喜马拉雅山南麓在印度-欧亚板块陆陆碰撞影响下其沉积特征发生了重要变化,其中海-陆相沉积记录了大陆碰撞最前缘的构造变形和环境演化。为了更好地了解喜马拉雅山南缘的变形机制与约束陆陆碰撞的年龄,我们选取了尼泊尔西部晚白垩世至中始新世地层的出露良好的天然剖面并进行了详细的古地磁学研究。目前,已对Butwal剖面315米厚的样品开展了高精度的古地磁学测试,初步获得了交变磁场退磁(AFD)的磁偏角和磁倾角数据。
张伟林
喜马拉雅山南麓的海-陆相沉积物记录了大陆碰撞最前缘的构造变形和环境演化。为了更好地了解喜马拉雅山南缘的变形机制与环境演化,我们选取了尼泊尔西部晚白垩世至中始新世地层的三个出露良好的天然剖面并进行岩石磁学研究。目前,对120米厚的Palpa剖面的样品开展了磁化率(χlf)、非磁滞剩磁(ARM)与饱和等温剩磁(SIRM)的测量。同时,获得了细颗粒沉积物的等温剩磁(IRM)和磁滞回线,并得出饱和磁化强度(Ms)与饱和剩磁强度(Mrs)等重要磁性参数。
张伟林
本数据集包括祁连山区域1985-2019年的30m耕地和建设用地分布产品。该产品来源于祁连山区域1985-2019年30m的土地覆盖分类产品。产品生产时使用了NDVI 产品、灯光数据产品、DEM产品和哨兵1号的SAR数据。使用变化监测的方法,在2015年产品的基础上生产出其他年份的产品。产品的总精度优于85%。其中,1985-2015年的土地利用产品为5年1期,2015-2019年的土地利用产品为1年1期。
杨爱霞, 仲波, 角坤升, 吴俊君
1)数据内容(包含的要素及意义):高寒网21个站(藏东南站、纳木错站、珠峰站、慕士塔格站、阿里站、那曲站、双湖站、格尔木站、天山站、祁连山站、若尔盖站(西北院)、玉龙雪山站、那曲站(寒旱所)、海北站、三江源站、申扎站、贡嘎山站、若尔盖站(成都生物所)、那曲站(地理所)、拉萨站、青海湖站)2018年青藏高原气象观测数据集(气温、降水、风向风速、相对湿度、气压、辐射和蒸发) 2)数据来源及加工方法:高寒网21个站实地观测Excel格式 3)数据质量描述:站点日分辨率 4)数据应用成果及前景:在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。
朱立平, 彭萍
高质量高时空分辨率降水产品在理解全球和区域尺度的“水-碳-能”循环研究中扮演重要角色。卫星遥感为监测降水高时空变异特征提供了不可替代的手段,尤其是在自然条件恶劣的无资料地区。但由于是间接估算而来,卫星遥感降水产品不可避免地存在系统偏差和随机误差。聚焦于目前主流的遥感降水产品(GPM IMERG及其回推产品,0.1°/half-hourly,2000-present)获取过程中的潜在不足,如该产品的矫正时空尺度为1.0°/monthly,本研究在更高时空尺度上提出一套新的时空矫正算法,并引入高质量地面观测产品APHRODITE(0.25°/daily),生产了一套亚洲地区同期高质量高时空分辨率降水数据集AIMERG(0.1◦/half-hourly,2000–2015)。AIMERG降水数据集能够同时有效考虑卫星估计和地面观测的各自优势,其系统偏差和随机误差在中国地区不同时空尺度上的表现优于GPM IMERG,为亚洲地区相关领域的科学研究及生产实践提供了更为丰富且可靠的基础数据。
马自强
本数据集来源于论文:Chen, J.*#, Huang, Y.*#, Brachi, B.*#, Yun, Q.*#, Zhang, W., Lu, W., Li, H., Li, W., Sun, X., Wang, G., He, J., Zhou, Z., Chen, K., Ji, Y., Shi, M., Sun, W., Yang, Y.*, Zhang, R.#, Abbott, R. J.*, & Sun, H.* (2019). Genome-wide analysis of Cushion willow provides insights into alpine plant divergence in a biodiversity hotspot. Nature Communications, 10(1), 5230. doi:10.1038/s41467-019-13128-y. 本数据集包含青藏高原高山植物小垫柳Fasta格式的基因组组装文件,包括核苷酸(DNA)、核糖核酸(RNA)、蛋白质编码序列(Protein)序列数据,以及gff格式的基因组组装注释文件。 