本数据集为覆盖全球范围考虑积融雪过程的标准化水分距平指数(SZIsnow),该干旱指数数据集由GLDAS-2驱动产生。该指数考虑了与干旱发展相关的诸多水文过程,尤其是积融雪过程。目前许多干旱指数忽略了积融雪过程,导致不能准确地对积雪地区干旱的发生和发展进行评估,该指数很好地弥补了这一不足,解决了干旱物理机制解析与多时间尺度分析无法兼顾,不同类型干旱难以统一评估的两个难题。经验证该指数能够很好地对全球不同地区的历史干旱时间进行定量描述,其优异表现在高纬度和高海拔地区更为突出。因此本数据集可以为干旱的监测评估以及干旱相关研究提供科学参考。
吴普特, 田磊, 张宝庆
基于遥感的全球表层土壤水旬度数据集(RSSSM,2003~2020)是在世界11种常用的全球微波遥感土壤水数据产品基础上,采用神经网络方法,融入了9个微波遥感反演土壤水分的质量影响因子完成。数据空间分辨率是0.1度,时间分辨率为旬。原数据覆盖2003~2018年,现更新至2020年。RSSSM数据集的时间连续性突出,除冰雪和水体外实现空间全覆盖。通过全球实测数据进行检验,可证明RSSSM数据集较已有的常用全球或区域长时间序列表层土壤水产品具有更高的时空格局精度。此外,虽然RSSSM数据是基于遥感的,未融合任何降水资料,但其年际变异与降水量(如GPM IMERG降水数据)和标准化降水蒸散发指数(SPEI)的时间变异均可较好地吻合。RSSSM数据还可一定程度反映城市化、农田灌溉、植被恢复等人类活动对土壤水分的影响。数据为tiff格式,压缩后的数据量为2.48 GB。 数据论文于2021年发表在Earth System Science Data。
陈永喆, 冯晓明, 傅伯杰
本数据集为全球高精度高程控制点数据集,包含各个高程控制点地理定位,高程,采集时间等信息。 从卫星激光测高数据中提取的激光足印高程的精度受到许多因素的影响,如大气、有效载荷仪器噪声、激光足迹中的地形起伏等,导致精度不确定。该数据集通过评估标签和测距误差模型所构建的筛选准则对ICESat卫星从2003年到2009年的测高观测数据进行筛选提取,以期地形测图或依赖良好高程信息的其他科学领域提供高精度的全球高程控制点。经验证,平地(坡度<2°)、丘陵(2°≤坡度<6°)、山地(6°≤坡度<25°)区域的高程精度分别满足0.5m、1.5m、3m的精度要求。
谢欢, 李彬彬, 童小华, 唐鸿, 刘世杰, 金雁敏, 王超, 叶真, 陈鹏, 许雄, 柳思聪, 冯永玖
新的北半球多年冻土图利用基于规则的GIS模型融合了新的多年冻土范围(Ran et al., 2021b)、气候条件、植被结构、土壤和地形条件以及富冰和富含有机质多年冻土图(yedoma)。与之前的多年冻土图不同,根据多年冻土与气候和生态系统的复杂交互作用,我们将北半球多年冻土分为五种类型:气候驱动型、气候驱动型/生态系统改造型、气候驱动型/生态系统保护型、生态系统驱动型和生态系统保护型。除去冰川和湖泊,北半球这五种类型的面积分别为3.66×106km2、8.06×106km2、0.62×106km2、5.79×106km2和1.63×106km2。北半球81%的多年冻土区受到生态系统的改造、驱动或保护,表明生态系统在北半球多年冻土稳定性中的主导作用。气候驱动的多年冻土只占北半球多年冻土区的19%,主要分布在高北极和高山地区,如青藏高原。
冉有华, M. Torre Jorgenson, 李新, 金会军, 吴通华, 李韧, 程国栋
地表温度(Land Surface Temperature,LST)是地表能量平衡研究的关键参数,被广泛用于气象、气候、水文、农业和生态等领域研究。卫星(热红外)遥感作为获取全球和区域尺度LST信息的重要手段,容易受到云层覆盖和其他大气条件的影响,导致LST遥感产品时空不连续,极大限制了LST遥感产品在相关研究领域的应用。 本数据集的制备首先基于经验正交函数插值方法,利用Terra/Aqua MODIS 地表温度产品重建理想晴空条件下的LST,然后使用累积分布函数匹配方法融合 ERA5-Land再分析数据获取全天候条件下的LST。该方法充分利用了原始MODIS遥感产品的时空信息以及再分析数据中的云影响信息,缓解了云层覆盖对LST估算的影响,最终重建得到较高质量的全球0.05°时空连续的理想晴空和全天候LST数据集。 本数据集不仅实现了时空无缝覆盖,并且具有良好的验证精度。重建的理想晴空LST数据在全球17种土地覆盖类型实验区内,平均相关系数(R)为0.971,偏差(Bias)为-0.001 K至0.049 K,均方根误差(RMSE)为1.436 K至2.688 K。重建的全天候 LST 数据与地面站点实测数据的验证结果:平均 R 为 0.895,Bias为0.025 K 至 2.599 K, RMSE为4.503 K至7.299 K。 本数据集的时间分辨率为逐日4次,空间分辨率为0.05°,时间跨度为2002年-2020年,空间范围覆盖全球。
