风速数据被广泛用于科学、管理和政策领域,在评估可再生能源潜力、解决风灾、研究生物现象和探索气候变化等方面发挥着重要作用。但现有的风速产品存在很大的局限性:气象观测数据在空间和时间上存在不连续性,再分析产品和气候模型模拟虽然实现了数据的连续性,但大多未能重现观测到的风速趋势。此外,风速数据的高变异性及站点分布的不均匀和稀缺性,使得传统的统计插值方法,如克里金或主成分分析,在重构全球风速上表现不佳。因而,风速数据成为风速研究中“卡脖子”的难题。 在此,研究团队基于部分卷积神经网络算法(the partial convolutional neural network),融合了34个气候模式数据和气象站点观测数据HadISD(由Met Office Hadley Centre提供),重构了1973-2021年间共588个月的全球10米近地风速,空间分辨率为1.25°×2.5°(纬度×经度),该数据集包含了观测到的风速趋势信息。详细的重构过程请见参考文献中的方法部分。
周俐宏, 曾振中, 江鑫
中国区域地面气象要素驱动数据集,包括近地面气温、近地面气压、近地面空气比湿、近地面全风速、地面向下短波辐射、地面向下长波辐射、地面降水率共7个要素。数据为NETCDF格式,时间分辨率为3小时,水平空间分辨率为0.1°。可为中国区陆面过程模拟提供驱动数据。 该数据集是以国际上现有的Princeton再分析资料、GLDAS资料、GEWEX-SRB辐射资料,以及TRMM降水资料为背景场,融合了中国气象局常规气象观测数据制作而成。详细过程请参阅参考文献。原始资料来自于气象局观测数据、再分析资料和卫星遥感数据。已去除非物理范围的值,采用ANU-Spline统计插值。精度介于气象局观测数据和卫星遥感数据之间,好于国际上已有再分析数据的精度。
阳坤, 何杰, 唐文君, 卢麾, 秦军, 陈莹莹, 李新
在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。 数据包含中国高寒网17个站点2014-2017年青藏高原地区逐日气象观测数据集(气温、降水、风向风速、相对湿度、气压、辐射和蒸发),三江源的数据有所缺失。
朱立平, 彭萍
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件