1)数据内容:2001-2018年南极冰盖近地面月气温时空数据集。 2)数据来源及加工方法:利用中分辨率成像光谱仪(MODIS)地表温度测量数据,结合119个气象站的现场气温记录,利用神经网络模型重建了南极冰盖(AIS)近地面气温数据,分辨率为0.05°×0.05°,时间尺度为2001-2018。 3)数据质量描述:精度优于ERA5再分析资料。 4)数据应用成果及前景:该数据库可用于研究南极冰盖近地面气温的时空分布特征,研究SAM和ENSO等对南极气温年际变化的影响。此外,由于数值天气预报模式输入的独立性,该数据集有可能用于气候模式验证和数据同化。
张雪影
数据集为中国多情景多模式逐月平均气温数据,空间分辨率为0.0083333°(约1km),时间为2021年1月-2100年12月。数据为NETCDF格式。数据是根据IPCC耦合模式比较计划第六阶段(CMIP6)发布的全球>100 km气候模式数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国地区降尺度生成。数据采用IPCC最新发布的SSP情景(SSP119、SSP245、SSP585),每个情景包含三个GCMs(EC-Earth3、GFDL-ESM4、MRI-ESM2-0)气候数据,数据集包含的地理空间范围是中国主要陆地,不含南海岛礁等区域。单位为0.1℃。文件命名是GCM_SSP_tmp-30s-序号.nc,30s即0.0083333°,序号从1-40,序号1表示2021.1-2022.12,依次表示年份;以EC-Earth3_ssp119_tmp-30s-1.nc文件为例,表示SSP119情景下EC-Earth3气候模的1km分辨率2021.1-2022.12逐月均温数据,含24个图层。欲更深入的理解数据请参阅文献引用方式下的数据作者已发表的论文。
彭守璋
近地表气温是反映气候变化的重要物理参数。为了获得中国地区高时空分辨率的日数据(Tmax、Tmin和Tavg),我们充分分析了各种现有数据(再分析数据、遥感数据和原位数据)的优缺点。针对不同的天气条件建立了不同的Ta重建模型,并通过建立不同区域的修正方程进一步提高数据精度。最后,获得了1979 - 2018年中国逐日气温数据集(Tmax、Tmin和Tavg),空间分辨率为0.1°。 对于Tmax,使用原位数据的验证表明,均方根误差(RMSE)范围为0.86°C至1.78°C,平均绝对误差(MAE)范围为0.63°C至1.40°C,皮尔逊系数(R2)范围为0.96至0.99。Tmin的RMSE为0.78°C ~ 2.09°C, MAE为0.58°C ~ 1.61°C, R2为0.95 ~ 0.99。对于Tavg, RMSE范围为0.35°C ~ 1.00°C, MAE范围为0.27°C ~ 0.68°C, R2范围为0.99 ~ 1.00。此外,利用多种评价指标分析Ta的时空变化趋势,Tavg增加幅度大于0.0°C/a,与全球变暖的总体趋势一致。 综上所述,该数据集具有较高的空间分辨率和可靠的精度,弥补了之前在高空间分辨率下缺失的温度值(Tmax、Tmin和Tavg)。该数据集也为研究气候变化,特别是高温干旱和低温冷害提供了关键参数。
方舒, 毛克彪
冰川区域内的近地表气温变化和温度预测的可靠性是水文和冰川学研究的重要问题,由于缺乏高海拔观测,这些问题仍然难以捉摸。本研究基于从 6 个不同流域的 12 个自动气象站、43 个温度记录仪和 6 个国家气象站收集的 2019 年气温数据,展示了不同冰川/非冰川地区的气温变化,并评估了不同温度预测的可靠性,以减少消融估计中的误差。结果表明,不同气候背景下温度递减率 (LRs) 的空间异质性很大,最陡峭的 LRs 位于寒冷干燥的青藏高原西北部,最低的 LRs 位于受暖湿季风影响的青藏高原东南部。青藏高原西部和中部高海拔冰川区的近地表气温受下降风的影响较小,因此可以从冰川外的记录中线性预测。相比之下,青藏高原东南部温带冰川上盛行的局地降风风对环境气温的降温作用明显,因此,冰川上气温明显低于同等海拔的非冰川地区。因此,来自低海拔非冰川站的线性温度预测可能导致正度日数高估 40%,特别是对于流线距离长且冷却效果显着的大型冰川。这些发现提供了值得注意的证据,表明在估算青藏高原冰川融化时,应仔细考虑不同气候条件下高海拔冰川的不同 LR 和相关冷却效应。
杨威
本数据为基于WRF模式4.1.2版本和WRFDA同化系统4.1.2版本建立的中亚区域再分析资料,变量包含气温、气压、风速、降水、辐射。再分析的建立使用了循环同化的方式,每6小时使用3DVAR同化一次,同化的资料包括常规大气观测和卫星辐射资料。其中常规资料主要来源为GTS,来源包括人工站、自动站、探空和飞机报,观测要素包括气温、气压、风速和湿度。卫星观测包括反演数据和辐射数据,反演数据主要为极轨气象卫星(NOAA-18、NOAA-19、METOP-A和METOP-B)反演的云导风,并重采样到54km水平分辨率;辐射数据包含了MSU、AMSU和MHS等微波辐射和HIRS红外辐射数据。模拟采用双层嵌套的方式,水平分辨率分别为27公里和9公里,垂直方向共38层,模式层顶为10hPa。模式的侧边界条件由ERA-Interim再分析逐6小时的分析场提供,模式使用的物理方案为Thompson微物理方案,CAM辐射方案,MYJ边界层方案、Grell对流方案和Noah陆面模式。本资料覆盖区域包括中亚地区的哈萨克斯坦、塔吉克斯坦、吉尔吉斯斯坦、土库曼斯坦和乌兹别克斯坦五个国家以及里海、咸海、巴尔喀什湖、伊萨克湖等中亚地区的湖泊,可用于该区域的气候、生态、水文等方面的研究。以中亚地区台站观测的降水为参照,本数据的模拟效果和融合降水产品MSWEP相似,优于ERA5和ERA-Interim。
姚遥
1) 青藏高原地面气象驱动数据集(2019-2020),包括地表温度(Land surface temperature)、地表降水率(Mean total precipitation rate)、下行短波辐射(Mean surface downward long-wave radiation flux)以及下行长波辐射(Mean surface downward short-wave radiation flux)4个气象要素。 2) 该数据集以ERA5再分析数据为基础,辅以MODIS NDVI、MODIS DEM、FY3D MWRI DEM数据产品。通过多元线性回归方法对ERA5再分析数据进行降尺度处理,最后通过重采样生成。 3) 青藏高原地面气象驱动数据集(2019-2020)各数据要素均以TIFF格式存储,时间分辨率包括(每日、每月、每年),空间分辨率统一为0.1°×0.1°。 4) 本数据方便不会使用.nc格式的此类同化数据的科研人员和学生使用。在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。
朱立平, 杜宝隆
中亚的生态系统脆弱,自然灾害频发,水资源短缺,冰川加速融化,是气候变化敏感区之一。在评估该地区的脆弱性、影响性和适应性时,急需高分辨率的气候预估数据集。为此,我们对来自CMIP5的三个偏差订正后的全球气候模式(MPI-ESM-MR、CCSM4和HadGEM2-ES),在中亚地区开展了9千米的动力降尺度,继而生产了一个中亚高分辨率气候预估数据集,将其命名为HCPD-CA(High-resolution Climate Projection Dataset in Central Asia)。它的历史时段是1986-2005,未来时段是2031-2050,排放情景是RCP4.5。这个数据集有4个静态变量和10个常被用于驱动生态和水文模型的气象要素。静态变量有地形高度(HGT, m)、土地利用类型(LU_INDEX, 21 categories)、陆地水体(LANDMASK, 1代表陆地, 0代表水体)和土壤类型(ISLTYP, 16 categories)。10个气象要素是日降水量(PREC,mm/day)、2米日平均/最高/最低温(T2MEAN/T2MAX/T2MIN,K)、2米日平均相对湿度(RH2MEAN,%)、10米日平均维向和经向风(U10MEAN/V10MEAN,m/s)、日平均向下短波/长波辐射(SWD/LWD,W/m2)和日平均地表气压(PSFC,Pa)。评估结果显示:这个数据产品在描述中亚各个气象要素的平均态上有很高的质量,这保证了其可用性。未来气候变化的主要特征是:升温剧烈(年均温升高1.62-2.02℃),向下短波和长波辐射显著增强,其他气象要素变化很小。HCPD-CA数据集可被用于评估未来气候变化对中亚的多方面影响,特别是在生态和水文系统上。
邱源
