34个关键节点百米级脆弱性评估数据集评估了“一带一路”重点区域在极端降水事件下的洪涝灾害危险性,为当地政府部门决策提供依据,同时以便在洪涝灾害发生前进行预警,从而可以争取到宝贵的时间采取防灾减灾措施,降低洪涝灾害所带来的人民群众生命财产损失。此数据集以“一带一路”34个关键节点的GDP、人口、土地利用、路网、河网数据为基础,结合ArcGIS中的空间分析方法,赋予各指标相应的权重,构建评估了34个关键节点在极端降水条件下发生洪涝灾害的脆弱性,并用自然断点法将脆弱性分为5个等级,分别代表无脆弱性,低脆弱性,中脆弱性,高脆弱性,极高脆弱性。
葛咏, 李强子, 李毅
2002-2018年北半球高纬地区中分辨率MODIS河湖冰覆盖度数据集是基于MODIS的归一化积雪指数数据,利用SNOWMAP算法对晴空条件下的逐日河湖冰覆盖范围进行检测,并通过对河湖面的时间、空间的连续性等一系列步骤重新确定云覆盖条件下的河湖冰覆盖范围。通过这一系列的处理后,获得少云的逐日河湖冰覆盖度数据集。该数据集中获得的湖冰物候信息与被动微波数据的信息高度一致,平均相关系数为0.91,RMSE值在0.07至0.13之间变化。
邱玉宝
This is a dataset of treeline shift rates including 143 alpine treeline sites in the Northern Hemisphere. It gives the following information for each treeline site: treeline form, study site, latitude, longitude, reference, tree species, elevation, study period and annual mean elevational shift rate (m/yr).
LU Xiaoming, Eryuan Liang
湖冰是冰冻圈的重要参数,其变化与气温、降水等气候参数密切相关,而且可以直接反映气候的变化,因此是区域气候参数变化的一个重要指标。但由于其研究区往往位于自然环境恶劣,人口稀少的区域,大规模的实地观测难以进行,因此利用哨兵1号卫星数据,以10m的空间分辨率和优于30天的时间分辨率对不同类型的湖冰变化进行监测,可填补观测空白。利用HMRF算法对不同类型的湖冰进行分类,通过时间序列分析三个极区中部分面积大于25km2的湖泊的不同类型湖冰的分布,形成湖冰类型数据集。数据包括了被处理湖泊的序号,所处年份及其在时间序列中的序号等信息,矢量数据集包括采用的算法,所使用的哨兵1号卫星数据,成像时间,所处极区,湖冰类型等信息,用户可以根据矢量文件确定时间序列上不同类型湖冰的变化。
田帮森, 邱玉宝
这组数据是1974-2017年期间希夏邦马峰地区年均冰川物质平衡变化和冰储量变化数据集,包括1974-2000年和2000-2017年两个时段。采用ESRI 矢量多边形格式存储, 是由KH-9 DEM1974-SRTM DEM2000(DH1974-2000)与SRTM DEM2000-TSX/TDX 2017(DH2000-2017)两期DEM高程差(DH)数据,结合TPG1976/CGI2冰川专题矢量数据与冰密度(850 ± 60 kg m−3)计算而来。KH-9 DEM是由3景KH-9遥感影像数据,通过光学立体像对方法生成了研究区1974年数字高程模型。TSX/TDX2017数据通过与SRTM DEM数据进行差分干涉算法对得到研究区冰面高程变化DH2000-2017。1974-2000年间研究区年均冰面高程变化误差为±0.07 m,大地测量物质平衡误差为±0.06 m w.e. a-1。2000-2017年间年均冰面高程变化误差为±0.11 m,大地测量物质平衡误差为±0.10 m w.e. a-1。