地表向下辐射(SDR)包括短波向下辐射(SWDR)和长波向下辐射(LWDR),对能源和气候研究具有重要意义。考虑到东亚-太平洋(EAP)地区缺乏具有高时空分辨率的可靠SDR数据,利用下一代地球静止卫星Himawari-8开发了2016至2020年、时空分辨率为10min/0.05°的短波和长波数据集。SDR产品充分考虑了云、高气溶胶背景和地形效应对SWDR的影响。与云和地球辐射能系统(CERES)、欧洲中期天气预报中心(ECMWF)、下一代再分析(ERA5)和全球陆表特征参量产品(GLASS)等辐射产品对比,新SDR产品不仅分辨率明显更高,而且产品精度也更优。在精度方面,新SWDR的每小时和每日均方根误差分别为104.9和31.5 Wm-2,远小于CERES(分别为121.6和38.6 Wm-2)、ERA5(分别为176.6和39.5 Wm-2)和GLASS(每日36.5 Wm-2)。同时,新LWDR每小时和每日值的RMSE分别为19.6和14.4 Wm-2,与CERES和ERA5相当,在高海拔地区甚至更优。
胡斯勒图, 王天星, 杜艺涵
新的北半球多年冻土图利用基于规则的GIS模型融合了新的多年冻土范围(Ran et al., 2021b)、气候条件、植被结构、土壤和地形条件以及富冰和富含有机质多年冻土图(yedoma)。与之前的多年冻土图不同,根据多年冻土与气候和生态系统的复杂交互作用,我们将北半球多年冻土分为五种类型:气候驱动型、气候驱动型/生态系统改造型、气候驱动型/生态系统保护型、生态系统驱动型和生态系统保护型。除去冰川和湖泊,北半球这五种类型的面积分别为3.66×106km2、8.06×106km2、0.62×106km2、5.79×106km2和1.63×106km2。北半球81%的多年冻土区受到生态系统的改造、驱动或保护,表明生态系统在北半球多年冻土稳定性中的主导作用。气候驱动的多年冻土只占北半球多年冻土区的19%,主要分布在高北极和高山地区,如青藏高原。
冉有华, M. Torre Jorgenson, 李新, 金会军, 吴通华, 李韧, 程国栋
青藏高原野外观测研究平台是开展青藏高原科学观测和研究的前沿阵地。基于高原地表过程与环境变化的陆面-边界层立体综合观测为青藏高原地气相互作用机理及其影响研究提供了大量的珍贵数据。本数据集综合了珠穆朗玛大气与环境综合观测研究站、藏东南高山环境综合观测研究站、那曲高寒气候环境观测研究站、纳木错多圈层综合观测研究站、阿里荒漠环境综合观测研究站、慕士塔格西风带环境综合观测研究站2005-2016年逐小时大气、土壤和涡动观测数据。包含了由多层风速风向、气温、湿度以及气压、降水组成的梯度观测数据,辐射四分量数据,多层土壤温湿度和土壤热通量观测数据以及感热通量、潜热通量和二氧化碳通量组成的湍流数据。这些数据能广泛的应用于青藏高原气象要素特征分析、遥感产品评估和遥感反演算法的发展、数值模拟的评估和发展等研究中。
马耀明
本数据集是建立在青藏高原基础上的高原土壤水分和土壤温度观测数据,用于量化粗分辨率卫星和土壤水分和土壤温度模型产物的不确定性。青藏高原土壤温湿度观测数据(Tibet-Obs)由四个区域尺度的原位参考网络组成,包括寒冷半干旱气候的那曲网络,寒冷潮湿气候的玛曲网络和寒冷干旱的阿里网络,以及帕里网络。这些网络提供了对青藏高原不同气候和地表水文气象条件的代表性覆盖。 - 时间分辨率:逐时 - 空间分辨率:点测量 - 测量精度:土壤水分,0.00001;土壤温度,0.1℃;数据集尺寸:标称深度为5,10,20,40和80厘米的土壤水分和温度统计值 - 单位:土壤水分,cm ^ 3 cm ^ -3; 土壤温度, ℃
Bob Su, 阳坤
黑河流域上游土壤容重,孔隙度,含水量,水分特征曲线,饱和导水率,颗粒分析,入渗率,以及采样点位置信息。 1、数据为2014年针对2012年补充取样,用环刀取原状土; 2、该土壤容重为土壤干容重,采用烘干法测量。将野外采集的原状环刀土样在烘箱中以105℃恒温24小时,土壤干重除以土壤体积(100立方厘米),单位:g/cm3 。 3、土壤孔隙度,根据土壤容重与土壤孔隙度的关系得到;, 4、土壤入渗分析数据集,数据为2013-2014年野外实验测量数据。 5、入渗数据是用“MINI DISK PORTABLE TENSION INFILTROMETER”进行测量,得到一定负压下的近似饱和导水率。 6、土壤粒度数据是在兰州大学西部教育部重点实验室粒度实验室进行测量。测量仪器为马尔文激光粒度仪MS2000。 7、饱和导水率是依据依艳丽(2009)的定水头发自制仪器进行测量。使用马利奥特瓶在实验过程中始终保持定水头;同时最后将当时测量的Ks转化为10℃时的Ks值进行分析计算。 8、土壤含水量数据是用ECH2O进行测量,包括5层的土壤含水量、土壤温度。 9、水分特征曲线采用离心机法测量:将野外采集的环刀原状土放入离心机,分别用转速0,310,980,1700,2190,2770,3100,5370,6930,8200,11600测量每次的转子重量得到。
贺缠生
