数据集。该数据集空间分辨率高,基于该数据集计算得到的气候适宜性评价结果更能凸显区域差异。
封志明
青藏高原在中国境内的部分涉及西藏、青海、新疆、云南、甘肃、四川六个省份,包括了西藏、青海全境,以及新疆、云南、甘肃、四川的部分地区。水土资源匹配研究旨在揭示一定区域尺度水资源和土地资源时空分配的均衡状况与丰缺程度。区域水资源与耕地资源分配的一致性水平越高,其匹配程度就越高,农业生产的基础条件就越优越。采用单位耕地面积的广义农业水资源量测度方法来反映研究区农业生产的水资源供给量和耕地资源空间适宜性的量比关系。 数据集的Excel文件中包含青藏高原在中国境内的市级行政区2008-2015年的广义农业水土资源匹配系数数据,矢量数据为2004年青藏高原在中国境内的市级行政区矢量边界数据,栅格数据像元值即所在地区当年广义农业水土资源匹配系数。
董前进, 董凌霄
本数据集包括大气气溶胶颗粒物的PM2.5质量浓度(单位为μg/m3)和当时的温度(摄氏度)、相对湿度(%)、大气压(hPa)。气溶胶PM2.5细颗粒物是指环境空气中空气动力学当量直径小于等于 2.5 微米的颗粒物。它能较长时间悬浮于空气中,对空气质量和能见度等有重要的影响,其在空气中含量浓度越高,就代表空气污染越严重。PM2.5的浓度特性数据以每5 min获取一组数据的频率进行产出,能实现小时、昼夜、季节和年际等不同时间尺度气溶胶质量浓度的分析,这为青藏高原地区不同位置的气溶胶质量浓度在不同时间尺度上的变化及其影响因素分析,以及当地空气质量评价,提供了重要的数据支撑。
邬光剑
本数据包含黄河源园区、澜沧江源园区、长江源园区内的乡界矢量数据。本数据根据青海省测绘地理信息局发布的青海省电子地图册中三江源国家公园所在县的电子地图数字化得到。数据为ARCGIS的shp格式,属性数据中主要包含三个属性,乡镇名称:各个乡镇的名字(如:花石峡镇);PAC:是行政区划代码(如:513230);NAME:是属县的名称(如玛多县)。数据采用2000国家大地坐标系和1985国家高程基准。该数据是三江源国家公园重要的基础地理数据,为该区域的制图、调查提供基本信息。
青海省基础地理信息中心
数据集主要是用在文章2018GC007986的研究中,包含了利用布设在青藏高原东北部海原台阵11个台站和中国地震局48个固定台站记录的远震波形数据计算得到的S波接收函数。 数据集压缩为zip格式的文件,包含了1个文件夹,两个文件:NETibet_SRF.QBN和NETibet_SRF.QHD。 时间域的脉冲反褶积方法被用来计算S波接收函数,所有的S波接收函数数据已经被可视化检查,去掉了一些和大多数接收函数明显不同的坏记录。 数据主要用来调查岩石圈结构,揭示高原东北部扩展的深部动力学过程。
徐强
该数据集共包含717个文件,其中station.txt文件主要描述716个站的站点信息,每列分别对应为:经度、纬度和高程;另外以站号命名的716个文件对应716个站的数据,文件中每列分别为:年、月、日和日平均太阳辐射。 该数据是基于中国气象局常规气象观测要素:温度、湿度、气压和日照时数等估算得到的。估算方法采用两个模型得到,分别为:人工神经网络模型和Yang混合模型。Yang混合模型在晴天情况下考虑了气溶胶散射和吸收、瑞利散射、水汽吸收、臭氧吸收和均一混合气体吸收五中衰减过程,云天情况下通过日照时数来参数化云对辐射的影响;而人工神经网络模型利用ANN模型在每个辐射站上建立了辐射和地面常规气象变量的关系。由于人工神经网络模型精度要比Yang混合模型估算精度高,因此通过人工神经网络模型估算值在月尺度上动态校正Yang混合模型估算值最终得到数据集合。
唐文君
采用温湿指数开展绿色丝绸之路沿线国家气候适宜性评价。温度是计算温湿指数的基础参数之一。在参考唐焰等(2008)计算温湿指数公式的基础上,基于国家气象信息中心提供的1981-2017年气象站点观测数据,计算各站点温度的多年平均数据。基于GIS技术,在考虑海拔、经纬度要素对温度影响的基础上,采用克里格方法对分布在绿色丝绸之路沿线国家的气象站点多年平均数据进行插值,得到1km×1km的栅格数据集。该数据集空间分辨率高,基于该数据集计算得到的气候适宜性评价结果更能凸显区域差异。