北极大河流域地面气象要素驱动数据集,包括地表日最大、最小及平均气温、日降水量、日均风速共5个要素。数据为NETCDF格式,水平空间分辨率约为0.1度(0.083°),范围包括了Yenisy、Lena、Ob、Yukon及Mackenzie流域,该数据可为北极大河流域水文过程模拟提供驱动数据。利用进一步质量控制的全球历史气候网数据集(GHCN)、全球日气象数据集(GSOD)、美国历史气候网数据集(USHCN)、加拿大气候数据集(AHCCD)、前苏联/俄罗斯气候数据集(USSR/Russia)的气象站点日观测数据,以ClimateNA(北美)、Worldclim(欧亚)数据作为背景场,采用薄板样条函数插值方法生成。
赵求东, 吴玉伟
泛第三极区域数据集呈现海量、零散等特征,现有数据集种类较多,覆盖范围广,涉及水文、生态、大气以及灾害等多个领域,但这些数据集来自不同平台,在尺度、数据格式等方面各不相同,数据的可利用性较差,不利于科研人员展开泛第三极地区的科学研究,同时也无法发挥出这些数据集的巨大潜力。本研究采用来自多个数据平台的最新数据使用数据集成、数据融合等集成方法生产更高质量和更新年份的泛第三极综合数据集。根据不同来源、不同分辨率的数据,对这些数据进行质量控制,根据数据科学内容进行集成。对部分数据,利用数据融合技术,融合不同来源的数据,产生数据质量更高、年份更新的创新性数据产品,更好地服务于陆面过程模型等研究中。泛第三极数据集根据自然数据和社会经济数据分别采用泛第三极流域边界和泛第三极国家边界获取数据,统一采用罗宾逊(Robinson)投影格式。获得了多源集成的包含基础数据集、冰冻圈数据集、水文大气数据集、生态数据集、灾害数据集和人文地理数据集共六类数据集。 (1)基础数据集包含边界数据集、30米土地覆被数据、植被功能数据、30米SRTM数字高程数据和HWSD土壤质地数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极基础数据集数据文档.docx”。 (2)冰冻圈数据集包含冻土数据集、冰川分布数据、冰湖分布数据和积雪深度数据。其中,冻土数据集又包含冻土分布数据、冻土水热分带数据、冻土指数数据和冻土表面粗糙度数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极冰冻圈数据集数据文档.docx”。 (3)水文大气数据集包含河流湖泊数据集、蒸散发数据集和大气数据集。河流湖泊数据集包含河流数据和湖泊数据,蒸散发数据集包含MODIS蒸散发数据、土壤蒸发数据、水体冰雪蒸发数据和冠层截流蒸发数据,大气数据集包含ERA5-Land再分析数据集中的地表热辐射数据、地表太阳辐射数据、降水数据、气压数据、温度数据和风场数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极水文大气数据集数据文档.docx”。 (4)生态数据集包含总初级生产力数据和植被蒸腾数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极生态数据集数据文档.docx”。 (5)灾害数据集包含滑坡数据和地震区划数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极灾害数据集数据文档.docx”。 (6)人文地理数据集则包含交通道路数据、铁路机场数据、人口密度数据、主要国家人均GDP数据、收入水平数据和世界遗产分布数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极人文地理数据集数据文档.docx”。 泛第三极综合数据集将为相关研究者提供便利,避免相关研究在获取数据和处理数据的过程中重复劳动,节省研究者宝贵的时间,并且在陆面过程模型、水文模型和生态模型等科学研究中起到重要作用,促进泛第三极地区科学研究的发展,为泛第三极地区的科学研究提供数据支撑。
李虎, 潘小多, 李新, 盖春梅, 冉有华
This file contains the datasets used in a manuscript published in JGR Biogeosciences (Nieberding, F., Wille, C., Ma, Y., Wang, Y., Maurischat, P., Lehnert, L., and Sachs, T.: Winter daytime warming and shift in summer monsoon increase plant cover and net CO2 uptake in a central Tibetan alpine steppe ecosystem, Journal of Geophysical Research: Biogeosciences, 126, e2021JG006441, doi:10.1029/2021JG006441, 2021.). The manuscript contains all the details on how the data was generated and processed and the corresponding code was published in the supplementary material.
Felix Nieberding, 马耀明, Christian Wille, Lukas Lehnert, Yuyang Wang, Philipp Maurischat, Weiqiang Ma, Torsten Sachs
包括典型冰川(浪卡子县枪勇冰川:东经90.23°,北纬28.88°,海拔4898米,地表覆被为基岩;申扎县甲岗山冰川:东经88.69°,北纬30.82°,海拔5362米,地表覆被为碎石和杂草)2019-2020年自动气象观测数据。枪勇冰川记录包含1.5米温度、1.5米湿度、2米风速、2米风向、地表温度等数据。该自动气象站的数据采用USB离线获取的方式收集,初始记录时间为2019年8月6日19时10分,记录间隔为10分钟,2019年10月24日现场下载数据,未能连接上。2020年12月20日16:30到现场下载数据,仍然无法连接到电脑,于是将数采仪取回带到北京后将数据读出。数据未缺失,但风速数据在2020年7月14日9:30之后有问题(极可能是风向标被破坏所致)。甲岗山冰川初始记录时间为2019年8月9日15时00分,记录间隔为1分钟,电源主要是通过蓄电池和太阳能板来维持。该自动气象站无内部存储,数据每小时通过GPRS上传至HOBO网站,由专人定期下载。2020年1月5日23:34,1.5米温湿度传感器出现异常,温度和湿度数据丢失。2020年6月30日21:20之后所有数据完全无法通过网站下载。2020年12月19日将数采仪取回,下载到2020年6月23日19:43至9月25日3:36的数据。之后更换温湿度传感器,于12月21日12:27重新开始观测。目前数据由三段组成(2019.8.9-2020.6.30;2020.6.23-2020.9.25;2020.12.19-2020.12.29),经检查,数据有部分缺失,个别数据因记录电池电压,时间上有重复,需要核对。甲岗山冰川前端气象观测数据使用美国ONSET 公司HOBO RX3004-00-01型号自动气象站采集,温湿度探头型号为S-THB-M002 ,风速风向传感器型号S-WSET-B ,地温温度传感器型号S-TMB-M006 。枪勇冰川前端气象观测数据使用美国ONSET 公司HOBO U21-USB型号自动气象站采集,温湿度探头型号为S-THB-M002 ,风速风向传感器型号S-WSET-B ,地温温度传感器型号S-TMB-M006 。
张东启
该数据集是来自CMIP5的3个全球气候模式(CCSM4、HadGEM2-ES和MPI-ESM-MR)的高分辨率动力降尺度结果,使用的区域模式是WRF,覆盖中亚五国,空间分辨率是9km,未来时段是2031-2050(包含1.5-2℃升温阈值对应的10年区间),历史参考时段是1986-2005,碳排放情景是RCP4.5,包含的变量是2米气温和降水(对流和非对流降水),时间分辨率是年。该数据可以用于中亚气候预估。
邱源
CMIP5(Coupled Model Intercomparison Project Phase 5)是气候耦合模型相互比较项目的第五阶段实验,提供了一个多气候模式环境,可用于预估“一带一路”关键节点区域未来气候变化,以应对关键节点区域的环境气候问题。本数据集以“一带一路”关键节点区域为研究区,对CMIP5的43个气候模式对研究区未来气候变化的预估能力进行评估,以模拟结果的均方根误差为标准,分别选取RCP4.5及RCP8.5情景下模拟能力最优的气候模式,对研究区进行气候模拟,得到研究区2006至2065年降雨量、气温的未来预估数据,并使用统计降尺度方法使数据集空间分辨率达到10km,时间分辨率为每月。每一期数据具有三个波段,分别是气温最大值、气温最小值和降雨量。本数据集中,降雨量单位为kg/(m^2*s),气温单位为K。本数据集为应对关键节点区域的环境气候问题提供数据基础。