组装等级:染色体级别 基因组覆盖程度:全基因组 参考基因组:是 组装方法:SMARTdenovo 1.0; CANU 1.3 测序方法及测序深度: PacBio, 125×; Illumina Hiseq X Ten, 43×; Oxford Nanopore Technologies, 74× 基因组组装统计: 基因组大小(bp):339,587,529 GC含量:34.15% 染色体数量:19 细胞器基因组数量:2 基因组组装序列数量:30 最大组装序列长度(bp):39,688,537 最小组装序列长度(bp):57,080 平均组装序列长度(bp):11,319,584 基因组组装序列N50(bp):17,922,059 基因组组装序列N90(bp):13,388,179 全基因组组装注释: Protein:30,209 tRNA:784 rRNA:118 ncRNA:671 详细的注释信息请参见附件。 本数据集中也包含文章中Supplementary Information中的表格数据,数据列表参见附件。 基因组项目号为:GWHAAAA00000000(https://bigd.big.ac.cn/gwh/Assembly/663/show)。
陈家辉, 杨永平, Richard John Abbott, 孙航
This data set is the oxygen isotope data (δ18O) and its temperature reconstruction from the Chongce ice cores, in western Kunlun Mountains, Northwestern Tibetan Plateau. The Chongce ice cores were dated back to 7 ka BP by a two-parameter flow model (2p model) constrained by the AMS 14C ages. The δ18O measurements were performed at Nanjing University by a Wavelength Scanned Cavity Ring-Down Spectrometer (WS-CRDS, model: Picarro L2120-i), with the analytical uncertainty of less than 0.1‰. Our reconstructed temperature record shows a long-term warming trend until ~2 ka BP, followed by an abrupt change to a relatively cool period until the start of the industrial-era warming. In addition, the record shows that temperatures during the recent decades are almost the highest during the past 7 ka BP, highlighting the unusual warming forced by anthropogenic greenhouse gases.
Hongxi Pang
包含青藏高原地区气溶胶类型和气溶胶光学厚度,两类数据。 气溶胶类型数据产品是综合利用MEERA 2同化资料和主动卫星CALIPSO产品经过一系列数据预处理、质量控制、统计分析和对比分析等过程而融合得出的气溶胶类型结果。该气溶胶类型融合算法的关键是对CALIPSO气溶胶类型的判断。融合时根据CALIPSO气溶胶类型的种类和质控,并参考MERRA 2气溶胶类型得到最终气溶胶类型数据(共12种)和质量控制结果。充分考虑了气溶胶的垂直分布以及空间分布,具有较高的空间分辨率(0.625°×0.5°)和时间分辨率(月)。 气溶胶光学厚度(AOD)采用自主研发的可见光波段遥感反演方法,结合Merra-2模式数据与NASA的官方产品MOD04制作,数据覆盖时间从2000年到2019年,时间分辨率为逐日,空间分辨率为0.1度。反演方法主要采用自主研发的APRS算法,反演了冰雪上空的气溶胶光学厚度,算法考虑了冰雪地表的BRDF特性,适用于冰雪上空气溶胶光学厚度的反演。通过实测站点验证表明,数据相对偏差在35%以内,可有效提高极区气溶胶光学厚度的覆盖率和精度。
光洁, 赵传峰
