该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2020.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国地区降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位分别为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。
彭守璋
本数据集来源于论文:Gao, S., Zhou, T., Yi, C., Shi, P., Fang, W., Liu, R., Liang, E., & Julio Camarero, J. (2020). Asymmetric impacts of dryness and wetness on tree growth and forest coverage. Agricultural and Forest Meteorology, 288-289, 107980. doi:10.1016/j.agrformet.2020.107980. 数据提取自论文内Supplementary Materials中的表格数据。 此论文以美国西南部科罗拉多高原半干旱区森林为研究对象,综合应用大量的树轮宽度数据,结合遥感森林覆盖数据,通过在区域尺度设计“自然试验”(natural experiments),探讨了年际水分亏缺叠加影响下的滞后效应,并对比了年际间水分状况变化对树轮宽度和森林盖度影响的异同。研究发现,树轮形成当年的水分状况可显著影响滞后效应的持续时间及强度;树轮宽度与森林盖度对年际间水分状况的响应存在差异。 数据中包含357个采样点,111个水文年(1902-2012年)的年轮宽度指数(RWI)和与之匹配的年度水分亏缺异常(Dya)数据。 研究中使用的年轮数据由研究区域内三个主要物种的357个标准年表组成,时间跨度为1902年至2012年,总共有29,969个站点-年。三个主要物种的357个树年轮宽度年表来自国际树轮数据银行(International Tree-Ring Data Bank,https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring)。使用ARSTAN程序通过负指数曲线消除了由老化和树干直径增加引起的长期趋势(Cook, 1985),将树木年轮宽度数据转换成了年轮宽度指数(RWI)。进行标准化后,为了减少这些树环站点之间的空间异质性,所有年表均按具有可比方差的标准均值(RWI = 1000)进行了缩放。 研究中使用了年度水分亏缺异常(Dya)来探讨水分亏缺变异性对树木径向生长和生长遗产的影响。将网格化的Dya与RWI进行了匹配,为了减少由于气候数据的粗略解析而引起的偏差,对于同一网格内的树木年轮年表,将它们进行了每年平均。 数据集包含1个Excel数据文件,Ring-width indices and annual water deficit anomaly (1902-2012) 包含三张数据表,数据表名称分别为: raw_data:原始数据 processed_data:加工后的数据 variables:变量 数据中包含以下字段: sitename:树木年轮采样点的名称 Year:年轮形成年 RWI:年轮宽度指数 latitude:树木年轮采样点的纬度 lontitude:树木年轮采样点的经度 altitude:树木年轮采样点的高程 lon Grid No .:树木年轮采样点的经度网格号 lat Grid No .:树木年轮采样点的纬度网格号 Dya_3:年轮形成年(即“年”列)前第三年的缺水异常 Dya_2:年轮形成年(即“年”列)前第二年的缺水异常 Dya_1:年轮形成年(即“年”列)前第一年的缺水异常 Dya_curr:年轮形成年(即“年”列)的缺水异常 Dya_std:111个水文年(即1902-2012年)的标准年平均网格缺水量
高姗
本数据为祁连山地区2019年地表水体(包括液态水、冰川及多年积雪)分布产品。采用经典归一化水体指数法(Normalized Difference Water Index , NDWI)和人工修正的方法提取。原始基础数据为2019年祁连山全境的Landsat影像。参考数据为谷歌影像和哨兵2号影像。产品以shp文件格式存储,包含坐标系、水体面积等属性。产品为1期,时间分辨率为1年,空间分辨率为30米,边界精度在30米(一个像元)左右。该产品直观地反映了祁连山水体在2019年的大致分布,可用于流域水资源定量估计研究。
李佳, 李建江, 李新, 刘绍民
本数据集包含珠穆朗玛大气与环境综合观测研究站,2017-2018年观测的气温、气压、相对湿度、风速、降水、总辐射、P2.5浓度、短波辐射等日平均值。 数据服务对象为从事青藏高原气象研究的学生和科研人员。 其中降水数据是人工雨量桶观测,蒸发数据为Φ20mm蒸发皿观测,其它均为半小时的观测值处理后得到的日均值。 所有数据严格按照仪器操作规范进行观测和采集,在加工生成数据时,剔除了一些明显的误差数据。
马耀明