林裕梅
基于Google earth高清卫星影像,根据青藏高原矢量图,通过目视解译获取青藏高原全区2018年设施农业用地。所用影像拍摄时间集中于2017.11—2018.11。其中,基于2018年影像提取的设施农业面积约占总面积的70.47%;基于2017年11月以来拍摄影像提取的设施农业面积占比更是高达86.87%;部分地区影像拍摄时间相对较早,但多人烟稀少,没有或很少有设施农业分布,对研究结果影响不大。该数据有利于充分摸清青藏高原全区设施农业的空间分布情况,有利于当地设施农业空间规划调整。
吕昌河, 魏慧
1)数据内容包括西藏11个小流域5米分辨率2017年的土壤水蚀模数数据。2)采用中国土壤侵蚀模型CSLE方法,在面图层降雨侵蚀力R、土壤可蚀性K、坡度坡长因子LS、植被盖度FVC、轮作分区抽样调查单元的基础上,分别计算40个抽样单元土壤水蚀模数,评估土壤侵蚀状况。通过空间数据运算(包括图表链接及转换、矢栅转换、重采样等),将区域专题图降雨侵蚀力、土壤可蚀性、DEM转换为抽样单元的R、K、LS因子;通过半月FVC、NPV、半月降雨侵蚀力权重、其他地类B因子表分别计算抽样单元内各地类的B因子;通过遥感解译结果、工程措施因子表,计算抽样单元工程措施因子值;通过耕作分区图及耕作措施表获取抽样单元内耕作因子值,进而计算各抽样单元内土壤侵蚀模数。11个小流域的选取依据泛第三极地区抽样单元布设图。 3)通过和同年同区域已有土壤侵蚀强度数据对比,无明显差异,数据质量良好。4)土壤侵蚀模数数据对研究泛第三极土壤侵蚀现状,更好的贯彻“一带一路”发展政策具有重要的意义。
杨勤科
采用WRF模式制备的青藏高原近地表大气驱动和地表状态数据集,时间范围:2000-2010,空间范围:25-40 ºN,75-105 ºE,时间分辨率:逐时,空间分辨率:10 km,格点数为150*300。 总计有33个变量,其中包含的近地表大气变量11个: 地面上2m高度的温度、 地面上2m高度的比湿、地面气压、地面上10m风场的纬向分量、地面上10m风场的经向分量、固体降水比例、累积的积云对流降水、累积的格点降水、地表处的向下短波辐射通量、地表处的向下长波辐射通量、累计的潜在蒸发。 包含的地表状态变量有19个:各层土壤温度、各层土壤湿度、 各层土壤液态水含量、雪相态改变的热通量、土壤底部温度、地表径流、地下径流、植被比例、地面热通量、雪水当量、实际雪厚、雪密度、冠层中的水、地表温度、反照率、背景反照率、更低边界处的土壤温度、地表面处向上的热量通量(感热通量)、地表面处向上的水量通量(感热通量)。 其他变量3个:经度、纬度和行星边界层高度。
潘小多
2017年“一带一路”沿线64国民族人口占总人口的比重。数据来源:作者整理。数据质量良好。数据可在“一带一路”经济、社会、人口、治理结构等综合研究方面具有广阔的前景。“一带一路”涵盖亚太、欧亚、中东、非洲地区等,包括65个国家,总人口超过44亿,占全世界人口的63%。同时,“一带一路”沿线的民族人口分布众多,本数据集将“一带一路”不同区域,各个国家的主要民族人口比重进行阐述,一期为“一带一路”的系统研究与综合应用做出贡献。
宋涛
无论从全球尺度亦或是局地尺度而言,土壤数据极其重要,而由于缺乏可靠的土壤数据,土地退化评估、环境影响研究和可持续的土地管理干预措施收到了极大的瓶颈阻碍。受到土壤信息数据在全世界的迫切需要,特别是在气候变化公约的背景下,国际应用系统分析研究所(IIASA)及联合国粮农组织(FAO)和京都协议对土壤碳测量和联合国粮农组织/国际全球农业生态评价研究(GAEZ v3.0)共同倡导下建立了新一代世界土壤数据库(Harmonized World Soil Database version 1.2 )(HWSD V1.2)。其中,中国地区数据源为1995年全国第二次土地调查由南京土壤所所提供的1:1,000,000土壤数据。分辨率为30秒(约0.083度,1km)。采用的土壤分类系统主要为FAO-90。 核心土壤制度单元唯一验证标识符: MU_GLOBAL-HWSD数据库土壤制图单元标示符,连接了GIS图层。 