我们提出利用U-net网络进行冰裂隙识别探测的算法,可以实现格陵兰冰盖典型冰川冰裂隙的自动化探测。基于Sentinel-1 IW每年7、8月的数据,为了抑制SAR图像的相干斑噪声,选择Probabilistic Patch-Based Weights (PPB)算法进行滤波,然后选择具有代表性的样本输入U-net网络进行模型训练,根据训练的模型进行冰裂隙的预测。以格陵兰2个典型冰川(Jakobshavn、Kangerdlussuaq)为例分类结果的平均准确率可达94.5%,其中裂隙区域的局部准确率可达78.6%,召回率为89.4%。
李新武, 梁爽, 杨博锦, 赵京京
我们提出利用U-net网络进行冰裂隙识别探测的算法,可以实现南极冰裂隙的自动化探测。基于Sentinel-1 EW 1月、2月的数据,为了抑制SAR图像的相干斑噪声,选择Probabilistic Patch-Based Weights(PPB)算法进行滤波,然后选择具有代表性的样本输入U-net网络进行模型训练,根据训练的模型进行冰裂隙的预测。以南极5个典型冰架(Amery、Fimbul、Nickerson、Shackleton、Thwaiters)为例分类结果的平均准确率可达94.5%,其中裂隙区域的局部准确率可达78.6%,召回率为89.4%。
李新武, 梁爽, 杨博锦, 赵京京
“亚洲水塔”青藏高原(TP)的降水在区域水和能源循环中发挥着关键作用,对下游国家的水资源供应有重要影响。气象站点所获取的降水信息通常被认为是最准确的,但在地形复杂、环境恶劣的青藏高原中,气象站数据却十分有限。卫星和再分析降水产品可以为地面测量提供补充信息,特别是在大面积测量不足的区域。在这里,我们通过使用人工神经网络 (ANN) 和环境变量(包括海拔、地表压力和风速)确定各种数据源的权重来最优地融合站点、卫星和再分析数据。在 1998-2017 年期间,以每日时间尺度和 0.1° 的空间分辨率生成了一个多源降水 (MSP) 数据集横跨青藏高原。与其他四颗卫星产品相比,MSP与标准观测的日降水相关系数(CC)最高(0.74),均方根误差第二低,表明MSP的质量和数据合并的有效性方法。我们使用分布式水文模型进一步评估了青藏高原长江和黄河源头测量不佳的不同降水产品的水文效用。在 2004-2014 年期间,MSP 实现了每日流量模拟的最佳 Nash-Sutcliffe 效率系数(超过 0.8)和 CC(超过 0.9)。此外,基于多重搭配评估,MSP 在未测量的西部 TP 上表现最好。该合并方法可应用于全球其他数据稀缺地区,为水文研究提供高质量的降水数据。整个 TP 的左下角的经纬度、行数和列数以及网格单元信息都包含在每个 ASCII 文件中。
洪仲坤, 龙笛
针对青藏高原泛三江并流区的17.9万km2的区域,通过Sentinel-1升降轨,以及Palsar-1升轨三种SAR数据进行InSAR变形观测,根据获取的InSAR变形图像,结合地貌和光学影像特征进行综合解译。共识别得到海拔4000m以下的活动性滑坡949处。需要注意的是,因不同SAR数据的观测角度、敏感度和观测时相的差异,同一滑坡用不同数据解译存在一定的差异,在滑坡的范围、边界方面需要借助地面和光学影像进行修正。滑坡InSAR识别比例尺的概念与传统空间分辨率不同,主要依靠变形强度,因此一些规模较小,但与背景相比变形特征突出,整体性强,与地物具有逻辑空间关系的滑坡也能得以解译(配合SAR的强度图、地形阴影图、光学遥感影像为地物参照)。本次最小解译区域可达几个像素,如参考怒江沿江公路解译了一处只有4个像素的公路边坡滑坡。
姚鑫
本数据集是一个包含接近35年(1984-2018)的全球高分辨率光合有效辐射数据集,其分辨率为3小时/逐日/逐月,10公里,数据单位为W/㎡,瞬时值。该数据集可用于生态过程模拟和全球碳循环的理解。该数据集是基于改进的物理参数化方案并以ISCCP-HXG云产品、ERA5再分析数据、MERRA-2气溶胶数据以及MODIS反照率产品为输入而生成的。验证并和其他全球卫星辐射产品比较表明,该数据集的精度通常比CERES全球卫星辐射产品的精度要高。该全球辐射数据集将有助于未来生态过程模拟的研究和全球二氧化碳通量的估算。
唐文君
地表温度(Land surface temperature, LST)是地球表面与大气之间界面的重要参量之一。它既是地表与大气能量交互作用的直接体现,又对于地气过程具有复杂的反馈作用。因此,地表温度不仅是气候变化的敏感指示因子和掌握气候变化规律的重要前提,还是众多模型的直接输入参数,在许多领域有广泛的应用,如气象气候、环境生态、水文等。伴随地学及相关领域研究的深入和精细化,学术界对卫星遥感的全天候地表温度(All-weather LST)具有迫切的需求。 本数据集的制备方法是一种基于新型地表温度时间分解模型的卫星热红外遥感-再分析数据集成方法。方法的主要输入数据为Aqua MODIS LST产品和GLDAS等数据,辅助数据包括卫星遥感提供的植被指数、地表反照率等。