李炘妍, 凌峰
对未来气候变化的有效评价,特别是对未来降水量的预测,是制定适应战略的重要依据。本数据是基于RegCM4.6模型,对CanEMS2 (RCP 45和RCP85)、GFDL-ESM2M (RCP2.6、RCP4.5、RCP6.0和RCP8.5)、HadGEM2-ES(RCP2.6、RCP4.5和RCP8.5)、IPSL-CM5A-LR(RCP2.6、RCP4.5、RCP6.0和RCP8.5)、MIROC5(RCP2.6、RCP4.5、RCP6.0和RCP8.5)和NorESM1-M(RCP2.6、RCP4.5、RCP6.0和RCP8.5)等多模型不同碳排放浓度情景下进行区域动力降尺度,获得2007-2099年空间分辨率为0.25度,时间分辨率分别为3小时(部分为6小时)、逐日和逐年的21套中国全境未来气候数据。
潘小多, 张磊
本数据集包含珠穆朗玛大气与环境综合观测研究站,2017-2018年观测的气温、气压、相对湿度、风速、降水、总辐射、P2.5浓度、短波辐射等日平均值。 数据服务对象为从事青藏高原气象研究的学生和科研人员。 其中降水数据是人工雨量桶观测,蒸发数据为Φ20mm蒸发皿观测,其它均为半小时的观测值处理后得到的日均值。 所有数据严格按照仪器操作规范进行观测和采集,在加工生成数据时,剔除了一些明显的误差数据。
马耀明
本数据集包括2017年1月1日至2018年12月31日藏东南站,大气气温、相对湿度、降水、风速、风向、净辐射、气压等的日平均数据。 该数据服务对象为从事气象、大气环境、生态研究的学生和科研人员。 其中各种气象要素的单位如下:气温℃;降水mm;相对湿度%;风速m/s;风向°;净辐射W/m2;气压hPa;可入肺颗粒物μg/m3。 所有数据均是原始观测数据计算得到的日平均值。严格按照仪器操作规范进行观测和数据采集,并已经在相关学术期刊发表;加工过程中剔除了一些明显误差数据,缺失数据用空值。
罗伦, 朱立平
黑河流域近地表大气驱动数据,是采用Weather Research and Forecasting(WRF)模式制备的黑河流域逐时0.05°× 0.05°包括2m气温、地表气压、2m水汽混合比、辐射、10m风场和累积降水等近地表大气要素的驱动数据。通过与15个中国气象局常规自动气象站(CMA)站点逐日观测资料和两期黑河流域生态-水文过程综合遥感观测联合试验(WATER和HiWATER)的站点逐时观测资料在不同时间尺度上进行验证,得出以下结论:2m地表气温、地表气压和相对湿度都是比较可信的,尤其是2m地表气温和地表气压,平均误差都很小且相关系数都达到0.96以上;向下短波辐射与WATER站点观测数据的相关性达到0.9以上;降水资料通过降雨和降雪两种相态与观测资料在不同时间尺度和空间尺度上进行验证,降雨与观测资料在年、月、日和时尺度上吻合得很好,与观测资料在年和月尺度上的相关系数高达0.94和0.84;降雪与观测资料在月尺度上的相关性达到0.78,与积雪覆盖率MODIS遥感产品的空间分布相当吻合,峰值分布也一致。液态和固态降水的验证表明WRF模式能够在地形复杂而干旱的黑河流域进行降尺度分析,所模拟的资料能够满足流域尺度水文建模和水资源平衡研究。 2013年提供了2000-2012年数据。 2016年更新了2013-2015年数据。 2019年更新了2016-2018年数据。 2022年更新了2019-2021年数据。
潘小多
青藏高原0.01°空间分辨率近地表气温数据集(1979-2018)通过对中国区域地面气象要素驱动数据集中空间分辨率为0.1°的气温数据进行降尺度得到。它包含日均气温和三小时分辨率的瞬时气温。其空间分辨率为0.01°(约1km)。时间范围为1979年到2018年。空间范围为73°E-106°E, 23°N-40°N。该数据集可以为地表辐射与能量平衡、气候变化、水文气象等领域的研究与应用提供较高空间分辨率的近地表气温数据。
周纪, 王伟, 马晋
青藏高原野外观测研究平台是开展青藏高原科学观测和研究的前沿阵地。基于高原地表过程与环境变化的陆面-边界层立体综合观测为青藏高原地气相互作用机理及其影响研究提供了大量的珍贵数据。本数据集综合了珠穆朗玛大气与环境综合观测研究站、藏东南高山环境综合观测研究站、那曲高寒气候环境观测研究站、纳木错多圈层综合观测研究站、阿里荒漠环境综合观测研究站、慕士塔格西风带环境综合观测研究站2005-2016年逐小时大气、土壤和涡动观测数据。包含了由多层风速风向、气温、湿度以及气压、降水组成的梯度观测数据,辐射四分量数据,多层土壤温湿度和土壤热通量观测数据以及感热通量、潜热通量和二氧化碳通量组成的湍流数据。这些数据能广泛的应用于青藏高原气象要素特征分析、遥感产品评估和遥感反演算法的发展、数值模拟的评估和发展等研究中。
马耀明
太阳总辐射和直接辐射采用国产辐射表(TBQ-4-1,TBS-2,China)测量,温湿度采用自动气象站(HOBO weather station, Model H21, Onset Company, USA)测量。本数据为太阳辐射和气象要素数据,包括太阳总辐射和直接辐射,波长范围270-3200nm,单位W/m2。温湿度和水汽压单位分别为℃、%、hPa。太阳辐射和气象要素数据来源于数据提供者的测量。数据覆盖时间为2013-2016年。该数据集可以用于中国亚热带地区的太阳辐射及其变化机制等相关研究。
白建辉
This data set is output from WRF model. The data include ‘LU_INDEX’ (land use category), ‘ZNU’(eta values on half (mass) levels), ‘ZNW’(eta values on full (w) levels),’ZS’(depths of centers of soil layers), ‘DZS’ (thicknesses of soil layers), ‘VAR_SSO’ (variance of subgrid-scale orography), ‘U’(x-wind component), ‘V’(y-wind component),’W’(z-wind component),’T’(perturbation potential temperature (theta-t0)), ‘Q2’ ('QV at 2 M), ‘T2’ (TEMP at 2 M), ‘TH2’ ('POT TEMP at 2 M), ‘PSFC’ (SFC pressure), ‘U10’ (U at 10 M), ‘V10’ (V at 10 M), ‘QVAPOR’ (Water vapor mixing ratio), ‘QLOUD’ (Cloud water mixing ratio),’QRAIN’ (Rain water mixing ratio), ‘QICE’ (Ice mixing ratio), ‘QSNOW’ (Snow mixing ratio), ‘SHDMAX’ (annual max veg fraction), ‘SHDMIN’ (annual min veg fraction), ‘SNOALB’ (annual max snow albedo in fraction), ‘TSLB’ (soil temperature), ‘SMOIS’ (soil moisture), ‘GRDFLX’ (ground heat flux), ‘LAI’ (Leaf area index),’ HGT’ (Terrain Height), ‘TSK’ (surface skin temperature), ‘SWDOWN’ (downward short wave flux at ground surface), ‘GLW’ (downward long wave flux at ground surface), ‘HFX’ (upward heat flux at the surface), ‘QFX’ (upward moisture flux at the surface), ‘LH’ (latent heat flux at the surface), ‘SNOWC’ (flag indicating snow coverage (1 for snow cover)), and so on. The data is in netCDF format with a spatial resolution of 10 km.
