我们提出利用U-net网络进行冰裂隙识别探测的算法,可以实现格陵兰冰盖典型冰川冰裂隙的自动化探测。基于Sentinel-1 IW每年7、8月的数据,为了抑制SAR图像的相干斑噪声,选择Probabilistic Patch-Based Weights (PPB)算法进行滤波,然后选择具有代表性的样本输入U-net网络进行模型训练,根据训练的模型进行冰裂隙的预测。以格陵兰2个典型冰川(Jakobshavn、Kangerdlussuaq)为例分类结果的平均准确率可达94.5%,其中裂隙区域的局部准确率可达78.6%,召回率为89.4%。
李新武, 梁爽, 杨博锦, 赵京京
我们提出利用U-net网络进行冰裂隙识别探测的算法,可以实现南极冰裂隙的自动化探测。基于Sentinel-1 EW 1月、2月的数据,为了抑制SAR图像的相干斑噪声,选择Probabilistic Patch-Based Weights(PPB)算法进行滤波,然后选择具有代表性的样本输入U-net网络进行模型训练,根据训练的模型进行冰裂隙的预测。以南极5个典型冰架(Amery、Fimbul、Nickerson、Shackleton、Thwaiters)为例分类结果的平均准确率可达94.5%,其中裂隙区域的局部准确率可达78.6%,召回率为89.4%。
李新武, 梁爽, 杨博锦, 赵京京
太阳总辐射和散射采用辐射表(CM22, Kipp & Zonen, 荷兰)测量,波长范围200-3600 nm。温湿度数据来源于IPEV/PNRA 项目 “Routine Meteorological Observation at Station Concordia” ,http://www.climantartide.it,地面水汽压单位为hPa。本数据集包括:利用经验模型计算的地面太阳总辐射、损失于大气中的吸收和散射辐射(小时累计值,单位MJ/m2)、大气顶和地表反照率;还包括散射因子(S/G)地面水汽压(E,单位hPa)。太阳辐射数据来源于数据提供者的计算、实验站测量,数据覆盖时间为2006-2016年(Bai, J.; Zong, X.; Lanconelli, C.; Lupi, A.; Driemel, A.; Vitale, V.; Li, K.; Song, T. 2022. Long-Term Variations of Global Solar Radiation and Its Potential Effects at Dome C (Antarctica). Int. J. Environ. Res. Public Health, 19, 3084. https://doi.org/10.3390/ijerph19053084)。该数据集可以用于南极Dome C地区太阳辐射及其衰减等相关研究。地面太阳辐射和其他气象数据可以参考:https://doi.org/10.1594/PANGAEA.935421
白建辉
太阳总辐射采用辐射表(CM21, Kipp & Zonen, 荷兰)测量,波长范围200-3600 nm。温湿度分别采用温湿度传感器HMP45C-GM (Vaisala Inc., Vantaa, Finland)测量。本数据集包括:利用经验模型计算的地面太阳总辐射、损失于大气中的吸收和散射辐射(小时累计值,单位MJ/m2)、大气顶和地表反照率;还包括散射因子(AF)地面水汽压(E,单位hPa)。太阳辐射数据来源于数据提供者的计算、实验站测量,数据覆盖时间为2007-2020年。关于数据处理和太阳总辐射计算等可参考文献:Bai, J.; Zong, X.; Ma, Y.; Wang, B.; Zhao, C.; Yang, Y.; Guang, J.; Cong, Z.; Li, K.; Song, T. 2022. Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. Int. J. Environ. Res. Public Health, 19, 8906. https://doi.org/10.3390/ijerph19158906。该数据集可以用于珠峰地区太阳辐射及其衰减等相关研究。珠峰站太阳辐射和其他气象数据可以参考:https://data.tpdc.ac.cn/zh-hans/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/。
白建辉