表格中包括的数据项有:GLIMSId代表从GLIMS冰川数据库读取的冰川编号、Area代表冰川面积(km2)、Area_m2是冰川面积(m2),Name代表冰川名、EC74_2000表示1974-2000年间平均每条冰川每年的冰面高程变化(m a-1),EC00_2017表示2000-2017年间冰川每年的冰面高程变化(m a-1),MB74_2000表示1974-2000年间每条冰川年均冰川物质平衡数据(m w.e. a-1),MB00_2017表示2000-2017年每条冰川年均冰川物质平衡数据(m w.e. a-1),MC74_2000表示1974-2000年间每条冰川每年冰储量变化(m3 w.e. a-1),MC00_2017表示2000-2017年间每条冰川每年的冰储量变化(m3w.e. a-1),Ut_EC74_00,是1974-2000年冰面高程变化误差(m a-1)、Ut_MB74_00,是每条冰川1974-2000年冰川物质平衡误差(m w.e. a-1),Ut_MC74_00, 是每条冰川1974-2000年冰储量变化误差(m3w.e. a-1)。 Ut_EC00_17,是2000-2017年冰面高程变化误差,Ut_MB00_17,每条冰川2000-2017年冰川物质平衡误差(m w.e. a-1),Ut_MC00_17是每条冰川2000-2017年冰储量变化误差(m3w.e. a-1)。该数据集可用于喜马拉雅山脉希夏邦马峰地区冰川消融及其水文水资源效应,以及气候变化与冰雪灾害研究等。
叶庆华
这组数据是1974-2014年期间尼泊尔Ponkar冰川区年均冰川物质平衡变化和冰储量变化数据集,包括1974-2000年和2000-2014年两个时段。采用ESRI 矢量多边形格式存储, 是由KH-9 DEM1974-SRTM DEM2000(DH1974-2000)与SRTM DEM2000-TSX/TDX2014(DH2000-2014)两期DEM高程差(DH)数据,结合TPG1976/CGI2冰川专题矢量数据与冰密度(850 ± 60 kg m−3)计算而来。KH-9 DEM是由3景KH-9遥感影像数据,通过光学立体像对方法生成了研究区1974年数字高程模型。TSX/TDX2014数据通过与SRTM DEM数据进行差分干涉算法对得到研究区冰面高程变化DH2000-2014。1974-2000年间研究区年均冰面高程变化误差为±0.07 m,大地测量物质平衡误差为±0.06 m w.e. a-1。2000-2014年间Ponkar冰川区年均冰面高程变化误差为±0.13 m,大地测量物质平衡误差为±0.11 m w.e. a-1。表格中包括的数据项有:GLIMSId代表从GLIMS冰川数据库读取的冰川编号、Area代表冰川面积(km2)、Gla_area是冰川面积(m2),Name代表冰川名、EC74_2000表示1974-2000年间平均每条冰川每年的冰面高程变化(m a-1),EC00_2014表示2000-2014年间冰川每年的冰面高程变化(m a-1),MB74_2000表示1974-2000年间每条冰川年均冰川物质平衡数据(m w.e. a-1),MB00_2014表示2000-2014年每条冰川年均冰川物质平衡数据(m w.e. a-1),MC74_2000表示1974-2000年间每条冰川每年冰储量变化(m3 w.e. a-1),MC00_2014表示2000-2014年间每条冰川每年的冰储量变化(m3w.e. a-1),Ut_EC74_00,是1974-2000年冰面高程变化误差(m a-1)、Ut_MB74_00,是每条冰川1974-2000年冰川物质平衡误差(m w.e. a-1),Ut_MC74_00, 是每条冰川1974-2000年冰储量变化误差(m3 w.e. a-1)。 Ut_EC00_14,是2000-2014年冰面高程变化误差,Ut_MB00_14,每条冰川2000-2014年冰川物质平衡误差(m w.e. a-1),Ut_MC00_14是每条冰川2000-2014年冰储量变化误差(m3w.e. a-1)。该数据集可用于喜马拉雅山脉南坡Ponkar冰川区冰川消融及其水文水资源效应,以及气候变化与冰雪灾害研究等。
叶庆华
泛第三极历史极端降水数据集包括了2000-2018年极端降水识别数据。该数据集以GPM IMERG Final Run(GPM)日值降雨数据为基础,评估了一带一路重要节点区域的降雨量,用百分位法评估了34个重要节点的极端降水阈值,并运用计算出的阈值识别出了发生极端降水的日期,以此为基础制作了极端降水发生时地表的淹没范围。 数据范围主要是泛第三极34个关键节点(万象、亚历山大、仰光、加尔各答、华沙、卡拉奇、叶卡婕琳堡、吉大港、吉布提等国家) 该数据集可以为当地政府部门决策提供依据,以便正确识别极端降水,降低极端降水所带来的生命财产损失。