Xuelong Chen
1)数据内容:包含中亚地区,区域范围:30°N~60°N,40°E~90°E; 2)数据来源:对CMIP数据集进行加工,采用双线性插值方法将不同分辨率模式数据插值到0.5°× 0.5°,CRU观测数据1901年——2014年; 3)数据质量:时间长度较长,数据质量良好,缺测值统一用999标识; 3)数据应用成果集前景:数据已用于进行对中亚地区温度模拟能力评估,通过计算并分析中亚地区的温区的域平均、相对误差、均方根误差、泰勒图、EOF分解、季节变化等评估气候系统模式模拟中亚地区历史气候变化的能力。 4) 数据可靠性:通过对比分析观测和模拟资料的年变化,数据结果均呈显著的增温趋势,通过对数据结果进行相关性检验,均通过99%信度检验。同时,CMIP计划数据和CRU数据也是较为常用的数据集,在很多进行气候变化的研究中,也经常采用这样的数据。
马金玉
本数据为中亚大湖区2017年逐6小时分辨率常规和卫星资料。其中常规资料包含中亚大湖区及其周边地区(中国、哈萨克斯坦、吉尔吉斯斯坦、土库曼斯坦、塔吉克斯坦、乌兹别克斯坦、阿富汗、俄罗斯、伊朗、巴基斯坦、印度等)的地面台站和探空站点观测,观测要素包含气温、气压、风速和湿度,每个时次的站点数平在600个左右,站点间距离在10-100km之间;卫星资料来源于极轨气象卫星(NOAA-18、NOAA-19、METOP-A和METOP-B)反演的云导风,并重采样到30km水平分辨率。云导风通过追踪示踪云的移动来估计风速,由示踪云的高度确定风场高度。本数据全部来源于全球电信系统Geostationary Tether Satellite(GTS),经过质量控制剔除了质量较差的观测资料。该数据可应用于中亚大湖区的资料同化,也可用于检验和评估模式对中亚大湖区的数值模拟。
姚遥
中亚地区气温和辐射数据时间分辨率为月尺度,空间分辨率分别为0.5度和0.05度,采用GCS_WGS_1984投影坐标系统。其中,辐射数据计算采用了GLDAS的下行短波辐射、空气温度数据和空气水汽压数据、MOD11C3的地表温度/发射率数据、MCD43C3地表反照率数据和ASTER_GEDv4.1比辐射率数据计算得到;温度数据计算采用了MOD06_L2云产品和MOD07_L2大气剖面数据计算得到。本数据基于先进的遥感算法,充分利用目前精度较高的遥感数据和产品,区别于传统的气候模式对气候要素的估算原理。本数据可用于中亚地区水资源时空变化特征、农业水资源供需关系分析和水资源开发潜力评估等。
宋进喜, 蒋晓辉
为了了解北半球气温变化的时空变化特征,该研究用 CRU(Climatic Research Unit)网格数据计算了 30 年(1971-2000)年平均气温的空间分布。年平均气温随着纬度的升高而降低,变化范围从大于 30 °C 到小于-25 °C。在相同纬度地区,高海拔地区(比如青藏高原、蒙古高原和西西伯利亚山区)的年平均气温凸显低温的趋势。同时我们完成了分辨率为0.5 °× 0.5 °北半球1901-2016年间的年平均气温变化趋势分布图。
尹国安, 石亚亚
该数据集包含了2018年1月1日至2018年12月31日黑河流域地表过程综合观测网中游大满超级站气象要素梯度观测系统数据。站点位于甘肃省张掖市大满灌区农田内,下垫面是玉米田。观测点的经纬度是100.3722E, 38.8555N,海拔1556m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m、15m、20m、30m、40m处,共7层,朝向正北;气压计安装在2m处;翻斗式雨量计安装在塔西侧约8m处,架高2.5m;四分量辐射仪安装在12m处,朝向正南;两个红外温度计安装在12m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处,其中两块(Gs_2、Gs_3)埋设在棵间,一块(Gs_1)埋设在植株下面;平均土壤温度传感器TCAV埋设在地下2cm、4cm处,朝向正南,距离塔体2m处;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm处,在距离气象塔2m的正南方;土壤水分传感器分别埋设在地下2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm处,在距离气象塔2m的正南方;光合有效辐射仪安装在12m处,探头朝向是垂直向上;另有四个光合有效辐射仪分别架设在冠层上方和冠层内,冠层上方安装在12m(探头垂直向上和向下方向各一个)、冠层内安装在0.3m(探头垂直向上和向下方向各一个)高处,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m、WS_15m、WS_20m、WS_30m、WS_40m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m、WD_15m、WD_20m、WD_30m、WD_40m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m、Ta_15m、Ta_20m、Ta_30m、Ta_40m和RH_3m、RH_5m、RH_10m、RH_15m、RH_20m、RH_30m、RH_40m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、平均土壤温度(TCAV)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:百分比)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度) 、光合有效辐射(PAR)(单位:微摩尔/平方米秒)、冠层上向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒)和冠层下向上与向下光合有效辐射(PAR_D_up、PAR_D_down)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;2018.9.17-11.7由于采集器的问题,气象梯度部分的数据缺失;由于采集器通道问题,平均土壤温度TCAV数据在11月7日后数据不正确。(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-6-10 10:30。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
李新, 车涛, 徐自为, 任志国, 谭俊磊
本数据为RCP4.5情景下的月干燥指数数据集(Aridity Index, AI)。AI数据为降水与潜在蒸散发的比值。本数据由14个模式平均计算得到。这14个模式分别为:CanESM2;CCSM4;CNRM-CM5;CSIRO-Mk3-6-0;GISS-E2-R;HadGEM2-CC;HadGEM2-ES;inmcm4;IPSL-CM5A-LR;MIROC5;MIROC-ESM-CHEM;MIROC-ESM;MPI-ESM-LR;MRI-CGCM3。空间分辨率为全球2度*2度,时间分辨率为2020年1月-2099年12月。该数据集即可用于中亚大湖区未来干湿变化情景分析,也可用于全球其他区域在未来情景下的干湿过去和格局的分析。
华丽娟
本数据集包含从2017年1月1日到2018年12月31日,纳木错台站观测的气温、气压、相对湿度、风速、降水、总辐射等日值。 数据集加工方法为原始数据经过质量控制后形成连续的时间序列。满足国家气象局和世界气象组织(WMO)对气象观测原始数据的精度,剔除了曳点数据和传感器出现故障造成的系统误差。 该数据的服务对象为从事大气物理、大气环境、气候、冰川、冻土等学科科学研究和人才培养的专业人员。主要应用于冰川学、气候学和环境变化、寒区水文过程以及冻土学等学科领域。 测量参数的单位和精度如下: 空气温度,单位:℃,精度:0.1℃; 空气相对湿度,单位:%,精度:0.1%; 风速,单位:m/s,精度:0.1m/s; 气压,单位:hPa,精度:0.1hPa; 降水,单位:mm,精度:0.1mm; 总辐射,单位:W/m2,精度:0.1W/m2。
王君波, 邬光剑