冰雪具有高反射率,冰盖表面融化会降低地表反照率进而影响区域能量平衡,表面融化形成的水文系统会影响冰盖稳定性进而影响冰盖物质平衡。本数据集基于微波辐射计与光学反照率产品,对微波辐射计当日、冬季(6-8月)平均和7月平均进行波段合成,利用Gram-Schmidt方法将微波辐射计波段合成数据与MODIS GLASS反照率产品融合,使其空间分辨率从25 km提高至0.05˚。然后基于微波辐射计当日与冬季亮温差值的阈值法对降尺度结果提取南极冰盖表面融化,得到1985-1986年、2000-2001年、2015-2016年南极冰盖表面0.05˚ 每日融化产品。该数据集0.05˚ 的空间分辨率高于目前国内外已发布数据集,凸显了辐射计和反照率数据对表面融化的响应,空间细节特征更加清晰,保持了原辐射计产品的动态范围,有效地抑制了辐射计噪声,更好的反映了山区、触地线区域和冰架的融化范围随时间的梯度演变特征,产品精度更高。该数据集的数据类型为整型,其中1代表融化,0代表未融化,255代表冰盖以外掩膜区域,数据集以“*.nc”格式存储。
魏思怡, 刘岩
海冰表面的积雪控制着能量收支,影响海冰的生长和消融,具有重要的气候作用。积雪厚度作为积雪的重要属性之一,对于理解气候变化、估算海冰参量等具有重要意义。被动微波数据可以获取逐日半球尺度的积雪厚度观测数据,但是原先提出的估算方法会产生明显的低估,限制了该方法的进一步应用。我们构建了一个新的且鲁棒的线性回归公式,通过引入低频信号明显改进了被动微波反演积雪厚度的效果,并且基于AMSR-E,AMSR-2和SSMIS被动微波辐射计亮温数据,应用该方法生成了2002—2020年逐日南极海冰表面积雪厚度数据集。采用7年的机载Operation IceBridge (OIB) 飞行计划获取的积雪厚度测量数据进行回归分析,发现采用垂直极化下37和19 GHz的亮温计算得到的极化梯度率(gradient ratio, GR),即GR(37/7),是用于南极海冰表面积雪厚度估算的最优极化梯度率,均方根偏差约为8.92厘米,相关系数为-0.64,并获取了相应的线性回归公式系数。GR(37/19)用于基于SSMIS的积雪厚度估算,用来填补AMSR-E和AMSR-2之间的观测空白。不同辐射计估算的积雪厚度进行了一致性校正。基于高斯误差传递法估算的积雪厚平均不确定度约为3.81厘米,占积雪厚度的12%左右。与Australian Aantarctic Data Centre发布的实测数据对比发现提出的方法明显优于原有的方法,平均差异和均方根偏差约为5.64厘米和13.79厘米,而原有方法的平均差异和均方根偏差约为-14.47厘米和19.49厘米。与Antarctic Sea Ice Processes and Climate 计划发布的船载观测数据对比发现提出的方法略优于原有方法(均方根偏差分别为16.85厘米和17.61厘米),并且该方法在海冰生长期和融化期有着相似的精度,表明该方法也可以应用于消融季。基于该套数据,我们发现2002—2020年在南极所有海域和季节内海冰表面积雪厚度均呈现降低趋势。该数据可以进一步用于再分析数据的评估,海冰厚度估算和气候模式等方面。
沈校熠, 柯长青
本数据集包括南极冰盖花杆、冰(雪)芯/雪坑、自动气象站高度仪和探地雷达观测的日平均、年平均和多年平均表面物质平衡数据。数据来自已发表的文献,数据报告及国际数据共享平台,经质量控制后,形成了到目前为止最为完善的南极冰盖表面物质平衡日、年和多年分辨率的数据集,其中年分辨率表面物质平衡数据跨度过去1000年。该数据集主要用于冰川学、气候学及水文学等学科领域,特别地可用于南极表面物质平衡时空变化定量分析,气候模式验证,驱动冰盖模式和粒雪化模型等等。
王叶堂
本数据集包含由卫星重力测量数据得到的2002年4月至2019年12月南极冰盖质量变化数据。所采用的卫星重力数据来自于美国宇航局NASA与德国宇航局DLR合作的重力场恢复与气候学实验双星星座(GRACE,2002年4月至2017年6月)及其后续任务GRACE-FO (2018年六月至今)。由于GRACE和GRACE-FO之间有一年左右数据间断,我们额外采用了由欧洲空间局ESA的Swarm星座GPS数据反演得到的重力场数据(2013年12月至2019年12月)。所采用GRACE重力场数据为德州大学奥斯丁空间研究中心(CSR)、德国地学研究中心(GFZ)、美国宇航局喷气推进实验室(JPL)以及俄亥俄州立大学(OSU)四家机构发布产品的加权平均模型。GRACE数据后处理包括:用SLR数据解算结果替换GRACE低阶重力场参数(degree-1, C20和C30),去条带滤波,300公里高斯平滑,ICE6-G_D(VM5a)GIA模型,信号泄露误差改正,椭球误差改正等。
张宇, 沈嗣钧