MU_SOURCE1 和 MU_SOURCE2- 源数据库制图单元标识符 SEQ-土壤制图单元组成中的土壤单元序列; 土壤分类系统利用FAO-7分类系统或 FAO-90分类系统(SU_SYM74 resp. SU_SYM90)或FAO-85(SU_SYM85). 土壤属性表主要字段包括: ID(数据库ID) MU_GLOBAL(土壤单元标识符)(全球) SU_SYMBOL 土壤制图单元 SU_SYM74(FAO74分类); SU_SYM85(FAO85分类); SU_SYM90(FAO90土壤分类系统中土壤名称); SU_CODE 土壤制图单元代码 SU_CODE74 土壤单元名称 SU_CODE85 土壤单元名称 SU_CODE90 土壤单元名称 DRAINAGE(19.5); REF_DEPTH(土壤参考深度); AWC_CLASS(19.5); AWC_CLASS(土壤有效水含量); PHASE1: Real (土壤相位); PHASE2: String (土壤相位); ROOTS: String (到土壤底部存在障碍的深度分类); SWR: String (土壤含水量特征); ADD_PROP: Real (土壤单元中与农业用途有关的特定土壤类型); T_TEXTURE(顶层土壤质地); T_GRAVEL: Real (顶层碎石体积百分比);(单位:%vol.) T_SAND: Real (顶层沙含量); (单位:% wt.) T_SILT: Real (表层粉沙粒含量); (单位:% wt.) T_CLAY: Real (顶层粘土含量); (单位:% wt.) T_USDA_TEX: Real (顶层USDA土壤质地分类); (单位:name) T_REF_BULK: Real (顶层土壤容重); (单位:kg/dm3.) T_OC: Real (顶层有机碳含量); (单位:% weight) T_PH_H2O: Real (顶层酸碱度) (单位:-log(H+)) T_CEC_CLAY: Real (顶层粘性层土壤的阳离子交换能力); (单位:cmol/kg) T_CEC_SOIL: Real (顶层土壤的阳离子交换能力) (单位:cmol/kg) T_BS: Real (顶层基本饱和度); (单位:%) T_TEB: Real (顶层交换性盐基);(单位:cmol/kg) T_CACO3: Real (顶层碳酸盐或石灰含量) (单位:% weight) T_CASO4: Real (顶层硫酸盐含量);(单位:% weight) T_ESP: Real (顶层可交换钠盐);(单位:%) T_ECE: Real (顶层电导率)。 (单位:dS/m) S_GRAVEL: Real (底层碎石体积百分比);(单位:%vol.) S_SAND: Real (底层沙含量); (单位:% wt.) S_SILT: Real (底层淤泥含量); (单位:% wt.) S_CLAY: Real (底层粘土含量); (单位:% wt.) S_USDA_TEX: Real (底层USDA土壤质地分类); (单位:name) S_REF_BULK: Real (底层土壤容重); (单位:kg/dm3.) S_OC: Real (底层有机碳含量); (单位:% weight) S_PH_H2O: Real (底层酸碱度) (单位:-log(H+)) S_CEC_CLAY: Real (底层粘性层土壤的阳离子交换能力); (单位:cmol/kg) S_CEC_SOIL: Real (底层土壤的阳离子交换能力) (单位:cmol/kg) S_BS: Real (底层基本饱和度); (单位:%) S_TEB: Real (底层交换性盐基);(单位:cmol/kg) S_CACO3: Real (底层碳酸盐或石灰含量) (单位:% weight) S_CASO4: Real (底层硫酸盐含量);(单位:% weight) S_ESP: Real (底层可交换钠盐);(单位:%) S_ECE: Real (底层电导率)。 (单位:dS/m) 本数据库分两层,其中以顶层(T)土壤厚度为(0-30cm),底层(S)土壤厚度为(30-100cm)。 其他属性值请参考说明HWSD1.2_documentation文档.pdf,The Harmonized World Soil Database (HWSD V1.2) Viewer-中文说明及HWSD.mdb。