该数据集记录了阿里荒漠环境综合观测研究站,2017-2018年气象数据集,数据时间分辨率为天。包含如下基本气象参数:气温(距地面1.5米,半小时观测一次,单位:摄氏度)、相对湿度(距地面1.5米,半小时一次,单位:%)、风速(距地面1.5米,半小时一次,单位:米/秒)、风向(距地面1.5米,半小时一次,单位:度)、气压(距地面1.5米,半小时一次,单位:hPa)、降水量(24时一次,单位:毫米)、水汽压(单位:Kpa)、蒸发(单位:毫米)、向下短波辐射(单位:W/m²)、向上短波辐射(单位:W/m²) 、向下长波辐射(单位:W/m²) 、向上长波辐射(单位:W/m²) 、净辐射(单位:W/m²)、地表反照率(单位:%)。 数据采集地点:中国科学院青藏高原研究所阿里荒漠环境综合观测研究站观测场,经度:79°42'5";纬度:33°23'30";海拔:4264米。 数据从阿里站自动气象站直接下载,其中降水数据是自动雨雪量计和人工观测校正得到每天的降水量,其它均为半小时的观测值经平均得到逐日均值。 观测仪器型号:温度和湿度:HMP45C空气温湿度探头;降水:T200-B雨雪量仪传感器;风速和风向: Vaisala 05013风速风向传感器;净辐射:Kipp Zonen NR01净辐射传感器;气压:Vaisala PTB210大气压传感器。采集器型号:CR 1000,采集时间:30分钟。 本数据表是由专人根据观测记录进行加工和质量控制。严格按照仪器操作规范进行观测和数据采集,在加工生成数据表时,剔除了一些明显误差数据
赵华标
数据内容:本数据集包括1998-2017年青藏高原逐年的气温和降水格点数据,是进行气候变化及其对生态环境影响的基础性数据。数据来源及加工:源数据来自基于国家气象信息中心基础资料专项最新整编的中国地面高密度台站(2400多个国家级气象观测站)的气温和降水日值资料,对缺测站点进行预处理之后,利用ANUSPLIN软件的薄盘样条法 (TPS,Thin Plate Spline)进行空间插值,生成青藏高原及200km缓冲区空间分辨率1km的年值格点数据。数据应用:该数据可用于气候变化对生态环境影响的研究中。
丁明军
试验所采用的区域气候模式(RCM)是国际理论物理中心的RegCM4 (Giorgi et al., 2012),模拟区域为联合区域气候降尺度协同试验第二阶段东亚(CORDEX Phase II East Asia)的推荐区域,覆盖整个中国及其周边的东亚地区。模式的水平分辨率为25 km,模式垂直方向是18层,层顶高度为10 hPa,模式的参数设置按照Gao et al. (2016, 2017),并根据韩振宇等 (2015) 更新了中国土地覆盖数据,以可以地描述下垫面植被状况。RegCM4所需的初始和侧边界条件由CMIP5全球气候模式HadGEM2-ES的模拟结果提供(RCP4.5情景),数据主要包含气温和降水要素。
高学杰
本数据是通过建立雅鲁藏布江流域WEB-DHM分布式水文模型,以气温、降水、气压等作为输入数据,模拟输出的5km逐月水文数据集,包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。本数据是通过建立雅鲁藏布江流域WEB-DHM分布式水文模型,以气温、降水、气压等作为输入数据,模拟输出的5km逐月水文数据集,包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。
王磊
基于WRF模式,以ERA5再分析资料为初始和边界场,通过动力降尺度的方法,初步获得了青藏高原高分辨率低层大气结构和地气交换数据集。该数据集时间范围为2014年8月1日-8月31日,时间分辨率1小时,水平范围25oN-40oN,70oE-105oE,水平分辨率为0.05°。数据格式为NetCDF,每一小时数据输出一个文件,文件以日期命名。低层大气结构数据包含温度、相对湿度、水汽混合比、位势高度、经向风、纬向风气象要素,垂直方向为34层等压面;地气交换数据集包含地表接收的向上/向下短波辐射、向上/向下长波辐射、地表感热和通量、2米气温和水汽混合比、10米风等。该数据集可对青藏高原天气过程和气候环境研究提供数据支撑。
马舒坡
数据内容:本数据集包含3种分辨率(0.25度、0.75度和2度)青藏高原多年平均月温度递减率(单位:℃/m)网格数据 数据来源及加工方法:基于高程标准差和相关性阈值动态检测不同分辨率网格内MODIS地温-海拔样本的有效性来获得局部可靠的温度递减率 数据质量描述:基于青藏高原113个站点的1980-2014年间日平均气温观测,对ERA-Interim气温数据应用0.75度气温递减率产品进行日平均气温的空间降尺度,使其验证误差(均方根误差)由~4℃降低到~2℃。 数据应用成果及前景:该数据集可应用于多种再分析资料的气温降尺度。
张凡, 张宏波
本数据是通过建立长江黄河源WEB-DHM分布式水文模型,以气温、降水、气压等作为输入数据,以GAME-TIBET数据作为验证数据,模拟输出的5km逐月水文数据集,包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。数据是基于WEB-DHM分布式水文模型,以气温、降水、气温等(源自itp-forcing和CMA)为输入数据,以GLASS、MODIA、AVHRR为植被数据,SOILGRID及FAO为土壤参数建立起的模型,并通过对径流、土壤温湿度的率定与验证获得的1998-2017年长江黄河源5公里逐月格网径流与蒸发。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊
该数据集包含了2018年8月31日至2018年12月24日青海湖流域地表过程综合观测网高寒草甸草原混合草原超级站气象要素梯度观测系统数据。站点位于青海省天峻县苏里路旁侧,下垫面是高寒草甸和高寒草原的混合。观测点经纬度为:东经 98°35′41.62″E,北纬 37°42′11.47″N,海拔3718m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m、15m、20m、30m、40m处,共7层,朝向正北;气压计安装在3m处;翻斗式雨量计安装在塔西偏北侧10m平台上;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处;土壤温度探头埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的正东方;土壤水分传感器分别埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的正东方;光合有效辐射仪安装在6m处,探头垂直向上和向下方向各一个,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m、WS_15m、WS_20m、WS_30m、WS_40m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m、WD_15m、WD_20m、WD_30m、WD_40m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m、Ta_15m、Ta_20m、Ta_30m、Ta_40m和RH_3m、RH_5m、RH_10m、RH_15m、RH_20m、RH_30m、RH_40m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm)(单位:摄氏度) 、向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018/8/31 10:30。
李小雁
三江源及区域国家标准气象站逐月气象数据,包含32个气象站,主要包括平均本站气压、极端最高本站气压、极端最高本站气压出现日、极端最低本站气压、极端最低本站气压出现日、平均气温、极端最高气温、极端最高气温出现日、极端最低气温、极端最低气温出现日、平均气温距平、平均最高气温、平均最低气温、日照时数、日照百分率、平均相对湿度、最小相对湿度、最小相对湿度出现日期、降水量、日降水量>=0.1mm日数、最大日降水量、最大日降水量出现日、降水距平百分率、平均风速、极大风速、极大风速之出现日、最大风速、极大风速之风向、最大风速之风向、最大风速之出现日26个变量。数据格式为txt,以站点ID命名,每个文件26列,各列数据的名称、单位以含义在SURF_CLI_CHN_MUL_MON_readme.txt文件中进行了说明。