近年来,随着南极冰盖消融的加速,在冰盖表面形成了大量冰面融水。深入理解南极冰盖冰面融水的时空间分布,掌握冰面融水动态变化,对于研究南极冰盖物质平衡具有重要意义。本数据集是基于Landsat影像提取的2000-2019年南极冰盖典型消融区(南极半岛亚历山大岛)30m冰面融水数据集。本数据集投影为极地方位投影,数据集格式为矢量(shp)和栅格(tif),时间集中在每年的12月至次年2月(南半球夏季)。
杨康
南北极海冰数据集原始数据由美国国家冰雪数据中心(The National Snow and Ice Data Center:NSIDC)通过遥感数据生成,数据格式为geotiff格式与image格式,数据空间分辨率为25km,时间分辨率为日。数据内容是南北极的海冰范围及海冰密集度。本研究工作通过对南北极海冰的范围与海冰密集度后处理后生成netcdf格式产品。产品数据包含1979-2019年南北极海冰范围与海冰密集度数据,其时间分辨率为逐日,覆盖范围为南极与北极,水平空间分辨率为12.5km,海冰范围矩阵中数据值为1表示该网格为海冰,海冰密集度用0-1000表示,该网格值除以10即为该网格海冰密集度值。
叶爱中
三极冰芯数据主要来源于美国国家海洋与大气局(NOAA: National Oceanic and Atmospheric Administration, https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/ice-core )。原始数据主要是文本格式,由相关单位与研究人员志愿提供。数据主要包含了氧同位素、温室气体浓度、冰芯年龄、等原始观测数据,也包含研究者根据观测数据生产的历史气温、二氧化碳浓度、甲烷浓度等。数据主要分为南极、北极、格陵兰岛及第三极区域。数据库包含打钻地址、时间、衍生产品、对应观测站点数据、参考文献等要素。衍生产品包含产品名称、类型、时间等要素。空间位置分为南极、北极、第三极,包含阿拉斯加、加拿大、俄罗斯、格陵兰岛等地区。对收集的数据通过整理与后处理后,采用Microsoft Office自带的Access数据库管理系统建立冰芯数据库。按照南极、北极、格林兰岛、第三极,分成四个子数据库,打开每个数据库中第一个表为readme,该表包含每个数据表信息及参考文献。
叶爱中
冰川对区域和全球气候变化异常敏感,因此常被作为气候变化的指示器之一,其相关参数也是气候变化研究的关键指标,特别是在地球三极环境变化对比研究中,冰川速度的时间和空间差异性对比是气候变化研究的重点之一。但由于冰川基本位于高海拔、高纬度和高寒地区,自然环境恶劣、人迹罕至,缺乏且难以开展大规模冰川运动的常规现场测量工作,为了能够及时高效、全面和准确地了解三极地区冰川运动状况,利用雷达干涉测量、雷达和光学影像像素跟踪等方法获取了三极地区部分典型冰川2000-2017年部分年份的表面运动分布情况,为三极冰川运动的对比分析提供了基础资料。数据集包含12个栅格文件,栅格文件名为“某地区某时段冰川运动”,每一幅栅格图主要包含以某一典型冰川所在的区域流速分布。
闫世勇
三极气溶胶类型数据产品是综合利用MEERA 2同化资料和主动卫星CALIPSO产品经过一系列数据预处理、质量控制、统计分析和对比分析等过程而融合得出的气溶胶类型结果。该气溶胶类型融合算法的关键是对CALIPSO气溶胶类型的判断。气溶胶类型数据融合时根据CALIPSO气溶胶类型的种类和质控,并参考MERRA 2气溶胶类型得到最终的三极地区气溶胶类型数据(共12种)和质量控制结果。该数据产品充分考虑了气溶胶的垂直分布以及空间分布,具有较高的空间分辨率(0.625°×0.5°)和时间分辨率(月)。
赵传峰
数据集包括:北极地区人口及GDP数据(1990-2015)、第三极(甘肃、青海、西藏)地区县级人口及GDP数据(1970-2016)。 社会经济统计属性包括:人口(万人)、GDP(万元)、工农业生产总值(万元)、农业总产值(万元)、工业生产总值(万元) 北极人口数据主要来自经济社会局《世界人口展望:2017年修订版》按照 区域和国家划分的人口总数。 第三极数据主要参考甘肃省统计年鉴、青海省统计年鉴、西藏自治区统计年鉴;甘肃省、青海省、西藏自治区各县县志。
经济和社会事务部, 国家统计局, 青海省统计局
该数据集提供了南极洲1公里分辨率数字高程模型(DEM)。DEM结合了欧洲遥感卫星-1 (ERS-1)卫星雷达高度计(SRA)和冰、云和陆地高度计(ICESat)地球科学激光高度计系统(GLAS)的测量数据。ERS-1数据来自1994年3月开始的168天的两个长重复周期,GLAS数据来自2003年2月20日至2008年3月21日。数据集大约为240mb,由两个网格化二进制文件和两个用于可视化图像(ENVI)头文件的环境组成,可以使用ENVI或其他类似软件包查看。这些数据可以通过FTP获得。