赵天杰, 余沛
大气海洋高频非潮汐去混频产品(简称去混频产品)是GRACE和GRACE-FO重力卫星解算地球时变重力场的关键背景模型之一。目前,国内外重力卫星反演团队均依赖于德国地学中心定期发布的去混频产品AOD1B,该产品的输入数据主要源自欧洲中长期气候预报中心(ECMWF)发布的大气驱动场。我们基于ECMWF最新发布的ERA5大气再分析驱动场和改进的大气质量积分算法,独立研制了一套大气去混频产品HUST-ERA5,并于国内外首次实现了1小时的时间分辨率,球谐展开为100阶,覆盖2002年至今长达19年的时间跨度(重力卫星的完整生命周期),但需要注意的是,本产品目前仅包含大气分量。具体的,本产品所采取的ERA5数据集是当前最高时空分辨率气象再分析数据集之一,其水平分辨率大约为0.25度,垂直分辨率高达137层,时间分辨率由6小时大幅提升至1小时。此外,本文不仅联合垂直积分和水平积分实现了国际最新AOD1B第六版的完整计算过程,并且通过真实重力场延拓方法进一步改进了物理模型、利用温湿插值方法进一步精化了垂直分层,该改进算法用于本产品的计算。通过多组对比实验证明,HUST-ERA5在3小时分辨率尺度上完全达到了国际AOD1B第六版的精度水平,并且在长期稳定性上呈现更优的表现。在1小时尺度上,HUST-ERA5反映在重力场反演中可进一步削弱星间测距误差,对于下一代重力卫星设计具有重要的参考意义。此外,HUST-ERA5去混频产品亦可广泛运用于低轨卫星定轨以及超导重力仪大气改正等等领域。
杨帆, 罗志才
UHSLC提供了具有两个质量控制级别(QC)的潮汐测量数据。 其中快速交付(FD)数据是在数据收集的1-2个月内发布的,并且只接收关注于大级别转移和明显异常值的基本QC。GLOSS/CLIVAR(以前称为WOCE)“快速”海平面数据是按小时、每天和每月的价值进行分配。这个项目得到了NOAA的气候和全球变化计划的支持。其中每个文件都有一个名称“h######dat”,其中“h”表示每小时的海平面数据,而“###”表示站点号码,每个站点都存在一个文件。UHSLC数据集是GLOSS数据流。在UHSLC数据库中有许多潮汐记录,但骨干是光缆核心网(GCN)——全球300个验潮站的全球集合,它是全球原位海平面网络的基础。该网络被设计成在各种时间尺度上提供全球沿海海平面变化的均匀分布采样。
董文, University of hawaii sealevel center (UHSLC)
本数据为RCP4.5情景下的月干燥指数数据集(Aridity Index, AI)。AI数据为降水与潜在蒸散发的比值。本数据由14个模式平均计算得到。这14个模式分别为:CanESM2;CCSM4;CNRM-CM5;CSIRO-Mk3-6-0;GISS-E2-R;HadGEM2-CC;HadGEM2-ES;inmcm4;IPSL-CM5A-LR;MIROC5;MIROC-ESM-CHEM;MIROC-ESM;MPI-ESM-LR;MRI-CGCM3。空间分辨率为全球2度*2度,时间分辨率为2020年1月-2099年12月。该数据集即可用于中亚大湖区未来干湿变化情景分析,也可用于全球其他区域在未来情景下的干湿过去和格局的分析。
华丽娟
本数据集是一个包含接近36年(1983.7-2018.12)的全球高分辨率地表太阳辐射数据集,其分辨率为3小时/逐日/逐月,10公里,数据单位为W/㎡,瞬时值。该数据集可用于水文建模、地表建模和工程应用。该数据集是基于改进的物理参数化方案并以ISCCP-HXG云产品、ERA5再分析数据以及MODIS气溶胶和反照率产品为输入而生成的。验证并和其他全球卫星辐射产品比较表明,该数据集的精度通常比ISCCP-FD、GEWEX-SRB和CERES全球卫星辐射产品的精度要高。该全球辐射数据集将有助于未来地表过程模拟的研究和光伏发电的应用。
唐文君