所包含的站点列表如下表: site_id lat lon elv name_cn 52754 37.33 100.13 8301.50 刚察 52833 36.92 98.48 7950.00 乌兰 52836 36.30 98.10 3191.10 都兰 52856 36.27 100.62 2835.00 恰卜恰 52866 36.72 101.75 2295.20 西宁 52868 36.03 101.43 2237.10 贵州 52908 35.22 93.08 4612.20 伍道梁 52943 35.58 99.98 3323.20 兴海 52955 35.58 100.75 8120.00 贵南 52974 35.52 102.02 2491.40 同仁 56004 34.22 92.43 4533.10 托托河 56018 32.90 95.30 4066.40 杂多 56021 34.13 95.78 4175.00 曲麻莱 56029 33.02 97.02 3681.20 玉树 56033 34.92 98.22 4272.30 玛多 56034 33.80 97.13 4415.40 清水河 56038 32.98 98.10 9200.00 石渠 56043 34.47 100.25 3719.00 果洛 56046 33.75 99.65 3967.50 达日 56065 34.73 101.60 8500.00 河南 56067 33.43 101.48 3628.50 久治 56074 34.00 102.08 3471.40 玛曲 56080 35.00 102.90 2910.00 合作 56106 31.88 93.78 4022.80 索县 56116 31.42 95.60 3873.10 丁青 56125 32.20 96.48 3643.70 囊谦 56128 31.22 96.60 3810.00 类乌齐 56137 31.15 97.17 3306.00 昌都 56151 32.93 100.75 8530.00 班玛 56152 32.28 100.33 8893.90 色达
国家气象信息中心 数据应用服务室
本研究基于中国及周边国家共1153个气温站点和1202个降水站点数据,利用ANUSPLIN软件的局部薄盘光滑样条法进行插值,重建了1951−2011年中国月值气温和降水量的高空间分辨率0.025°(~2.5 km)格点数据集(简称LZU0025)。数据集的质量评估主要基于以下三个方面:(1)分析ANUSPLIN在日志文件中提供的一系列用于判别误差来源和插值质量的统计参数。结果表明在1951-2011年,表征最佳插值模型的广义交叉验证GCV(generalized cross validation)值较小,在气温插值时为1.06℃,在降水进行开方运算插值时为1.97mm1/2。(2)对比LZU0025格点值与预留的265个站点实测数据。结果表明在1951-2011年,LZU0025月插值数据与实测数据接近,两者的平均绝对差为0.59℃和70.5mm,标准差为1.27℃和122.6mm,并且标准差的变化与GCV变化一致。(3)将LZU0025与现有数据集进行对比。首先以插值所用站点较多的中国气象局发布的0.5°数据集(简称CMA)为基准,利用泰勒图对比了基于不同数据集刻画的气候平均状态均值(Mean)、距离平均状态的标准差(Standard deviation)以及随时间变化的气候趋势(Time trend)。结果表明与基于其他数据集衍生的三类指标相比,LZU与基准CMA相关系数较高,标准差较接近,并且归一化的均方根误差较小。其次,将LZU0025格点数据与能量和水循环观测项目-亚洲季风项目西藏地区(CAMP-Tibet)气象站数据进行对比,结果表明仅有少数台站降水数据与LZU0025相关性不显著,但多数台站气温和降水数据与LZU0025显著相关且相关性高于0.87。基于以上评估分析,LZU0025数据集可靠。高分辨率的LZU0025能刻画更多的气候类型如喜马拉雅山脉地区未被粗分辨率数据集识别的苔原和极地气候。LZU0025可作为研究全球气候变化下区域气候变化和精准农业气候的基础数据。
黄伟, 赵虹
中国区域地面气象要素驱动数据集,包括近地面气温、近地面气压、近地面空气比湿、近地面全风速、地面向下短波辐射、地面向下长波辐射、地面降水率共7个要素。数据为NETCDF格式,时间分辨率为3小时,水平空间分辨率为0.1°。可为中国区陆面过程模拟提供驱动数据。 该数据集是以国际上现有的Princeton再分析资料、GLDAS资料、GEWEX-SRB辐射资料,以及TRMM降水资料为背景场,融合了中国气象局常规气象观测数据制作而成。详细过程请参阅参考文献。原始资料来自于气象局观测数据、再分析资料和卫星遥感数据。已去除非物理范围的值,采用ANU-Spline统计插值。精度介于气象局观测数据和卫星遥感数据之间,好于国际上已有再分析数据的精度。
阳坤, 何杰
“一带一路”沿线国家2000-2015年大气强迫数据集来源于CRUNCEP。CRUNCEP是一套供陆面模式使用的大气强迫场数据集。具体来说,这个长时间序列数据集(包括气温、降水、温度等)是用来长期驱动Community Land Model(CLM)土地模型的。 CRUNCEP是两个现有数据集的融合;CRU TS3.2 0.5°×0.5°月数据涵盖1901年至2002年期间,NCEP再分析2.5°×2.5°度6小时数据涵盖1948至2016年期间。融合后的CRUNCEP数据集空间分辨率为0.5°X0.5°,时间分辨率为6小时。CRUNCEP数据集被用来驱动CLM,用于研究植被生长、蒸散和初级生产力、陆-气碳交换变化趋势项目(1980-2010)以及许多其他应用。目前数据集的最新版本是版本7。
NCAR, 曹巍
本数据集包括了青藏高原祁连山地区自从1980年到2013年以来的逐月的地表平均温度数据。本数据集来源于欧洲中期天气预报中心的第三代ERA-Interim再分析资料,该数据集采用四维变分分析,结合卫星数据误差校正等技术,实现了再分析资料的质量提升。数据集的空间分辨率为0.125°。本数据集是祁连山地区过去30多年以来地表温度网格数据集,可为祁连山地区的气候变化、生态系统发展演替及相关地球系统模型的研究提供数据基础。
吴晓东
采用WRF模式制备的青藏高原近地表大气驱动和地表状态数据集,时间范围:2000-2010,空间范围:25-40 ºN,75-105 ºE,时间分辨率:逐时,空间分辨率:10 km,格点数为150*300。 总计有33个变量,其中包含的近地表大气变量11个: 地面上2m高度的温度、 地面上2m高度的比湿、地面气压、地面上10m风场的纬向分量、地面上10m风场的经向分量、固体降水比例、累积的积云对流降水、累积的格点降水、地表处的向下短波辐射通量、地表处的向下长波辐射通量、累计的潜在蒸发。 包含的地表状态变量有19个:各层土壤温度、各层土壤湿度、 各层土壤液态水含量、雪相态改变的热通量、土壤底部温度、地表径流、地下径流、植被比例、地面热通量、雪水当量、实际雪厚、雪密度、冠层中的水、地表温度、反照率、背景反照率、更低边界处的土壤温度、地表面处向上的热量通量(感热通量)、地表面处向上的水量通量(感热通量)。 其他变量3个:经度、纬度和行星边界层高度。
潘小多
本数据集包含自1951年1月至2006年12月,青藏高原地区历年各季度和历年各月份的温度距平序列。依照气候距平法(CAM),基于《中国均一化历史气温数据集(1951-2004)1.0版》与2005-2006逐日平均气温资料,对青藏高原及其邻近区域共123个站点的逐月平均气温网格化,进而以面积加权法建立了高原1951-2006年逐月平均气温距平序列。其中,为最大限度地利用观测资料,着重探讨了利用参考站订正短序列气温资料气候标准值的方法。参考文献:任雨,张雪芹,彭莉莉.青藏高原1951-2006年气温距平序列的建立与分析.高原气象,2010. 《中国均一化历史气温数据集(1951-2004)1.0版》与2005-2006逐日平均气温资料,符合相关国家标准。 年各月温度距平数据表共有五个字段 字段1:年 字段2:月份 字段3:网格数 参加计算的网格数 字段4:站点数 参加计算的站点数 字段5:月温度距平 单位 ℃ 历年及各季温度距平数据表共有五个字段 字段1:年 字段2:季度 字段3:网格数 参加计算的网格数 字段4:站点数 解释:参加计算的站点数 字段5:温距平 ℃ 其中,季度字段中 1. 如果为空值,表示为年温度距平 2. DJF:冬季(上年12月至当年2月)温度距平值 ℃ 3. MAM:春季(3-5月)温度距平值 ℃ 4. JJA:夏季(6-8月)温度距平值 ℃ 5. SON:秋季(9-11月)温度距平值 ℃ 数据精度:月均温距平到小数点后三位,年均温与季均温距平到小数点后两位。
刘林山
青藏高原地区属于高原山地气候,气温及其季节变化一直是全球气候变化研究的热点之一。 数据包含青藏高原地区的气温数据,空间分辨率为1km*1km,时间分辨率为月、年,时间覆盖范围为2000年、2005年、2010年、2015年。数据通过对青藏高原地区国家气象站数据进行Kring插值得到。 数据可用于分析青藏高原的气温的时间空间分布情况,此外数据还可用于分析青藏高原的气温随时间变化的规律,对青藏高原的生态环境研究有重要意义。