何永利
本研究以青藏高原范围内土地资源为评价对象,阐明区域内适宜于农、林、牧业生产的现状及其后备土地资源数量、质量及其分布情况。通过实地调查,收集整理研究区域的相关数据,结合相关文献和专家经验确定评价因子(海拔、坡度、年降水量、积温、日照时数、土壤有效深度、质地、侵蚀强度、植被类型、NDVI)并对其分等定级和标准化,通过主成分分析法确定各评价因子的权重,采用加权指数和模型确定评价单元总分值,最后用ArcGis自然间断点分级法得出青藏高原宜农、宜林以及宜牧用地的适宜等级,输出90m分辨率的青藏高原农业适宜性图纸,并对结果校验分析。
姚明磊
1)数据内容包括青海11个小流域30米分辨率2017年的土壤水蚀模数数据。2)采用中国土壤侵蚀模型CSLE (A=R•K•LS•B•E•T)方法,在面图层降雨侵蚀力R、土壤可蚀性K、坡度坡长因子LS、植被盖度FVC、轮作分区抽样调查单元的基础上,分别计算11个抽样单元土壤水蚀模数,评估土壤侵蚀状况。通过空间数据运算(包括图表链接及转换、矢栅转换、重采样等),将区域专题图降雨侵蚀力、土壤可蚀性、DEM转换为抽样单元的R、K、LS因子;通过半月FVC、NPV、半月降雨侵蚀力权重、其他地类B因子表分别计算抽样单元内各地类的B因子;通过遥感解译结果、工程措施因子表,计算抽样单元工程措施因子值;通过耕作分区图及耕作措施表获取抽样单元内耕作因子值,进而计算各抽样单元内土壤侵蚀模数。11个小流域的选取依据泛第三极地区抽样单元布设图。 3)通过和同年同区域已有土壤侵蚀强度数据对比,无明显差异,数据质量良好。4)土壤侵蚀模数数据对研究泛第三极土壤侵蚀现状,更好的贯彻“一带一路”发展政策具有重要的意义。
章文波
2017年“一带一路”沿线65国宗教人口占总人口的比重。数据来源:作者整理。数据质量良好。数据可在“一带一路”经济、社会、人口、治理结构等综合研究方面具有广阔的前景。“一带一路”涵盖亚太、欧亚、中东、非洲地区等,包括65个国家,总人口超过44亿,占全世界人口的63%。同时,“一带一路”沿线的不同宗教人口分布众多,本数据集将“一带一路”不同区域,各个国家的主要宗教人口比重进行阐述,以期为“一带一路”的系统研究与综合应用做出贡献。
宋涛
该数据集是2017年河湖源考察期间昂拉仁错的水质多参数数据,用于获取湖泊基本理化指标数据,为后续湖泊现代观测研究作准备。 数据观测时间为2017年8月29日至2017年8月30日。测量仪器为YSI EXO2水质多参数测量仪。仪器在每次测量之前都根据湖面海拔高度和当地气压进行校正,测量的时间间隔定为0.25s, 投放速度较慢,保证高连续性地获取数据;得到的原始数据包括了水面以上暴露在空气中的测量数据,在后期处理中予以剔除。数据以excel文件存储。
王君波
遥感影像解译标志也称判读要素,它能直接反映判别地物信息的影像特征,解译者利用这些标志在图像上识别地物或现象的性质、类型或状况,因此它对于遥感影像数据的人机交互式解译意义重大。本数据建立解译标志所采用的影像避免了植被覆盖度高的夏季,也避免了积雪较多、云层遮盖或烟雾影响较大的数据,并按照基础地理信息数据提取要求选择遥感影像波段组合顺序及与全色波段进行融合。在对数据进行增强处理时,避免引起信息损失。在影像上选择典型的标志建立区的要求是:范围适中以便反映该类地貌的典型特征,尽可能多的包含该类地貌中的各种基础地理信息要素类且影像质量好。标志区的选取完成后,寻找标志区内包含的所有基础地理信息要素类,然后选择各类典型图斑作采集标志,然后去实地进行野外校验,通过均匀布点采样设计(约52km为间隔均匀采点),收集整理了采样参考点3429个,照片数1870个,建立了解译标志库,并对不合理的部分进行修改,直到与实地相符为止。同时拍摄该图斑地面实地照片,以便于影像和实际地面要素建立关联,表达遥感影像解译标志的真实性和直观性,加深使用者对解译标志的理解。
刘铁
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件