何雨枫
本数据集包括祁连山地区重点区域2019年5月至2019年10月的归一化植被指数、植被覆盖度、植被净初级生产力、草地生物量、森林蓄积量植被参数遥感产品,空间分辨率为10m。本数据集采用高分一号、高分六号、哨兵、资源三号等遥感数据源,结合气象、地面监测等基础数据,采用波段比值法、混合像元分解模型、CASA模型等植被参数反演算法和模型,生成祁连山重点区域生长季逐月植被指数遥感产品。本数据集通过构建以高分卫星为主的高时空分辨率生态环境监测数据集,为区域生态环境问题诊断与生态环境动态评估提供数据支持。
祁元, 张金龙, 曹永攀, 周圣明, 王宏伟
这组数据是1974-2013年期间喜马拉雅山脉西段纳木那尼峰地区年均冰川物质平衡变化和冰储量变化数据集,采用ESRI 矢量多边形格式存储,是由两个阶段的DEM高程差数据DHSRTM2000-DEM1974(即DH2000-1974)、DHTanDEM2013-SRTM2000(DH2013-2000),结合冰川覆盖专题矢量数据、冰密度 850 ± 60 kg m−3计算而来。DHSRTM2000-DEM1974(DH2000-1974), 是2000年SRTM DEM2000数据和1974年1:50,000的DEM1974之间的高程差,即DH2000-1974 =SRTM2000 – DEM1974。DEM1974是由我国1974年航拍照片绘制1:50,000地形图生成的,两期DEM数据配准后,非冰川区高程数据精度为±0.13 m a-1。DHTanDEM2013-SRTM2000(DH2013-2000),是基于2013年10月17日一对TerraSAR-X和TanDEM-X (TSX/TDX)雷达数据与2000年SRTM DEM数据、采用差分干涉技术(D-InSAR)获取,在非冰川区高程数据精度为±0.04 m a-1。 表格中包括的数据项有: Area,冰川面积(m2)、GLIMS_Id表示冰川编号,EC74_00表示1974-2000年间平均每条冰川每年的冰面高程变化(m a-1),EC00_13表示2000-2013年间冰川每年的冰面高程变化(m a-1),MB74_00表示1974-2000年间每条冰川年均冰川物质平衡数据(m w.e. a-1),MB00_13表示2000-2013年每条冰川年均冰川物质平衡数据(m w.e. a-1),MC74_2000表示1974-2000年间每条冰川每年冰储量变化(m3 w.e. a-1),MC00_2013表示2000-2013年间每条冰川每年的冰储量变化(m3 w.e. a-1), Uncerty_MB是每条冰川年均冰川物质平衡数据误差(m w.e. a-1), Uncerty_MC表示每条冰川每年的冰储量变化的最大误差范围(m3 w.e. a-1)。该组数据可用于喜马拉雅山脉与高亚洲地区冰川变化、冰川消融水文水资源效应及其气候原因。
叶庆华
本数据集为2019年祁连山地区人类活动数据。以祁连山地区的矿山开采、违规房屋整改、新增道路、土地平整及生态修复等资料为基础,通过高分辨率遥感影像,对比统计前后变化地块。对祁连山地区地类发生变化的地块,逐块调查核实;对判图可疑的地块,重新判读验证;对影像无法反映的地类,实地核实地类,采集相关数据,核对并修正位置。同时进一步核对2019年祁连山地区矿山开采、违规房屋整改、新增道路、土地平整及生态修复等属性信息,统一进行图斑及其属性的录入和编辑,形成2019年祁连山地区人类活动数据集,实现祁连山地区生态治理的现势性和时效性,为2019年祁连山人类活动监测提供数据支撑。
祁元, 张金龙, 周圣明, 李娜, 王宏伟
本数据集包含国际脆弱生态系统国家公园遴选标准及其数据库,选取美国、加拿大、澳大利亚、新西兰、挪威、瑞典、南非、坦桑尼亚等典型国为代表,具体内容包括: 表一包括:不同级别的遴选标准,其中包括第一层级的指标4个,第二层级的指标16个,第三层级的指标72个; 表二包括:美国、加拿大、澳大利亚、新西兰、挪威、瑞典、南非、坦桑尼亚等典型国家的国家公园清单及相关信息,选取指标包括所属国家、国家公园名称、受保护时间与监理时间、面积、描述、IUCN管理类型、治理类型、管理机构、国际标准。