全球雪深数据集采用被动微波遥感反演方法制作,数据覆盖时间从1980年到2018年,时间分辨率为逐日,覆盖范围为全球,空间分辨率为25,067.53 m。遥感反演方法采用动态亮温梯度算法,算法考虑积雪特性在时空和空间上的变化,建立了不同频率亮度温度差与实测雪深在空间和季节上的动态关系。长时间序列星载被动微波亮度温度数据来自SMMR、SSM/I和SSMI/S三个传感器。为保证不同传感器亮度温度在时间上的一致性,在雪深提取之前对不同传感器亮度温度进行了交叉订正。通过实测站点的验证表明全球雪深数据相对偏差在30%以内。数据据每一天存放一个txt文件,每个文件由文件头(投影方式)和1383*586的雪深矩阵组成,每个雪深代表一个25,067.53m*25,067.53m的格网。该数据的投影方式为EASE-Grid,下面是每个文件的文件头,将其加到每个文件的前面可以将数据在arcgis中显示。 ncols 1383 // 数据矩阵共1383列 nrows 586 // 数据矩阵共586 xllcorner -17334193.54 //矩阵x方向左下角网格的角落点坐标 yllcorner -7344787.75 //矩阵y方向轴左下角网格的角落点坐标 cellsize 25,067.53 //每个网格的大小 NODATA_value -1 //缺省值
车涛, 李新, 戴礼云
该数据集为全球植被生产力数据,包含总初级生产力(GPP)和净初级生产力(NPP)两部分,由耦合模式比较计划第6阶段(CMIP6)中CNRM-CM6-1模式在Historical情景下模拟得到。数据时间范围为1850-2014年,时间分辨率为月,空间分辨率约为1.406°×1.389°。模拟数据详细说明可见链接http://www.umr-cnrm.fr/cmip6/spip.php?article11。
美国气候模式诊断和对比计划委员会
该数据集为全球生态系统呼吸数据,包含生态系统自养呼吸(Ra)和异养呼吸(Rh)两部分,由耦合模式比较计划第6阶段(CMIP6)中CNRM-CM6-1模式在Historical情景下模拟得到。数据时间范围为1850-2014年,时间分辨率为月,空间分辨率约为1.406°×1.389°。模拟数据详细说明可见链接http://www.umr-cnrm.fr/cmip6/spip.php?article11。
美国气候模式诊断和对比计划委员会
全球ERA-Interim 地面气温再分析数据集(1979-2016)是欧洲中长期天气预报中心(ECMWF)采用ECMWF IFS预报系统(T255,60层),经过窗口为12小时的四维变分同化系统(4DVAR)同化全球不同地区和来源的地表和上层大气的常规观测和卫星遥感资料(TOVS,GOES,Meteosat等)获得。该地面气温(2米气温)数据覆盖时间从1979年1月到2016年12月,时间分辨率为6小时,水平分辨率0.75°,覆盖全球,投影方式为等经纬度投影。数据每个月存放一个NetCDF格式文件,包含经度(longitude)、纬度(latitude)、时间(time)、气温(t2m,单位:K)四个变量,纬向241个格点,经向480个格点。
李斐
河流湖泊等资源是研究地球生态环境的重要内容,影响全球生态系统、热量、物质交换和平衡,是研究全球环境机理变化的重要基础。当前,全球缺乏大尺度、高精度、大范围的湖泊矢量数据,阻碍了有关河流、湖泊的水文研究。研究以陈军等全球河流湖泊数据集作为源数据,结合2010年前后2-3年的国产高分影像GF数据,产生一套全球河流、湖泊数据集。这套数据集弥补了部分区域精度低的缺陷,是具有可编辑性的较高精度的湖、河矢量数据集。
邱玉宝
Randolph冰川目录(Randolph Glacier Inventory,RGI)是GLIMS(Global Land Ice Measurements from Space)发布的全球冰川轮廓的完整目录,目前共发布6个版本:2012年2月发布1.0,2012年6月发布2.0,2013年4月发布3.0,2014年12月发布4.0,2015年7月发布5.0,2017年7月发布6.0。本数据集包括6.0,5.0,4.0和3.2(修正版,2013年8月)共四个版本。 数据按照不同地区进行组织,每个地区包括一个shape文件(.shp文件及其相应的.dbf、.prj和.shx等文件),一个测高数据的.csv文件,每条冰川包含一条记录。 数据来源于GLIMS: Global Land Ice Measurements from Space(http://www.glims.org/RGI/) 数据质量检查包括几何、拓扑和属性检查,包括: 1) 所有多边形都使用ArcGIS Repair Geometry工具进行检查; 2) 删除了小于0.01平方公里的冰川; 3) 拓扑使用Does Not Overlap规则进行检查; 4) 属性表利用Fortran子程序和Python脚本进行数据质量检查。