数据集包括以下土壤理化性质:pH值、有机质含量、阳离子交换量、根系丰度、总氮(N)、总磷(P)、总钾(K)、碱解氮、速效磷、速效钾、可交换H+、Al3+、Ca2+、Mg2+、K+、Na+、土层厚度、土壤剖面深度、砂、淤泥和C。铺设部分、岩石碎片、体积密度、孔隙、结构、稠度和土壤颜色。提供了质量控制信息(QC)。 分辨率为30弧秒(赤道处约1公里)。土壤性质的垂直变化由8层记录,深度为2.3 m(即0-0.045-0.091、0.091-0.166、0.166-0.289、0.289-0.493、0.493-0.829、0.829-1.383和1.383-2.296 m),以便于在普通土地模型和社区土地模型(CLM)中使用。 数据采用NetCDF格式存储,数据文件名称及其说明如下: 1.THSCH.nc: Saturated water content of FCH 2.PSI_S.nc: Saturated capillary potential of FCH 3.LAMBDA.nc: Pore size distribution index of FCH 4.K_SCH.nc: Saturate hydraulic conductivity of FCH 5.THR.nc: Residual moisture content of FGM 6.THSGM.nc: Saturated water content of FGM 7.ALPHA.nc: The inverse of the air-entry value of FGM 8.N.nc: The shape parameter of FGM 9.L.nc: The pore-connectivity parameter of FGM 10.K_SVG.nc: Saturated hydraulic conductivity of FGM 11.TH33.nc: Water content at -33 kPa of suction pressure, or field capacity 12.TH1500.nc: Water content at -1500 kPa of suction pressure, or permanent wilting point
戴永久, 上官微
基于第二次全国土壤调查的中国1:1000000比例尺土壤图和8595个土壤剖面图,以及美国农业部(USDA)中国区域土地和气候模拟标准,开发了一个多层土壤粒度分布数据集(砂、粉土和粘土含量)。 采用多边形链接方法,结合土壤剖面和地图多边形之间的距离、剖面的样本大小和土壤分类信息,推导出砂、粉土和粘土的含量分布图。该数据集分辨率为1公里,可用于区域范围内的土地和气候建模。 数据特征 投影:GCS_Krasovsky_1940 覆盖范围:中国 分辨率:0.00833 度(约一公里) 数据格式:FLT, TIFF 取值范围:0%-100% 文件说明 浮点栅格文件包括: sand1.flt, clay1.flt – 表层(0-30cm) 砂粒、粘粒含量。 sand2.flt, clay2.flt – 底层(30-100cm) 砂粒、粘粒含量。 psd.hdr – 头文件: ncols – 列数 nrows – 行数 xllcorner – 左下角纬度 yllcorner – 左下角经度 cellsize – 单元格大小 NODATA_value – 空值 byteorder - LSBFIRST, Least Significant Bit First TIFF 栅格文件包括: sand1.tif, clay1.tif -表层(0-30cm) 砂粒、粘粒含量。 sand2.tif, clay2.tif -底层(30-100cm) 砂粒、粘粒含量。
上官微, 戴永久
GAME/ Tibet 项目于1997 年夏季在安多(Amdo) 站作过短期预试验观测( PIOP) 。1998 年5~9 月, 安排了连续5 个加强观测期( IOP) , 每个IOP 约一个月。中、日、韩三国80 余名科学工作者分批赴青藏高原,进行了艰苦而卓有成效的工作。 各项观测试验计划顺利完成。并且从1998 年9 月加强观测结束后,5 个自动气象站(AWS) 、1 个自动气象综合观测站( PAM) 、1 个边界层塔及辐射综合观测站(Amdo) 及9 个土壤温度和湿度观测站一直连续观测至今, 取得了连续8 年零6 个月(从1997 年6 月开始) 极其珍贵的资料。 试验区设在藏北那曲地区的一个150 km ×200 km 的区域内(图1),同时在青藏公路沿线的D66,沱沱河和唐古拉山口(D105) 也建立了观测点。包括高原草甸、高原湖泊、荒漠化草原等不同下垫面上, 设置了以下观测站(点):(1) 两个包括大气和土壤的多学科综合观测站:安多(Amdo) 和那曲(NaquFx) 。这两个站含有多分量辐射观测系统、梯度观测塔、湍流通量直测系统、土壤温湿度梯度观测、无线电探空以及作为卫星资料地面真值利用的地面土壤湿度观测网和多角度光谱仪观测等;(2) 6 个自动气象站(D66 、沱沱河、D105 、D110 、Naqu 和MS3608) 。