为描述青藏高原及周边地区主要驯化动物遗传多样性的分布格局,厘清其相关遗传背景,并建立相应的遗传资源库。2020年集中在新疆维吾尔自治区伊犁地区共采集209个共707份当地主要驯化动物血液或、组织、粪便样品,其中包括12匹马心肝脾肺肾等RNA样品。本数据集包含新疆伊犁地区绵羊、家马、黄牛、家犬、家鸡、家鹅、山羊等物种的物种、品种、详细采样地、样品类型、采集时间、采集人、保存方式等基本样品信息,以excel表形式存储。本数据集还包含采样个体外观照片,以jpg格式存储。
徐峰
为描述青藏高原及周边地区(泛第三极地区)主要驯化动物遗传多样性的分布格局,厘清其相关遗传背景。2020年我们选取31个肯尼亚当地商品鸡和土鸡肾、脾、空肠RNA组织样品,提取总RNA后建库并做转录组测序。测序产生了一批180G转录组测序原始数据。为探索泛第三极地区家鸡驯化、迁徙、扩张等群体历史事件提供基础数据,并进一步探讨驯化动物对干燥等恶劣环境的适应机理提供资料。本数据集包含31个家鸡个体物种、品种、性别、表型等基本样品信息excel表,和31个家鸡个体3种组织转录组测序原始数据及MD5值。
彭旻晟
1) These data main included the GPR-surveyed ice thickness of six typical various-sized glaciers in 2016-2018; the GlabTop2-modeled ice thickness of the entire UIB sub-basins, discharge data of the hydrological stations, and related raw & derived data. 2) Data sources and processing methods: We compared the plots and profiles of GPR-surveyed ice bed elevation with the GlabTop2-simulated results and selected the optimal parametric scheme, then simulated the ice thickness of the whole UIB basin and assessed its hydrological effect. These processed results were stored as tables and tif format, 3) Data quality description: The simulated ice thickness has a spatial resolution of 30 m, and has been verified by the GPR-surveyed ice thickness for the NSE values were above 0.9. The maximum error of the GPR-measured data was ± 2.4 m, within the quoted glacier error at ± 5%. 4) Synthesizing knowledge of the ice thickness and ice reserves provides critical information for water resources management and regional glacial scientific research, it is also essential for several other fields of glaciology, including hydrological effect, regional climate modeling, and assessment of glacier hazards.
张寅生
1)本数据包含中科院加德满都科教中心2019年基本气象数据;参数有:气温 ℃,相对湿度%,气压Kpa, 降水mm, 辐射W/m2, 风速 m/s。表2为气象站说明表格,包含地理位置及下垫面情况。 2)数据来源及加工方法:数据来源于中国科学院加德满都科教中心小时数据,气温、气压、辐射和风速计算日平均,降雨计算日总和。 3)数据质量描述:这些参数中,气压数据质量较差缺失较多,2019年6-8月仪器故障,数据有缺失 4)该气象数据应用前景广泛,与南亚不同区域的资料对比分析,可服务于如大气科学、水文学、气候学、自然地理学和生态学等背景的研究生和科学家。
朱立平