Global Land Ice Measurements from Space(GLIMS)
该土地覆盖类型产品是欧空局气候变化行动第二阶段产品,其空间分辨率为300米,时间覆盖范围为1992-2015. 空间覆盖范围纬向-90~90度,经向-180~180度,坐标系统为地理坐标WGS84.土地覆盖产品该地表覆盖的分类依据联合国粮食农业组织土地覆盖分类系统(LCCS, Land Cover Classification System)。 该数据用于科研目的需要致谢ESA CCI Land Cover project,并且将发表的文章发送给contact@esalandcover-cci.org
徐希燕
1)该套数据集为来自美国国家环境预报中心(NCEP)和国家大气研究中心(NCAR)联合研制的全球大气再分析数据,是利用观测资料、预报模式和同化系统对全球从1948年到目前的气象资料进行再分析形成的格点资料。数据变量包括地表、近地表(.995sigma层)和不同气压层的多个气象变量,如降水、温度、相对湿度、海平面气压、位势高度、风场和热通量等。 2)覆盖时间为1948年至2018年,其中1948至1957年数据是非高斯格点数据;覆盖范围为全球。空间分辨率为2.5°经纬网格。垂直分层为17个标准气压层,分别为1000、925、850、700、600、500、400、300、250、200、150、100、70、50、30、20、10 hPa,和28 sigma层。部分变量为8层(omega)和12层(humidities);时间分辨率为逐6小时、逐日、逐月和长期逐月平均(1981年至2010年平均)。逐日数据由每日0Z,6Z,12Z和18Z 4个时次值作平均得到的。 3)缺测值为-9.96921e+36f。数据以nc格式存放,文件名为var.time.stat.nc, 每个文件包括经纬度、时间和大气要素变量。 数据的详细情况见数据说明链接http://www.esrl.noaa.gov/pad/data 。
NOAA, NCAR
MODIS土地覆盖类型产品是每年从Terra数据中提取的土地覆盖特征不同分类方案的数据分类产品(MOD12Q1)。本数据为标准MODIS土地覆盖产品MOD12Q1经过重新投影到地理坐标,空间分辨率为0.5度的产品。基本的土地覆盖分类为国际地圈生物圈计划(IGBP, International Geosphere Biosphere Programme)定义的17类,包括11类自然植被分类,3类土地利用和土地镶嵌,3类无植生土地分类。其覆盖经度范围-180-180度,纬度范围为-64-84度。数据格式为GeoTIFF。 该数据可免费使用,版权属于 University of Maryland, Department of Geography and NASA
S.Channan, Channan, 徐希燕
该NDVI数据集是由NASA EOSDIS LP DAAC 和美国地质调查 USGS EROS共同发布的第六版MODIS均一化植被指数产品(2001-2016)。该产品的时间分辨率是16天,空间分辨率0.05度。该版本是在原有1公里分辨率的NDVI产品(MYD13A2)基础上生成的气候模拟格点(CMG)数据产品。 请在致谢中以下方式说明该数据的来源: The MOD13C NDVI product was retrieved from the online in courtesy of the NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, The [PRODUCT] was (were) retrieved from the online [TOOL], courtesy of the NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota.
NASA
该NDVI数据集是最新发布的NOAA全球模拟和绘图项目(GIMMS,Global Inventory Monitoring and Modeling System)长序列(1981-2015)均一化植被指数产品,版本号3g.v1。 该产品的时间分辨率是每月两次,空间分辨率1/12度。时间跨度1981年7月至2015年12月。该产品为共享数据产品,可直接从ecocast.arc.nasa.gov下载。 详情请参考https://nex.nasa.gov/nex/projects/1349/
NCAR
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件