National Aeronautics and Space Administration
南极1:100万山脉数据集包括南极范围内山脉(Arctic_Mountains)矢量空间分布数据及相关属性数据:名称(Name)、山脉所在国家名称(CNTRY_NAME)、山脉所在国家简称(CNTRY_CODE)、纬度(LATITUDE)、经度(LONGITUDE) 数据来自1:100万ADC_WorldMap全球数据集,数据经过拓扑,入库是全面、最新和无缝的地理数字数据。 世界地图坐标系统是经纬度,WGS84基准面,南极地区数据集为南极专用投影参数(South_Pole_Stereographic)。
ADC WorldMap
南极1:100万机场分布数据集包括南极范围内机场(Antarctic_Airport)及机场跑道(Antarctic_Airport_runways)矢量空间数据及相关属性数据:机场名称(Name)、机场国家名称(CNTRY_NAME)、机场国家缩写(CNTRY_CODE)、纬度(LATITUDE)、经度(LONGITUDE)。 数据来自1:100万ADC_WorldMap全球数据集,数据经过拓扑,入库是全面、最新和无缝的地理数字数据。 世界地图坐标系统是经纬度,WGS84基准面,南极地区数据集为南极专用投影参数(South_Pole_Stereographic)。
ADC WorldMap
南极行政边界数据集包括南极范围内国家的国界(Antarctic_National)矢量空间数据集及其对应的名称、类型相关属性数据:(CITY_POP)、(ENG_NAME)、(CNTRY_NAME)、(TYPE)、(CNTRY_CODE)、(YEAR)。 数据来自1:100万ADC_WorldMap全球数据集,数据经过拓扑,入库是全面、最新和无缝的地理数字数据。 世界地图坐标系统是经纬度,WGS84基准面,南极地区数据集为南极专用投影参数(South_Pole_Stereographic)。
ADC WorldMap
南极1:100万居民点数据集包括南极范围内所有居民点(Antarctica_Resident)等矢量空间数据及相关属性数据:城市名称(ENG_NAME)、城市人口(CNTEY_NAME)、(CNTRY_CODE)等属性。 数据来自1:100万ADC_WorldMap全球数据集,数据经过拓扑,入库等数据质量检查,是全面、最新和无缝的地理数字数据。 世界地图坐标系统是经纬度,WGS84基准面,南极地区数据集为南极专用投影参数(South_Pole_Stereographic)
ADC WorldMap
该套南极海冰数据集共包括四套数据,均来自SMMR、SSM/I和SSMI/S三个传感器,采用被动微波遥感反演。其中SMMR为Nimbus-7卫星搭载的扫描式多通道微波辐射计,工作周期为1978年10月26日至1987年7月8日。1987年7月至今,使用美国国防卫星计划DMSP卫星群上搭载的一系列被动微波遥感数据SSM/I和微波成像专用传感器SSMIS提供的数据。 前三套为海冰密集度数据,覆盖范围为南极地区,空间分辨率为25 km: (1)数据来自Nimbus-7 SMMR和DMSP SSM/I-SSMIS Version 1,利用NASA Team算法反演得到,覆盖时间从1978年11月到2017年2月,时间分辨率为逐月,数据每月存放一个bin文件; (2)数据来源与第一套相同,覆盖时间从1978-10-26到2017-2-28,时间分辨率为两天,空间分辨率为25km,数据每年存放一个文件夹,每隔一天存放一个bin文件; (3)数据来自Near-Real-Time DMSP SSMIS,利用NASA Team算法反演得到,覆盖时间从2015-1-1到2018-2-3,时间分辨率为逐日,数据每日存放一个bin文件;每个文件由300-byte的文件头(数据时间信息、投影方式、文件名…)和316*332的矩阵组成。 第四套数据为海冰覆盖范围和海冰面积时间序列。覆盖时间从1978年11月到2017年12月,为南极地区海冰覆盖范围、海冰面积的时间演变序列,时间分辨率为逐月,每月存放一个ASCII文件;每个文件由表头(时间、数据类型…)和39*1的海冰覆盖矩阵和39*1的海冰面积矩阵组成。 数据的详细情况见美国冰雪数据中心NSIDC网站-数据说明http://nsidc.org/data/NSIDC-0051;http://nsidc.org/data/NSIDC-0081;http://nsidc.org/data/G02135
李双雷, 刘娜
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件