裴惠娟
青藏高原作为亚洲“水塔”为亚洲主要河流提供水资源。由生物质和化石燃料燃烧排放的BC气溶胶对辐射具有极强的吸收作用,进而对地球系统的能量收支和分布具有重要的影响,是气候环境变化不可忽视的影响因子。青藏高原周边地区排放的黑碳气溶胶经大气环流可被传输至高原内部,并沉降到雪冰表面,对降水和冰川物质平衡产生重要影响。分别在青藏高原5个台站架设黑碳仪,使用Aethalometer在线测量大气黑碳含量,数据时间分辨率:逐日.这对评估黑碳对青藏高原的气候环境影响和大气污染物的跨境传输提供数据基础。此数据是先前发布的《青藏高原大气黑碳含量5个站点观测资料(2018)》的更新。 5个站点信息如下: 纳木错:30°46'N, 90°59'E, 4730 m a.s.l 珠峰站:28.21°N, 86.56°E, 4276 m a.s.l 藏东南:29°46'N, 94°44'E, 3230 m a.s.l 阿里站:33.39°N, 79.70°E, 4270 m a.s.l 慕士塔格:38°24’N, 75°02’E, 3650 m a.s.l
王茉
本数据集包括藏东南站、阿里站、慕士塔格站、珠峰站和纳木错站的大气气溶胶颗粒物的PM2.5质量浓度(单位为μg/m3)。气溶胶PM2.5细颗粒物是指环境空气中空气动力学当量直径小于等于 2.5 微米的颗粒物。它能较长时间悬浮于空气中,对空气质量和能见度等有重要的影响,其在空气中含量浓度越高,就代表空气污染越严重。PM2.5的浓度特性数据以每5 min获取一组数据的频率进行产出,能实现小时、昼夜、季节和年际等不同时间尺度气溶胶质量浓度的分析,这为青藏高原地区不同位置的气溶胶质量浓度在不同时间尺度上的变化及其影响因素分析,以及当地空气质量评价,提供了重要的数据支撑。该数据为已发布数据《青藏高原不同站点气溶胶颗粒PM2.5浓度数据集(2018)》的更新。
邬光剑
地表温度是地表能量平衡的重要参量之一。本数据集为2019年7-9月逐月的黑河流域典型站点无人机遥感地表温度数据;飞行使用大疆M600 pro无人机搭载FLIR VUE pro热像仪,分别以湿地内的SD站、绿洲内的DM站和荒漠内的HZ站为中心,观测了地表温度获取了地表亮温图像,无人机的飞行高度约300m,热像仪的像素为336x256,图像的空间分辨率为0.4m。地表温度反演算法为改进的单通道算法,将该算法应用于无人机热红外遥感传感器获取的地表亮温数据,最终得到0.4m空间分辨率的地表温度数据。
周纪, 刘绍民, 王子卫
地表反照率是地表能量平衡的重要参量之一。本数据集为2019年植被生长季逐月的黑河流域典型站点无人机遥感地表反照率数据。地表反照率算法为统计回归方法,即基于6S模型和大量的典型地物光谱反射率数据,建立的从窄波段反射率到宽波段反照率的经验回归模型。将该回归模型应用于无人机多光谱遥感传感器获得的地表反射率,最终得到0.2 m空间分辨率的地表反照率数据。本数据集经过了辐射定标、几何校正,与地面站点实测数据的验证结果显示,均方根误差为0.049。本数据集提供了超高分辨率的地表反照率数据,可以作为卫星遥感尺度和地面观测尺度之间的“桥梁”,并为从事高分辨率和超高分辨率遥感数据工作的科研工作者提供数据支持。
周纪, 刘绍民, 董惟琛
为研究蔓菁的扩散与人类活动之间的关系,我们将来自青藏高原及周边区域,以及巴基斯坦,印度,尼泊尔,德国,日本等地的蔓菁品种进行重测序,同时对基因家族进行聚类,以及特有、共有基因和基因家族统计,此外还将进行基因家族扩张收缩分析,系统发育树的构建,全基因组复制事件等分析。目的是解析人类活动和区域气候环境双重压力下,高原各地的传统蔓菁品种适应高原的分子基础。因此这项研究有助于揭示蔓菁适应高原生态环境的适应性机制以及在进化过程中人工驯化和人类选择对其遗传分化的影响。
段元文