泛第三极主要城市2000-2017年土地覆盖数据包含2000/2010/2017年14个城市(乌鲁木齐、西宁、兰州、达卡、加德满都、勒克瑙、德里、拉合尔、伊斯兰堡、喀布尔、杜尚别、塔什干、比什凯克、阿拉木图)30米分辨率的数据。包括植被、耕地、人造地表、水体和其它五种地类。利用GlobeLand30, MCD12Q1,Globcover2009识别了分类一致区域并保留,采用深度学习方法对分类不一致区域重新分类,融合两类区域得到最终的分类结果。 每年数据均经过人工目视解译验证。 数据应用于泛第三极城市建设用地变化、人类活动影响的研究。 数据类型:栅格。 投影方式:UTM投影。
栾文飞, 李新
青藏高原五大河源区冰川径流数据集覆盖时间从1971年到2015年, 时间分辨率为逐年,覆盖范围为青藏高原五条大江大河源区(黄河源,长江源,澜沧江源,怒江源,雅鲁藏布江源)。 数据以多源遥感和实测数据为基础,使用青藏高原五大河源区及其周边气象站点日尺度气象数据、UMD-1KM的全球植被产品、IGBP-DIS土壤数据库、第一、二次冰川编目数据等驱动模型,耦合了冰川模块的分布式水文模型VIC-CAS模拟形成了冰川径流数据。并使用站点实测数据对模拟结果进行了验证, 增强质量控制。 数据指标包含:冰川径流率(Rate of glacier runoff: %),总径流(Total Runoff,mm/a),雪径流率(Rate of snow runoff: %),降雨径流率 (降雨径流率:%)。
王世金
(1)本数据集是申扎高寒湿地2016-2019年的碳通量数据集,包含空气温度、土壤温度、降水、生态系统生产力等参数。(2)该数据集以野外涡度相关实测数据为基础,采用国际上公认的涡度相关数据标准处理方法,基本流程包括:野点剔除-坐标旋转-WPL校正-储存项计算-降水同期数据剔除-阈值剔除-异常值剔除-u*校正-缺失数据插值-通量分解与统计。本数据集还包含了基于涡度相关数据集标定后的模型模拟数据。(3)该数据集已经过数据质量控制,数据缺失率为37.3%,缺失数据已采用插值方式补充。(4)该数据集对认识高寒湿地碳汇功能具有科学价值,也可以用于机理模型的矫正和验证等。
魏达
这组数据是1974-2016年期间珠峰北坡绒布流域三条绒布冰川及表碛覆盖冰川三个时间段的年均冰储量变化数据集,采用ESRI 矢量多边形格式存储,是由三个阶段的DEM高程差数据DHPRISM2006-DEM1974(DH2006-1974)、DHSRTM2000-DEM1974(DH2000-1974)、DHASTER2016-SRTM2000(DH2016-2000),结合冰川覆盖专题矢量数据、冰密度 850 ± 60 kg m−3计算而来。DHPRISM2006-DEM1974, or DH2006-1974, 是2006年PRISM2006 数据和1974年DEM1974之间的高程差,即DH2006-1974 =PRISM2006 – DEM1974。PRISM2006是由2006年12月4日的光学立体像对遥感数据ALOS/PRISM生成。DEM1974是由我国早期1:50,000地形图生成的,这两期DEM都采用横轴墨卡托投影、Krasovsky1940椭球体。PRISM2006与DEM1974配准后,非冰川区高程数据精度为±0.24 m a-1。DHSRTM2000-DEM1974(DH2000-1974)是,2000年SRTM与DEM1974的高程差,两期DEM数据配准后,非冰川区高程数据精度为±0.03 m a-1。DHASTER2016-SRTM2000(DH2016-2000)是基于Brun et al. (2017) 发布的冰面高程差数据,采用与DH2006-1974、DH2000-1974一样的数据处理方法与处理过程而得到, 在非冰川区高程数据精度为±0.08 m a-1。表格中包括的数据项有:Shape_Area,冰川面积(m2)、Name冰川名,EC74_00表示1974-2000年间平均每条冰川每年的冰面高程变化(m a-1),EC00_16表示2000-2016年间冰川每年的冰面高程变化(m a-1),EC74_2006是1974-2006年间冰川年均冰面高程变化(m a-1),MB74_00表示1974-2000年间每条冰川年均冰川物质平衡数据(m w.e. a-1),MB00_16表示2000-2016年每条冰川年均冰川物质平衡数据(m w.e. a-1),MB74_2006表示1974-2006年每条冰川年均冰川物质平衡数据(m w.e. a-1),MC74_2000表示1974-2000年间每条冰川每年冰储量变化(m3 w.e. a-1),MC00_2016表示2000-2016年间每条冰川每年的冰储量变化(m3w.e. a-1),MC74_2006表示1974-2006年间每条冰川每年的冰储量变化(m3w.e. a-1), Uncerty_EC,是每条冰川冰面高程变化的最大误差范围(m a-1)、Uncerty_MB,是每条冰川冰川物质平衡的最大误差(m w.e. a-1),Uncerty_MC, 是每条冰川冰储量变化的最大误差(m3w.e. a-1)。 MinUnty_EC,是每条冰川冰面高程变化的最小误差范围,MinUnty_MB,每条冰川冰川物质平衡的最小误差(m w.e. a-1),MinUnty_MC是每条冰川冰储量变化的最小误差(m3w.e. a-1)。该组数据可用于喜马拉雅山脉与高亚洲地区冰川变化、冰川消融水文水资源效应及其气候原因。