方法充分利用了卫星热红外遥感和再分析数据提供的地表温度高频分量、低频分量以及地表温度的空间相关性,最终重建得到较高质量的全天候地表温度数据集。 评价结果表明,本数据集具有良好的图像质量和精度,不仅在空间上无缝,还与当前学术界广泛采用的逐日1 km Aqua MODIS LST产品在幅值和空间分布上具有较高的一致性。当以MODIS LST为参考时,该数据集在白天和夜间的平均偏差(MBE)为0.08K至0.16K,偏差标准差(STD)为1.12K至1.46K。基于分布于黑河流域、东北、华北和华南地区的15个站点实测数据的检验结果表明,其MBE为-0.06K至-1.17K,RMSE为1.52K至3.71K,且在晴空与非晴空条件下无显著区别。 本数据集的时间分辨率为逐日2次,空间分辨率为1km,时间跨度为2000年-2021年(注:通过外推方式将缺少Aqua MODIS LST产品时段内的全天候地表温度补齐);空间范围包括我国陆域的主要区域(包含港澳台地区,暂不包含我国南海诸岛)及周边区域(72°E-135°E,19°N-55°N)。本数据集的缩写名为TRIMS LST(Thermal and Reanalysis Integrating Moderate-resolution Spatial-seamless LST),以便用户使用。需要说明的是,TRIMS LST的空间子集TRIMS LST-TP(中国西部逐日1 km全天候地表温度数据集(TRIMS LST-TP;2000-2021)V2)同步在国家青藏高原科学数据中心发布,以减少相关用户数据下载和处理的工作量。
周纪, 张晓东, 唐文彬, 丁利荣, 马晋, 张旭
青藏高原是全球气候变化的敏感区域。地表温度(Land Surface Temperature, LST)作为地表能量平衡中的主要参数,表征了地气间能量和水分交换的程度,广泛应用于气象气候、水文、生态等领域的研究中。青藏高原的陆地-大气相互作用等研究,迫切需要较长时间序列和较高时空分辨率的全天候地表温度数据集。然而,该区域较为频繁的云覆盖特征,使现有卫星热红外遥感地表温度数据集的使用受到较大的局限。 相较于2019年发布的前一个版本——中国西部逐日1km空间分辨率全天候地表温度数据集(2003-2018)V1,本数据集(V2)采用了一种新的制备方法,即基于新型地表温度时间分解模型的卫星热红外遥感-再分析数据集成方法。方法的主要输入数据为Aqua MODIS LST产品和GLDAS等数据,辅助数据包括卫星遥感提供的植被指数、地表反照率等。该方法充分利用了卫星热红外遥感和再分析数据提供的地表温度高频分量、低频分量以及地表温度的空间相关性。 评价结果表明,本数据集具有良好的图像质量和精度,不仅在空间上无缝,还与当前学术界广泛采用的逐日1 km Aqua MODIS LST产品在幅值和空间分布上具有较高的一致性。以MODIS LST为参考值时,该数据集在白天和夜间平均偏差(MBE)分别为-0.28 K和-0.29 K,偏差标准差(STD)分别为1.25 K和1.36 K。基于青藏高原和黑河流域的6个站点实测数据的检验结果表明,晴空条件下,本数据集在白天/夜间与实测LST均具有高度的一致性,其MBE为-0.42~0.25 K/-0.35~0.19 K;均方根误差 (RMSE)为1.03~2.28 K/1.05~2.05 K;非晴空条件下,本数据集在白天/夜间的MBE为-0.55~1.42 K/-0.46~1.27 K;RMSE为2.24~3.87 K/2.03~3.62 K。与V1版本的数据相比,两种全天候地表温度均在空间维度上表现除了空间无缝(即无缺失值)的特性,且在大部分区域内,两种全天候地表温度的空间分布和幅值均与MODIS地表温度高度一致。然而,在AMSR-E/AMSR2轨道间隙亮温缺失的区域内,V1版本的地表温度产生了低估。TRIMS地表温度与V1版本地表温度在AMSR-E/AMSR2轨道间隙外的质量接近,而在轨道间隙内前者的质量更加可靠。因此,建议用户使用V2版本。 本数据集的时间分辨率为逐日2次,空间分辨率为1km,时间跨度为2000年-2021年(注:通过外推方式将缺少Aqua MODIS LST产品时段内的全天候地表温度补齐)。本数据集的空间范围包括青藏高原为核心的我国西部及周边地区(72°E-104°E,20°N-45°N)。因此,本数据集的缩写名为TRIMS LST-TP(Thermal and Reanalysis Integrating Moderate-resolution Spatial-seamless LST – Tibetan Plateau),以便用户使用。
周纪, 张晓东, 唐文彬, 丁利荣, 马晋, 张旭
联系方式
关注我们

时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
|
京公网安备11010502040845号
数据中心技术支持: 数云软件