1)数据内容(包含的要素及意义):高寒网19个站(藏东南站、纳木错站、珠峰站、慕士塔格站、阿里站、那曲站、格尔木站、天山站、祁连山站、若尔盖站(西北院)、玉龙雪山站、那曲站(西北院)、海北站、三江源站、申扎站、若尔盖站(成都生物所)、那曲站(地理所)、拉萨站、青海湖站)2019年青藏高原气象观测数据集(气温、降水、风向风速、相对湿度、气压、辐射和蒸发) 2)数据来源及加工方法:高寒网19个站实地观测Excel格式 3)数据质量描述:站点日分辨率 4)数据应用成果及前景:在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。
朱立平, 彭萍
本数据集包括黑河流域2019年5月至2019年10月的归一化植被指数、植被覆盖度、植被净初级生产力、草地生物量、森林蓄积量植被参数遥感产品,空间分辨率为10m。本数据集采用高分一号、高分六号、哨兵、资源三号等遥感数据源,结合气象、地面监测等基础数据,采用波段比值法、混合像元分解模型、CASA模型等植被参数反演算法和模型,生成祁连山重点区域生长季逐月植被指数遥感产品。本数据集通过构建以高分卫星为主的高时空分辨率生态环境监测数据集,为区域生态环境问题诊断与生态环境动态评估提供数据支持。
祁元, 张金龙, 曹永攀, 周圣明, 王宏伟
该数据集包含了2018年10月23日至2019年12月31日的青海湖流域水文气象观测网青海湖鱼雷发射基地站涡动相关仪观测数据。站点位于青海省青海湖二郎剑景区鱼雷发射基地,下垫面是青海湖水面。观测点经纬度为:东经 100° 29' 59.726''E,北纬 36° 35' 27.337''N,海拔3209m。涡动相关仪的架高16.1m,采样频率是10Hz,超声朝向北向偏移西40°,超声风速温度仪(Gill-windmaster pro)与CO2/H2O分析仪(Li7500A)之间的距离约是17cm。 涡动相关仪的原始观测数据采样频率为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。 发布的观测数据包括:日期/时间DATE/TIME,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为3级(质量标识0数据质量好,1数据质量较好,2数据质量较差(较插补数据好)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。
李小雁
该数据集包含了2018年10月23日至2019年12月31日青海湖流域水文气象观测网青海湖鱼雷发射基地站气象要素梯度观测系统数据。站点位于青海省青海湖二郎剑景区鱼雷发射基地,下垫面是青海湖水面。观测点经纬度为:东经 100° 29' 59.726''E,北纬 36° 35' 27.337''N,海拔3209m。风速/风向架设在距湖面14m处,共1层,朝向正北;空气温度、相对湿度传感器分别架设在距湖面12m、12.5m处,共2层,朝向正北;翻斗式雨量计安装在距湖面10m处;四分量辐射仪安装在距湖面10m处,朝向正南;一个红外温度计安装在距湖面10m处,朝向正南,探头朝向是垂直向下;湖水温度探头设在水下0.2, 0.5, 1.0, 2.0, and 3.0 m处;光合有效辐射仪安装在距湖面10m处,探头朝向是垂直向下,朝向正南。 观测项目有:风速(WS_14m)(单位:米/秒)、风向(WD_14m)(单位:度)、空气温湿度(Ta_12m、Ta_12.5m和RH_12m、RH_12.5m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、湖表辐射温度(IRT_1)(单位:摄氏度)、光合有效辐射(PAR)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、湖水温度(Tw_20cm、Tw_50cm、Tw_100cm、Tw_200cm、Tw_300cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;2018.1.1-10.12由于由于采集器的问题,除四分量外的气象数据均无记录;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-1-1 10:30。
李小雁
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件