叶庆华
该数据提供了青藏高原内陆流域582个面积大于1平方公里的湖泊从1986-2019的年湖泊面积。 首先根据JRC和SRTM DEM数据,识别研究区内582个大于1 km2的湖泊。利用Landsat5/7/8所有覆盖湖泊的遥感影像合成每年的Landsat影像,根据NDWI指数和Ostu算法动态分割每个湖泊,并据此计算每个湖泊1986-2019年湖泊面积大小。 本研究基于Landsat卫星遥感影像,利用Google Earth Engine 处理了所有Landsat影像,建立了至今为止最全的青藏高原地区大于1平方公里的年湖泊面积数据集;开发了一套湖泊面积自动提取算法,实现单个湖泊多年面积的批量计算;该数据对分析青藏高原地区湖泊面积动态、水量平衡,及研究青藏高原湖气候变化有重要意义。
朱立平, 彭萍
湖泊沉积物是重建过去气候变化的重要代用材料,其中沉积物的年代框架是基础。纹层是湖泊沉积物中成对形成的一种沉积层,通常一年为一个周期。依托中国科学院A类战略性先导科技专项“泛第三极环境变化与绿色丝绸之路建设”和第二次青藏高原综合科学考察研究等研究计划,作者在青藏高原中部湖泊江错获取了长达1米的沉积物重力钻岩芯,发现保存完好的纹层。随后制作了岩芯薄片并对纹层及其厚度进行计数和测量,得到了从公元81年到2015年的年代序列。利用纹层厚度中粗颗粒层厚度百分比这一代表降水的指标重建了过去2000年这一地区的降水。高分辨率高精度的年代和降水记录可以提供可靠的气候环境变化的背景,对古气候模拟和古文明的兴衰等提供参考。
侯居峙
这组数据是2000-2014年间藏东南易贡藏布东段71条冰川的年均冰储量变化数据集,采用ESRI SHP矢量多边形数据格式存储。每条冰川的冰储量变化通过SRTM DEM、Dh2000-2014、冰川专题矢量数据(CGI2/TPG1976/RGI6.0)与冰密度 850 ± 60 kg m−3计算而得。Dh2000-2014基于一对2014年2月7日TSX/TDX SAR影像与2000年SRTM DEM数据,采用差分干涉技术(D-InSAR)获取。基于CGI2/TPG1976/RGI6.0提取区域冰川矢量数据与冰川编号。SRTM DEM是参考DEM与基准DEM,在数据统计中用于划分不同海拔范围,其空间分辨率为30m。属性表中包括的数据项有:GLIMS-ID表示冰川编号、Area表示冰川面积(m2)、EC_m_a-1表示2000-2014年期间每条冰川的年均冰面高程变化(m a-1)、MB_m w.e.a-1表示2000-2014年期间每条冰川的年均物质平衡变化(m w.e.a-1)、MC_m3 w.e.a-1表示2000-2014年期间每条冰川的年均冰储量变化(m3 w.e.a-1)、MC_Gt.a-1表示2000-2014年期间每条冰川的年均冰储量变化(Gt a-1)、Uncerty_EC是每条冰川冰面高程变化的误差(±m a-1)、Uncerty_MB是每条冰川物质平衡误差(±m w.e. a-1),UT_MCm3w.e. a-1是每条冰川冰储量变化误差(±m3w.e. a-1)。该组数据可用于藏东南地区冰川消融水文水资源效应研究。
叶庆华
该数据集包含了2019年05月01日至2019年12月31日青海湖流域地表过程综合观测网高寒草甸草原混合超级站的物候相机观测数据。站点位于青海省天峻县苏里路旁侧,下垫面是高寒草甸和高寒草原的混合。观测点经纬度为:东经 98°35′41.62″E,北纬 37°42′11.47″N,海拔3718m。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为2592*1944,本数据集中的物候照片是在每天12:10拍摄的,拍摄时间误差在±10 min。图片命名方式为BSDCJZ BEIJING_IR_Year_Month_Day_Time.
李小雁
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件