本数据集包括2017年1月1日至2018年12月31日藏东南站,大气气温、相对湿度、降水、风速、风向、净辐射、气压等的日平均数据。 该数据服务对象为从事气象、大气环境、生态研究的学生和科研人员。 其中各种气象要素的单位如下:气温℃;降水mm;相对湿度%;风速m/s;风向°;净辐射W/m2;气压hPa;可入肺颗粒物μg/m3。 所有数据均是原始观测数据计算得到的日平均值。严格按照仪器操作规范进行观测和数据采集,并已经在相关学术期刊发表;加工过程中剔除了一些明显误差数据,缺失数据用空值。
罗伦, 朱立平
1)青藏高原地面气象观测数据产品(2017-2018) 地面气象要素驱动数据集,包括近地面气温、地面降水率、短波辐射和长波辐射4个要素。 2)该数据集是以国际上现有的Princeton再分析资料、GLDAS资料、GEWEX-SRB辐射资料,以及TRMM降水资料为背景场,以及融合了中国气象局常规气象观测数据制作而成,通过空间插值形成。 3)数据为tiff格式,时间分辨率为日值,空间分辨率为0.1°。 4)方便不会使用nc格式的此类同化数据的科研人员和学生使用。在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。
朱立平, 彭萍
人为热是城市化的产物之一,是指人类活动产生并释放到大气中的热量,主要来自各种类型的能源消耗和生物代谢。本数据集为中国陆表区域2000-2016年(2000/2004/2008/2012/2016)500m×500m空间分辨率的地表人为热排放通量数据。数据来源及加工方法:(1)通过收集2000-2016年各省市的能源消费数据和社会经济数据,采用清单法估算地级市(地、区、盟)的年平均AHF;(2) 综合多源遥感数据建立AHF估计模型,得到网格AHF;(3)对时间序列AHF估计结果进行分析和检验,修正偏差值,提高AHF估计结果的准确性。了解和掌握人为热排放及其变化,对于了解城市化对气候、环境和社会的影响具有重要意义。
胡德勇
本数据集包括祁连山地区2019年逐日地表蒸散发产品,产品分辨率为0.01°。采用高斯过程回归(Gaussian Process Regression,GPR)算法,实现对RS-PM (Mu et al., 2011)、SW (Shuttleworth and Wallace., 1985)、PT-JPL (Fisher et al., 2008)、MS-PT (Yao et al., 2013)、SEMI-PM (Wang et al., 2010a)、SIM (Wang et al.2008) 等6种蒸散发产品的集成。参与蒸散发产品生产的驱动数据包括MODIS(NDVI、Albedo、LAI、PAR),中国区域高时空分辨率地面气象要素驱动数据集(何杰, 阳坤. 中国区域高时空分辨率地面气象要素驱动数据集. 寒区旱区科学数据中心, 2011. doi:10.3972/westdc.002.2014.db)等。
姚云军, 刘绍民, 尚珂
1) 基于多时相的Landsat影像获取317个大于10 km2的湖泊1976、1990、2000、2005和2013年的面积数据; 2)结合SRTM DEM和Landsat影像获取1976-1990、1990-2000、2000-2005、2005-2013年共四个时间段的湖泊水量变化数据; 3)湖泊面积的精度控制在一个像元,水量变化的精度约5%; 4)该数据已经被应用到青藏高原近期湖泊水量变化的研究工作中,成果已经发表于《Remote Sensing of Environment》;今后其他方面的研究中,该数据也能够作为基础数据,也能应用对生态环境变化、气候变化、湖泊水质等方面的分析中;
朱立平, 彭萍
1) 数据内容(包含的要素及意义) : 2000-2019年青藏高原152个大于50 km² 湖泊透明度数据(塞氏盘值)。 2) 数据来源及加工方法 : 数据反演基于高精度透明度反演模型以及MODIS-MODOCGA产品数据。遥感数据转化为遥感反射率R_rs反演透明度值,并计算出年均值。以湖泊几何中心3×3 像元均值代表该湖泊,对于几何中心位于湖泊以外的情况,则取该湖泊开阔水域计算。 3) 数据质量描述 : 湖泊年均值。 4) 数据应用成果及前景 : 气候变化可能改变湖泊透明度,湖泊透明度的变化则对区域气候变化起到反馈作用。本研究中青藏高原湖泊透明度的反演为湖-气界面能量交换提供了基础数据。
朱立平, 彭萍
Data content: Standard ring-width chronology derived from Wilson juniper shrub around the northern shore of the Nam Co Lake; May-June SZI (Standardized Moisture Anomaly Index) drought reconstruction for the Nam Co region. Time span: 1605 to 2010. Temporal resolution: Yearly. Application and prospects: Hydroclimate study on the south-central Tibetan Plateau.
