北极放大效应是 20 世纪最显著的气候变化现象。为理解北极放大效应对全球气候变化的响应及影响,科学家们开展了 CMIP6 子计划北极放大效应比较计划(PAMIP)。 中国科学院大气物理研究所的气候系统模式 FGOALS-f3-L 参加了上述计划并完成和提交了 8 组大样本集合试验。这些试验基于陆气耦合模式,分别考虑了不同下垫面强迫的组合在工业革命前情景、 现代气候情景和未来气候变化情景下,全球海温和海冰变化对大气环流及全球气候系统的影响。所有的试验外强迫固定在 2000 年,采用 100 个集合,从 2000 年 4 月 1 日开始积分到 2001 年 6 月 30 日。以上数据为进一步理解北极放大效应现象及其影响提供了新的科学数据和科学依据。
何编
该数据为第六次国际耦合模式比较计划 (CMIP6)在中等排放场景(ssp245)下对2020年-2100年南极海冰密集度数据的模拟。对CMIP6的25个模式数据统一插值后进行集合平均。海冰密集度数据大小在0-1之间,数据时间范围从2020年1月至2100年12月,时间分辨率为月,空间范围为南纬45°以南,空间分辨率为1°×1°。该数据提供了中等排放情景下,南极海冰的的状态和演变,可为南极未来变化等研究提供参考。
李双林, 王惠
(1)数据内容:过去200年南极区域海冰范围(最北边界)数据集;(2)数据来源及加工方法:该数据利用6条年分辨率的代用指标(冰芯MSA、积累率等),基于统计模型产生;(3)数据质量描述:年分辨率;包含区域:印度洋-西太平洋(50°–150°E, IndWPac),罗斯海 (160°E–140°W, RS),阿蒙森海(90°–140°W, AS),别林斯高晋海 (50°–90°W, BS),威德尔海 (50°W–20°E, WS);(4)可用于研究南极海冰的年代际演变特征。
杨佼
数据是本项目成员自主研发的气候系统模式FGOALS对北极海冰密集度和海冰覆盖范围进行预测的结果。同化技术的正确选取,是北极海冰预测的重要因素,在海冰资料同化技术中,奇异值演化插值卡尔曼滤波(简称SEIK),是发展相对较早但是仍很常用的一种滤波算法,但由于计算所有格点之间的误差协方差,存在虚假的遥相关误差,因此考虑发展局部滤波方法,对海冰密集度和海冰厚度进行同化。本项目将在气候系统模式FGOALS 中,初始化处理欧洲航天局(ESA)CryoSat-2 和Soil Moisture and Ocean Salinity(SMOS)卫星遥感反演的海冰厚度数据。
宋米荣
数据是本项目成员自主研发的气候系统模式FGOALS对北极海冰密集度和海冰覆盖范围进行预测的结果。同化技术的正确选取,是北极海冰预测的重要因素,在海冰资料同化技术中,奇异值演化插值卡尔曼滤波(简称SEIK),是发展相对较早但是仍很常用的一种滤波算法,但由于计算所有格点之间的误差协方差,存在虚假的遥相关误差,因此考虑发展局部滤波方法,对海冰密集度和海冰厚度进行同化。本项目将在气候系统模式FGOALS 中,初始化处理欧洲航天局(ESA)CryoSat-2 和Soil Moisture and Ocean Salinity(SMOS)卫星遥感反演的海冰厚度数据。
宋米荣
海冰表面的积雪控制着能量收支,影响海冰的生长和消融,具有重要的气候作用。积雪厚度作为积雪的重要属性之一,对于理解气候变化、估算海冰参量等具有重要意义。被动微波数据可以获取逐日半球尺度的积雪厚度观测数据,但是原先提出的估算方法会产生明显的低估,限制了该方法的进一步应用。我们构建了一个新的且鲁棒的线性回归公式,通过引入低频信号明显改进了被动微波反演积雪厚度的效果,并且基于AMSR-E,AMSR-2和SSMIS被动微波辐射计亮温数据,应用该方法生成了2002—2020年逐日南极海冰表面积雪厚度数据集。采用7年的机载Operation IceBridge (OIB) 飞行计划获取的积雪厚度测量数据进行回归分析,发现采用垂直极化下37和19 GHz的亮温计算得到的极化梯度率(gradient ratio, GR),即GR(37/7),是用于南极海冰表面积雪厚度估算的最优极化梯度率,均方根偏差约为8.92厘米,相关系数为-0.64,并获取了相应的线性回归公式系数。GR(37/19)用于基于SSMIS的积雪厚度估算,用来填补AMSR-E和AMSR-2之间的观测空白。不同辐射计估算的积雪厚度进行了一致性校正。基于高斯误差传递法估算的积雪厚平均不确定度约为3.81厘米,占积雪厚度的12%左右。与Australian Aantarctic Data Centre发布的实测数据对比发现提出的方法明显优于原有的方法,平均差异和均方根偏差约为5.64厘米和13.79厘米,而原有方法的平均差异和均方根偏差约为-14.47厘米和19.49厘米。与Antarctic Sea Ice Processes and Climate 计划发布的船载观测数据对比发现提出的方法略优于原有方法(均方根偏差分别为16.85厘米和17.61厘米),并且该方法在海冰生长期和融化期有着相似的精度,表明该方法也可以应用于消融季。基于该套数据,我们发现2002—2020年在南极所有海域和季节内海冰表面积雪厚度均呈现降低趋势。该数据可以进一步用于再分析数据的评估,海冰厚度估算和气候模式等方面。
沈校熠, 柯长青