方华军
中亚野外气象站观测数据集包括中亚10个野外气象站气温、降水、风向风速、相对湿度、气压、辐射、土壤热通量、日照时间和土壤温度等实地观测数据。10个野外站涵盖农田、森林、草地、沙漠、荒漠、湿地、高原、山地等不同生态系统类型。本数据集由地面气象观测站收集到的气象原始数据经筛查和审核后,进行格式转换后获得。数据质量良好。中亚地区气候类型多样,生态环境脆弱,气象灾害频繁,本数据集的建立对于开展长期的中亚生态环境监测、防灾减灾、中亚地区气候变化与生态环境等领域的研究提供了数据支撑,目前已经在中亚生态环境监测研究中获得了应用。
李耀明
1、数据内容:气温、相对湿度、降水、气压、风速、平均总辐射、总净辐射值及水汽压日平均数据。 2、数据来源及加工方法:由美国campel高山型自动气象站观测,其中空气温湿度传感器型号HMP155A;风速风向仪型号:05103-45;净辐射仪:CNR 4 Net Radiometer four component;大气压力传感器:CS106;雨量筒:TE525MM。自动气象站每隔10分钟自动采集一次数据,每日采集完自动统计计算得出日均值气象数据。 3、数据质量描述:数据自动连续获取。 4、数据应用成果及前景:该气象站设置在冰川中部,气象数据可为模拟预测未来气候变化背景下海洋型冰川变化对全球气候变化的响应研究提供了数据保证。
刘婧
该数据集记录了阿里荒漠环境综合观测研究站,2009-2017年气象数据集,数据时间分辨率为天。包含如下基本气象参数:气温(距地面1.5米,半小时观测一次,单位:摄氏度)、相对湿度(距地面1.5米,半小时一次,单位:%)、风速(距地面1.5米,半小时一次,单位:米/秒)、风向(距地面1.5米,半小时一次,单位:度)、气压(距地面1.5米,半小时一次,单位:hPa)、降水量(24时一次,单位:毫米)、水汽压(单位:Kpa)、蒸发(单位:毫米)、向下短波辐射(单位:W/m²)、向上短波辐射(单位:W/m²) 、向下长波辐射(单位:W/m²) 、向上长波辐射(单位:W/m²) 、净辐射(单位:W/m²)、地表反照率(单位:%)。 数据采集地点:中国科学院青藏高原研究所阿里荒漠环境综合观测研究站观测场,经度:79°42'5";纬度:33°23'30";海拔:4264米。 数据从阿里站自动气象站直接下载,其中降水数据是自动雨雪量计和人工观测校正得到每天的降水量,其它均为半小时的观测值经平均得到逐日均值。 观测仪器型号:温度和湿度:HMP45C空气温湿度探头;降水:T200-B雨雪量仪传感器;风速和风向: Vaisala 05013风速风向传感器;净辐射:Kipp Zonen NR01净辐射传感器;气压:Vaisala PTB210大气压传感器。采集器型号:CR 1000,采集时间:30分钟。 本数据表是由专人根据观测记录进行加工和质量控制。严格按照仪器操作规范进行观测和数据采集,在加工生成数据表时,剔除了一些明显误差数据。
赵华标
全球ERA-Interim 地面气温再分析数据集(1979-2016)是欧洲中长期天气预报中心(ECMWF)采用ECMWF IFS预报系统(T255,60层),经过窗口为12小时的四维变分同化系统(4DVAR)同化全球不同地区和来源的地表和上层大气的常规观测和卫星遥感资料(TOVS,GOES,Meteosat等)获得。该地面气温(2米气温)数据覆盖时间从1979年1月到2016年12月,时间分辨率为6小时,水平分辨率0.75°,覆盖全球,投影方式为等经纬度投影。数据每个月存放一个NetCDF格式文件,包含经度(longitude)、纬度(latitude)、时间(time)、气温(t2m,单位:K)四个变量,纬向241个格点,经向480个格点。
李斐
CMADS V1.0(The China Meteorological Assimilation Driving Datasets for the SWAT model Version 1.0) 版本数据集引入STMAS同化算法技术,利用数据循环嵌套、重采样,模式推算及双线性插值等多种技术手段而建立。CMADS数据集按照SWAT模型输入驱动数据格式进行了格式整理与修正,使SWAT模型可直接使用该数据集而不需要任何格式转换。CMADS系列数据集同时建立了两种格式的数据(.dbf和.txt),方便其他它模型应用人员及气象分析人员调用与分析。CMADS数据源介绍:气温、气压、比湿、风速驱动数据采用了2421个国家级自动站和业务考核的39439个区域自动站2008年1月以来地面基本气象要素逐小时观测数据以及相应时期的台站信息(台站经纬度、海拔高度),利用多重网格三维变分方法(STMAS),在NCEP/GFS背景场基础上制作地面基本要素分析场;其中,中国区域以外,只对NCEP/GFS背景数据做地形调整、变量诊断,并插值到分析格点;中国区域以内,利用STMAS算法,将经过前处理的NCEP/GFS背景数据和自动站观测融合,并与中国区域以外的数据进行拼接。降水:由多卫星与地面自动站降水融合而成。其中,中国区域以外采用NCEP-CPC制作的CMORPH卫星融合降水产品,中国区域采用CMORPH产品为背景场融合中国降水自动站观测制作的中国区域小时降水量融合产品。辐射:基于DISSORT辐射传输模型,获取来自FY2E卫星一级产品实时反演太阳短波辐射产品。主要以ISCCP资料为背景数据,利用大气辐射传输模式DISORT对FY2D/E标称图数据进行反演,计算出分析格点上的地面入射太阳总辐射辐照度。CMADSV1.0系列数据集空间覆盖整个东亚(0°N-65°N,60°E-160°E), 空间分辨率分别为CMADS V1.0版本: 1/3°,CMADS V1.1版本: 1/4°,CMADS V1.2版本: 1/8°及CMADS V1.3版本: 1/16°,以上分辨率均为逐日(CLDAS同化场基本分辨率为1/16°,保证了CMADS数据集最高分辨率达1/16°),时间尺度为2008-2016年。 本页发布的数据集为CMADSV1.0版本数据集(空间分辨率:1/3°。时间分辨率:逐日。空间覆盖范围:东亚(0°N-65°N,60°E-160°E)。提供要素:日平均2米温度,日最高\低2米温度,日累计24时降水量,日平均太阳辐射,日平均气压,日比湿度,日相对湿度,日平均10米风速,提供数据格式:dbf及txt。该驱动数据已在我国多个流域进行了驱动验证,效果表现良好。 数据集元数据介绍 CMADS--SWAT驱动数据总体存放路径说明: 数据集分为专门驱动SWAT模型的子数据驱动集与其他模型使用的数据驱动集 1)专门驱动SWAT模型的子数据集路径为:CMADS-V1.0\For-swat\ 2)专门其他模型使用的子数据集路径为:CMADS-V1.0\For-other-model\ CMADS--SWAT驱动数据各子集文件路径及名说明 CMADS--SWAT驱动数据子集路径 1)CMADS的SWAT子数据驱动集(For-swat文件夹内),包含Station\与Fork\子目录。 其中Station\目录下为SWAT模型需要的所有输入数据(逐日)。以上输入数据分别位于以下目录: Relative-Humidity-58500\ 日平均相对湿度(fraction) Precipitation-58500\ 日累计降水量(mm) Solar radiation-58500\ 日平均太阳辐射(MJ/m2) Tmperature-58500\ 日最高、最低2米气温(℃) Wind-58500\ 日平均10米风速(m/s) CMADS--SWAT驱动数据子集命名格式 中国大气数据同化SWAT模型数据集(CMADS)的SWAT子集文件命名: 数据集代码由要素代码:R、P、S、T、W+维度格网数-经度格网数组成(经纬度网格数提取参见CMADS数据集使用手册.pdf)。 CMADS--SWAT驱动数据子集命名格式实体文件的内容描述: 数据集时间尺度:2008年-2016年间共9年数据文件 空间分辨率:1/3度 时间分辨率:逐日 要素数据存放格式:dbf 索引表存放格式:txt CMADS--SWAT驱动数据子集索引表: 其中Fork\目录下为SWAT模型需要的所有站点索引表。以上输入数据索引表均可用以下索引表索引: PCPFORK.txt 降水索引表 RHFORK.txt 相对湿度索引表 SORFORK.txt 太阳辐射索引表 TMPFORK.txt 温度索引表 WINDFORK.txt 风速索引表 CMADS其他模式驱动数据子集路径 CMADS的SWAT子数据驱动集(For-other-model文件夹内),包括常规模型需要的所有气象输入数据(逐日)。