LU Xiaoming, HUANG Ru, WANG Yafeng, ZHANG Baoqing, ZHU Haifeng, CAMARERO J. Julio, Eryuan Liang
本数据集是2009年欧亚大陆草地遥感三级分类图,数据为tif栅格格式,空间分辨率为1公里,三级草地分类为:温性草甸草原、温性典型草原、温性荒漠化草原、温性草原化荒漠、温性荒漠几个类型。 该数据是根据欧空局全球陆地覆盖数据(ESA GlobCover)2009产品GlobCover 2009 land cover map,结合ECMWF网站历史气象数据(降水量,年积温,湿润系数,蒸发量)及DEM数据等加工而成。该数据可为欧亚大陆温性草地分布信息以及时空变异分析提供依据。
唐家奎
在全球变暖的背景下,干旱发生的频率和强度呈增加趋势,由于干旱灾害所引发的水资源匮乏、粮食危机、生态恶化(如荒漠化)等,直接威胁到国家的粮食安全和社会经济发展,干旱灾害风险评估及应急管理的技术水平亟待提高。“一带一路”沿线区域生态环境脆弱、农业耕地集中、干旱灾害频繁,利用遥感卫星监测大区域的干旱水平及其时空变化,对于科学掌握“一带一路”地区的干旱格局、区域分异特征,及其对农业耕地的影响具有重要的科学和现实意义。 降水距平百分率是某时段降水量与同期气候平均降水量之差除以同期气候平均降水量的百分比。该数据集以GPM IMERG Final Run(GPM)日值降雨资料为基础,计算对应地区的降水量,采用降水距平百分率等级评价指标,分析了不同等级干旱的分布特征。 数据的区域为泛第三极34个关键节点(阿巴斯、阿斯塔纳、科伦坡、瓜达尔、孟巴、德黑兰、万象等地区)。
吴骅
祁连山典型冻土区水文地质要素数据集内容主要包括黑河上游西支流域内的地下水类型、富水性(单孔涌水量或单泉流量)、主要河流与支流、泉水(下降泉、泉群、大泉、矿泉分布)、钻孔(承压水钻孔、潜水钻孔、自流水钻孔分布)、断裂带(压性断裂、张性断裂)、角度不整合界线、平行不整合界线、黑河上游西支流域边界线、季节性冻土区与多年冻土区分界线、现代冰川及沼泽分布。本水文地质要素数据集可为寒区水文生态过程和水文地质环境提供背景资料。本数据来自四幅1:20万水文地质图(祁连幅、野牛沟幅、祁连山幅、肃南幅)的矢量化并重新对地下水类型进行整合。分辨率较高,数据可为泛第三极江河源区水土资源演变和环境变化等研究提供背景资料。
孙自永
黑河上游八宝河流域2013-2014年各层(0 cm, 4 cm, 10 cm, 20 cm, 40 cm, 80 cm, 120 cm, 160 cm, 240 cm, 400 cm, 600 cm, 900 cm, 1200 cm, 1400 cm, 1500 cm) 1km 逐小时土壤温度、湿度和含冰量数据,本数据由SHAW模型模拟产生,并基于地面站点和无线传感器网络观测的土壤温湿度数据进行了验证,结果较好,可用于上游冻土水热过程相关研究。
张艳林
本数据集来源于论文:Ding, L., Spicer, R.A., Yang, J., Xu, Q., Cai, F.L., Li, S., Lai, Q.Z., Wang, H.Q., Spicer, T.E.V., Yue, Y.H., Shukla, A., Srivastava, G., Khan, M.A., Bera, S., and Mehrotra, R. 2017. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology, 45:215-218.该项成果是丁林研究员团队在青藏高原开展古高度系列研究成果的一部分。该团队应用植物化石及稳定同位素方法,重建了喜马拉雅-青藏高原造山带南缘定量隆升历史。含植物化石地层锆石U-Pb年代学表明柳区地层时代为晚古新世(56Ma),恰布林地层时代为早中新世(21-19Ma)。植物化石结果表明在喜马拉雅地区完全退出海洋沉积历史前后(55-50Ma),柳区地区仍处于相对较低的海拔高度(~1000m 或更低),直到早中新世,恰布林地区的古高度也仅为~2300m。不同于古新世就具有高海拔 (~5000m)特征的冈底斯山,喜马拉雅从晚古新世时(56Ma)的~1000m 缓慢生长至早中新世时(21-19Ma)的~2300m 高度,此后~5-7 Ma 快速隆升,达到现今高度。过去56 Ma的喜马拉雅-青藏高原与喜马拉雅前陆盆地降水对比揭示,喜马拉雅山隆升可能是藏南地区逐渐干旱的原因。
丁林