南北极海冰数据集原始数据由美国国家冰雪数据中心(The National Snow and Ice Data Center:NSIDC)通过遥感数据生成,数据格式为geotiff格式与image格式,数据空间分辨率为25km,时间分辨率为日。数据内容是南北极的海冰范围及海冰密集度。本研究工作通过对南北极海冰的范围与海冰密集度后处理后生成netcdf格式产品。产品数据包含1979-2019年南北极海冰范围与海冰密集度数据,其时间分辨率为逐日,覆盖范围为南极与北极,水平空间分辨率为12.5km,海冰范围矩阵中数据值为1表示该网格为海冰,海冰密集度用0-1000表示,该网格值除以10即为该网格海冰密集度值。
叶爱中
海冰是海洋表面海水冻结形成的冰,海冰表面的降水再冻结也成为海冰的一部分。海冰变化不仅影响海洋的层结、稳定性及对流变化,甚至影响大尺度的温盐环境。此外,由于海冰的高反照率和绝缘隔热作用,能改变极区表面的辐射状态,影响海-气之间的能量和物质交换。海冰的变化不仅影响局地海洋生态环境和局地的大气环境,而且通过复杂的反馈过程,以遥相关方式影响其他区域的天气和气候。本数据集通过评估,提交了包括了极地海冰相关的四个参数:海冰密集度、范围、厚度和反照率。为研究极地及全球气候变化提供基础。
邱玉宝
北极地区因其独特的自然条件和地理位置,在全球变化中扮演着非常重要的角色。而极地海冰作为影响气候变化的重要影响因子,是全球气候变化的灵敏器。中国在北极建设的考察站之一——黄河站,其重点支持围绕全球变化及其区域相应、极区空间环境与空间气候、极地环境中的生命特征与过程三大科学领域,为中国深入开展北极科学考察活动提供了重要平台。因此,构建了近年来北极海冰关键区域数据验证产品数据集,实现对北极海冰关键区域的监测情况。
陈甫, 邱玉宝
1)数据内容:重建的1289-1993年北极巴伦支海-喀拉海秋季海冰范围时间序列; 2)数据来源及加工方法:冰芯、树轮代用资料;多种统计方法建模; 3)数据质量描述:年分辨率,可信度高; 4)数据应用成果及前景:历史时期北极海冰变化特征及对气候变化的响应和影响。巴伦支海-喀拉海地区是中国冬春季极端冷空气南下的关键海区,但观测资料的缺乏限制对其规律和变化机制的认识,重建长时间尺度北极海冰的变化特征对研究全球背景下北极海冰变化和对中国历史气候的影响有重要意义。
效存德
夏季阳光照射下,覆盖在冰面上的积雪融化,在冰面上形成的不同形状大小的冰上水池融池。海冰表面融化造成的融池会降低海冰反照率,因而会对极区能量平衡造成显著影响,增加吸收进而加速海冰融化过程。在影响海冰反照率的因素中,融池是最重要且变化最剧烈的因素之一。随着气候的变化,夏季冰融化速度也越来越快。对地球表层的能量平衡具有重要的影响,冰融速度加快也可能使融池这种重要的自然现象成为北极海冰融化季节最显著的冰表面特征之一。融池的反照率介于海水与海冰之间,研究冰上融池也是研究北极海冰快速变化机理的一个重要组成部分。由于海冰融池和海面具有相似的微波信号特征,且受到风速、海冰融化等因素影响利用微波数据进行融池覆盖度的制图具有明显的不确定性,因此最为可靠的融池覆盖度遥感方法为利用中分辨率光学遥感数据(如MODIS)进行亚像元融池覆盖度的制图。本数据集包含利用MODIS数据进行基于动态端元反射率的亚像元分解反演的北极海冰融池覆盖度和海冰密集度。
熊川, 任艳, 邱玉宝
该套南极海冰数据集共包括四套数据,均来自SMMR、SSM/I和SSMI/S三个传感器,采用被动微波遥感反演。其中SMMR为Nimbus-7卫星搭载的扫描式多通道微波辐射计,工作周期为1978年10月26日至1987年7月8日。1987年7月至今,使用美国国防卫星计划DMSP卫星群上搭载的一系列被动微波遥感数据SSM/I和微波成像专用传感器SSMIS提供的数据。 前三套为海冰密集度数据,覆盖范围为南极地区,空间分辨率为25 km: (1)数据来自Nimbus-7 SMMR和DMSP SSM/I-SSMIS Version 1,利用NASA Team算法反演得到,覆盖时间从1978年11月到2017年2月,时间分辨率为逐月,数据每月存放一个bin文件; (2)数据来源与第一套相同,覆盖时间从1978-10-26到2017-2-28,时间分辨率为两天,空间分辨率为25km,数据每年存放一个文件夹,每隔一天存放一个bin文件; (3)数据来自Near-Real-Time DMSP SSMIS,利用NASA Team算法反演得到,覆盖时间从2015-1-1到2018-2-3,时间分辨率为逐日,数据每日存放一个bin文件;每个文件由300-byte的文件头(数据时间信息、投影方式、文件名…)和316*332的矩阵组成。 第四套数据为海冰覆盖范围和海冰面积时间序列。覆盖时间从1978年11月到2017年12月,为南极地区海冰覆盖范围、海冰面积的时间演变序列,时间分辨率为逐月,每月存放一个ASCII文件;每个文件由表头(时间、数据类型…)和39*1的海冰覆盖矩阵和39*1的海冰面积矩阵组成。 数据的详细情况见美国冰雪数据中心NSIDC网站-数据说明http://nsidc.org/data/NSIDC-0051;http://nsidc.org/data/NSIDC-0081;http://nsidc.org/data/G02135
李双林, 刘娜
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件