以上输入数据分别位于以下目录: Atmospheric-Pressure-txt\ 日平均大气压强(hPa) Average-Temperature-txt\ 日平均2米气温(℃) Maximum-Temperature-txt\ 日最高2米气温(℃) Minimum-Temperature-txt\ 日最低2米气温(℃) Precipitation-txt\ 日累计降水(mm) Relative-Humidity-txt\ 日平均相对湿度(fraction) Solar-Radiation-txt\ 日平均太阳辐射(MJ/m2) Specific-Humidity-txt\ 日平均比湿(g/kg) Wind-txt\ 日平均10米风速(m/s) For-other-model 子集文件命名: CMADS_V1.0_PRS_纬度格网数-经度格网数.txt 日平均大气压强(hPa) CMADS_V1.0_TMP_AVG_纬度格网数-经度格网数.txt 日平均2米气温(℃) CMADS_V1.0_TMP_MAX_纬度格网数-经度格网数.txt 日最高2米气温(℃) CMADS_V1.0_TMP_MIN_纬度格网数-经度格网数.txt 日最低2米气温(℃) CMADS_V1.0_24h_PRE_纬度格网数-经度格网数.txt 日 24h 累计降水(mm) CMADS_V1.0_RHU_纬度格网数-经度格网数.txt 日平均相对湿度(fraction) CMADS_V1.0_SOR_纬度格网数-经度格网数.txt 日平均太阳辐射(MJ/m 2 ) CMADS_V1.0_SHU_纬度格网数-经度格网数.txt 日平均比湿(g/kg) CMADS_V1.0_WIND_纬度格网数-经度格网数.txt 日平均10米风速(m/s) 数据存储信息 存储格式和读取:数据集存储格式分为SWAT子集文件(dbf文件),及其他模式数据集(txt文件)。 数据集附属说明文档: metadata:元数据文档(CMADS_META_C.pdf)。 description:说明文档(CMADS_DOCU_C.pdf)。 数据总量:33.6GB 占用空间:35.2GB 时间范围:2008年-2016年 时间分辨率:逐日 地理范围描述:东亚 最西经度:60°E 最东经度:160°E 最北纬度:65°N 最南纬度:0°N 台站数量:58500站 空间分辨率: 1/3°×1/3°网格点 垂直范围:无
孟现勇, 王浩
CMADS V1.1(The China Meteorological Assimilation Driving Datasets for the SWAT model Version 1.1) 版本数据集引入STMAS同化算法, 利用数据循环嵌套,模式推算等多种技术手段而建立。CMADS V1.1数据集按照SWAT模型输入驱动数据格式进行了格式整理与修正,使SWAT模型可直接使用该数据集而不需要任何格式转换。CMADS V1.1数据集同时建立了两种格式的数据(.dbf和.txt),方便其他它模型应用人员及气象分析人员调用与分析。CMADS数据源介绍:气温、气压、比湿、风速驱动数据采用了2421个国家级自动站和业务考核的29452个区域自动站2009年1月以来地面基本气象要素逐小时观测数据以及相应时期的台站信息(台站经纬度、海拔高度),利用多重网格三维变分方法(STMAS),在NCEP/GFS背景场基础上制作地面基本要素分析场;其中,中国区域以外,只对NCEP/GFS背景数据做地形调整、变量诊断,并插值到分析格点;中国区域以内,利用STMAS算法,将经过前处理的NCEP/GFS背景数据和自动站观测融合,并与中国区域以外的数据进行拼接。降水:由多卫星与地面自动站降水融合而成。其中,中国区域以外采用NCEP-CPC制作的CMORPH卫星融合降水产品,中国区域采用CMORPH产品为背景场融合中国降水自动站观测制作的中国区域小时降水量融合产品。辐射:基于DISSORT辐射传输模型,获取来自FY2E卫星一级产品实时反演太阳短波辐射产品。主要以ISCCP资料为背景数据,利用大气辐射传输模式DISORT对FY2D/E标称图数据进行反演,计算出分析格点上的地面入射太阳总辐射辐照度。本页发布的数据集为CMADS V1.1版本空间分辨率: 1/4°,时间分辨率:逐日,时间尺度为2008-2016年。空间覆盖范围:东亚(0°N-65°N,60°E-160°E)。提供要素:日平均2米温度,日最高\低2米温度,日累计24时降水量,日平均太阳辐射,日平均气压,日比湿度,日相对湿度,日平均10米风速,提供数据格式:dbf及txt。 CMADS V1.1元数据介绍 CMADS V1.1--SWAT驱动数据总体存放路径说明: 数据集分为专门驱动SWAT模型的子数据驱动集与其他模型使用的数据驱动集 1)专门驱动SWAT模型的子数据集路径为:CMADS-V1.1\For-swat\ 2)专门其他模型使用的子数据集路径为:CMADS-V1.1\For-other-model\ CMADS V1.1--SWAT驱动数据各子集文件路径及名说明 CMADS V1.1--SWAT驱动数据子集路径 1)CMADS V1.1的SWAT子数据驱动集(For-swat文件夹内),包含Station\与Fork\子目录。 其中Station\目录下为SWAT模型需要的所有输入数据(逐日)。以上输入数据分别位于以下目录: Relative-Humidity-104000\ 日平均相对湿度(fraction) Precipitation-104000\ 日累计降水量(mm) Solar radiation-104000\ 日平均太阳辐射(MJ/m2) Temperature-104000\ 日最高最低2米气温(℃) Wind-104000\ 日平均10米风速(m/s) CMADS V1.1--SWAT驱动数据子集命名格式 中国大气数据同化SWAT模型数据集(CMADS)的SWAT子集文件命名: 数据集代码由要素代码:R、P、S、T、W+维度格网数-经度格网数组成(经纬度网格数提取参见CMADS数据集使用手册.pdf)。 CMADS V1.1--SWAT驱动数据子集命名格式实体文件的内容描述: 数据集时间尺度:2008年-2016年间共9年数据文件 空间分辨率:1/4度 时间分辨率:逐日 要素数据存放格式:dbf 索引表存放格式:txt CMADS V1.1--SWAT驱动数据子集索引表: 其中Fork\目录下为SWAT模型需要的所有站点索引表。以上输入数据索引表均可用以下索引表索引: PCPFORK.txt 降水索引表 RHFORK.txt 相对湿度索引表 SORFORK.txt 太阳辐射索引表 TMPFORK.txt 温度索引表 WINDFORK.txt 风速索引表 CMADS V1.1其他模式驱动数据子集路径 CMADS V1.1的SWAT子数据驱动集(For-other-model文件夹内),包括常规模型需要的所有气象输入数据(逐日)。以上输入数据分别位于以下目录: Atmospheric-Pressure-txt\ 日平均大气压强(hPa) Average-Temperature-txt\ 日平均2米气温(℃) Maximum-Temperature-txt\ 日最高2米气温(℃) Minimum-Temperature-txt\ 日最低2米气温(℃) Precipitation-txt\ 日累计降水(mm) Relative-Humidity-txt\ 日平均相对湿度(fraction) Solar-Radiation-txt\ 日平均太阳辐射(MJ/m2) Specific-Humidity-txt\ 日平均比湿(g/kg) Wind-txt\ 日平均10米风速(m/s) 数据存储信息 存储格式和读取:数据集存储格式分为SWAT子集文件(dbf文件),及其他模式数据集(txt文件)。 数据集附属说明文档: metadata:元数据文档(CMADS_META_C.pdf)。 description:说明文档(CMADS_DOCU_C.pdf)。 数据总量:45GB 占用空间:50GB 时间范围:2008年-2016年 时间分辨率:逐日 地理范围描述:东亚 最西经度:60°E 最东经度:160°E 最北纬度:65°N 最南纬度:0°N 台站数量:104000站 空间分辨率: 1/4°×1/4°网格点 垂直范围:无
孟现勇, 王浩
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件