黑河流域近地表大气驱动数据,是采用Weather Research and Forecasting(WRF)模式制备的黑河流域逐时0.05°× 0.05°包括2m气温、地表气压、2m水汽混合比、辐射、10m风场和累积降水等近地表大气要素的驱动数据。通过与15个中国气象局常规自动气象站(CMA)站点逐日观测资料和两期黑河流域生态-水文过程综合遥感观测联合试验(WATER和HiWATER)的站点逐时观测资料在不同时间尺度上进行验证,得出以下结论:2m地表气温、地表气压和相对湿度都是比较可信的,尤其是2m地表气温和地表气压,平均误差都很小且相关系数都达到0.96以上;向下短波辐射与WATER站点观测数据的相关性达到0.9以上;降水资料通过降雨和降雪两种相态与观测资料在不同时间尺度和空间尺度上进行验证,降雨与观测资料在年、月、日和时尺度上吻合得很好,与观测资料在年和月尺度上的相关系数高达0.94和0.84;降雪与观测资料在月尺度上的相关性达到0.78,与积雪覆盖率MODIS遥感产品的空间分布相当吻合,峰值分布也一致。液态和固态降水的验证表明WRF模式能够在地形复杂而干旱的黑河流域进行降尺度分析,所模拟的资料能够满足流域尺度水文建模和水资源平衡研究。 2013年提供了2000-2012年数据。 2016年更新了2013-2015年数据。 2019年更新了2016-2018年数据。 2022年更新了2019-2021年数据。
潘小多
数据集为吉隆-佩枯错短周期密集地震台阵剖面的远震波形数据。数据可用于接收函数方法探测地壳和上地幔的结构。佩枯错剖面跨过南北向的吉隆裂谷,数据来源于课题组沿东西向的吉隆-佩枯错剖面布设的134个短周期地震台站,选址严格,数据质量良好。该剖面对揭示吉隆裂谷下方的速度间断面形态,即印度大陆向北俯冲在喜马拉雅造山带下方地壳内的界面延伸情况,进一步认识MHT界面的横向变化,以及青藏高原东西向伸展的动力学过程提供重要科学依据。
徐强
该数据集记录了“一带一路”沿线65个国家1961-2009年农业机械(拖拉机)数量等相关数据。农业机械是指在规定的日历年度末或者次年第一季度在农业上使用的轮式和履带式拖拉机(不包括园艺拖拉机)的数量。数据来源:联合国粮食农业组织(Food and Agriculture Organization, electronic files and web site)。农业机械减轻了劳动强度,减少苦役,缓解劳力短缺,提高农业活动的生产力和及时性,提高资源有效利用,增加进入市场机会,帮助减少气候相关危害,未来的农机将发挥更大的作用,有助于确保农业的环境可持续性。该数据集可用于农业现代化和农业生态环境等相关研究。 数据集包含2个数据表:农业机械(每100平方公里可耕地的拖拉机),农业机械(拖拉机数量)。
徐新良
1) Data content (including elements and meanings): Gridded daily average air temperature of the Tibetan Plateau during 1980-2014 at 1-km resolution 2) Data source and processing method: Developed by integrating 8 types of reanalysis data (i.e., NNRP-2, 20CRV2c, JRA-55, ERA-Interim, MERRA2, CFSR, GLDAS and ERA5) downscaled with MODIS-estimated temperature lapse rates based on machine learing 3) Data quality description: According to leave-one-out validation based on stations, the average RMSE at China Adimistration Stations is about 1.7 ℃ and that at high-elevation field stations is about 1.9 ℃ 4) Data application results and prospects: This dataset can be used as air temperature input for driving long-term hydrologial modelling or evaluated for use in climate analysis
ZHANG Fan, ZHANG Hongbo
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件