每个测站都有风、温、湿、压、辐射、地表温度、土壤温湿度和降水等观测;(3) 设在那曲北和南各约80 km 处的PAM( Portable Automated Meso - net) 站(MS3478和MS3637) 有类似于上述两个综合观测站(Amdo和NaquFx) 的主要项目, 同时有风、温、湿的湍流观测;(4) 9 个土壤温度和湿度观测点(D66 、沱沱河、D110 、WADD、NODA、Amdo 、MS3478、MS3478和MS3637) , 每个测站都包含有6 层土壤温度和9 层土壤湿度测量;(5) 一个设在那曲以南的三维多普勒雷达站和邻近(约100 km) 区域内的7 个加密雨量站( Precipitation gauge) , 辐射观测系统主要研究高原云与降水系统, 并作为TRMM 卫星一个地面真值站。 GAME-Tibet项目力求通过不同空间尺度的加强观测试验和长期监测,深入了解青藏高原的地气相互作用以及对亚洲季风系统的影响。 GAME/ Tibet 项目2000 年结束后, 已加入GEWEX(全球能量和水循环试验) 与CL IVAR (气候变化和预测) 两个大型国际计划联合组织的“全球协调加强观测计划(CEOP) ”, 开始执行“全球协调加强观测计划(CEOP) 亚澳季风之青藏高原试验研究”(CAMP/ Tibet ) 数据内容分为Prephase Observation Preriod (POP)1997年和IOP1998年 一、POP1997年数据内容: 1、Precipitation Guage Network (PGN) 2、Radiosonde Observation at Naqu 3、Analysis of Stable Isotope for Water Cycle Studies 4、Doppler radar observation 5、Large-Scale Hydrological Cycle in Tibet (Link to Numaguchi's home page) 6、Portable Automated Mesonet (PAM) [Japanese] 7、Ground Truth Data Collection(GTDC) for Satellite Remote Sensing 8、Tanggula AWS ( D105 station in Tibet ) 9、Syamboche AWS (GEN/GAME AWS in Nepal) 二、IOP1998年数据内容: 1、Anduo (1)PBL Tower 、(2)Radiation 、(3)Turbulence SMTMS 2、D66 (1)AWS (2)SMTMS (3)GTDC(4)Precipitation 3、Toutouhe (1)AWS(2)SMTMS(3)GTDC 4、D110 (1)AWS (2)SMTMS (3)GTDC(4)SMTMS 5、MS3608 (1)AWS (2)SMTMS (3)Precipitation 6、D105 (1)Precipitation (2)GTDC 7、MS3478(NPAM) (1)PAM (2)Precipitation 8、 MS3637 (1)PAM (2)SMTMS (3)Precipitation 9、NODAA (1)SMTMS (2)Precipitation 10、WADD (1)SMTMS (2)Precipitation (3)Barometricmd 11、AQB (1)Precipitation 12、Dienpa( RS2 ) (1)Precipitation 13、Zuri (1)Precipitation(2)Barometricmd 14、Juze (1)Precipitation 15、Naqu hydrological station (1)Precipitation 16、MSofNaqu(1)Barometricmd 16、Naquradarsite (1)Radarsystem(2)Precipitation 17、Syangboche[Nepal](1)AWS 18、Shiqu-anhe(1)AWS(2)GTDC 19、Seqin-Xiang(1)Barometricmd 20、NODA(1)Barometricmd(2)Precipitation(3)SMTMS 21、NaquHY(1)Barometricmd(2)Precipitation 22、NaquFx(BJ)(1)GTDC(2)PBLmd(3)Precipitation 23、MS3543(1)Precipitation 24、MNofAmdo(1)Barometricmd 25、Mardi(1)Runoff 26、Gaize(1)AWS(2)GTDC(3)Sonde
马耀明
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件