新的北半球多年冻土图利用基于规则的GIS模型融合了新的多年冻土范围(Ran et al., 2021b)、气候条件、植被结构、土壤和地形条件以及富冰和富含有机质多年冻土图(yedoma)。与之前的多年冻土图不同,根据多年冻土与气候和生态系统的复杂交互作用,我们将北半球多年冻土分为五种类型:气候驱动型、气候驱动型/生态系统改造型、气候驱动型/生态系统保护型、生态系统驱动型和生态系统保护型。除去冰川和湖泊,北半球这五种类型的面积分别为3.66×106km2、8.06×106km2、0.62×106km2、5.79×106km2和1.63×106km2。北半球81%的多年冻土区受到生态系统的改造、驱动或保护,表明生态系统在北半球多年冻土稳定性中的主导作用。气候驱动的多年冻土只占北半球多年冻土区的19%,主要分布在高北极和高山地区,如青藏高原。
冉有华, M. Torre Jorgenson, 李新, 金会军, 吴通华, 李韧, 程国栋
地表温度作为地表能量平衡中的主要参数,表征了地气间能量和水分交换的程度,广泛应用于气候学、水文学和生态学等的研究中。 在冻土研究中,气候是冻土存在和发展的决定性因素之一,其中地表温度是影响冻土分布的主要气候因子,其影响冻土发生发育以及分布,是冻土建模的上边界条件,对寒区水文过程的研究具有重要的意义。 数据集基于青藏高原工程走廊DEM及观测站资料分析了青藏高原2000-2014地表温度变化趋势。利用MODIS上下午星Terra和Aqua的地表温度数据产品MOD11A1/A2、MYD11A1/A2,基于影像时空信息对云覆盖像元下地表温度信息进行了重建,采用昆仑山(湿地、草原)、北麓河(草原、草甸)、开心岭(草甸、草原)、唐古拉山(草甸、湿地)8个站点对重建信息及地表温度代表性问题进行了分析,通过相关性系数(R2)、均方根误差(RMSE)、平均绝对误差(MAE)和平均偏差(MBE)验证指标得出:(1)基于时空信息的MODIS云覆盖像元下地表温度重建精度较高;(2)上下午星Terra和Aqua四次观测加权平均代表性最好。 基于MODIS地表温度信息重建及代表性问题的分析,获取了青藏高原及其工程走廊带2000-2010年年均MODIS地表温度数据。 可以看出2000-2010年地表温度也在经历着波动的增温趋势,这与青藏高原以及青藏工程走廊多年冻土段气候变化保持基本相同的变化趋势。
牛富俊, 尹国安
该数据集是“中国雪深长时间序列数据集(1978-2012)”的升级版本。 中国雪深长时间序列数据集(1979-2023)采用经纬度投影方式,数据为浮点型。数据集按年份存储,每个年份是一个压缩包,每个压缩包内包含每天的积雪深度文件。每天的雪深用一个txt文件存储,文件的名称为“yyyyddd.txt”,其中yyyy代表年,ddd代表Julian日期,雪深单位为厘米(cm)。比如2005001.txt就代表这个ASCII文件描述2005年第一天我国的积雪覆盖状况。数据集的ASCII码文件是由头文件和主体内容构成,头文件包括行数、列数、x-轴中心点坐标、y-轴中心点坐标、栅格大小、无数据区标值等6行描述信息组成,主体内容就是根据行数列数组成的二维数组,雪深单位为厘米(cm)。因为该数据集中的所有ASCII码文件所描述的空间为我国全国范围,所以这些文件的头文件是不变的,现将头文件摘录如下(其中xllcenter, yllcenter, cellsize单位为度): ncols 321 nrows 161 xllcenter 60 yllcenter 15 cellsize 0.25 NODATA_value -1。 该数据集是采用中国被动微波雪深反演算法Che算法,从星载被动微波亮度温度数据提取。星载被动微波亮度温度数据来自多个传感器,本数据采用的传感器包括Nimbus7上的SMMR(1979-1988),DMSP-F08,F11,F13上的SSMI(1988-2008),DMSP-F17上的SSMI/S(2009-2020),Aqua上的AMSR-E (2002-2011),GCOM-W1上的AMSR2 (2012-)。考虑到不同传感器之间的系统差异,在进行雪深反演前,已对对不同传感器进行了交叉订正。 数据包含三个压缩文件:daily snow depth _smmr_ssmis_China (1978-2020),daily snow depth _amsre_China(2002-2011),daily snow depth_amsr2_China(2012-2023)。第一个是从SMMR,SSMI,SSMI/S提取的1978-2020年逐日雪深,第二个是从AMSR-E提取的2002-2011年逐日雪深,第三个是从AMSR2提取的2012-2023年逐日雪深。从2021年开始SSMI/S数据与之前差异较大,因此,之后的数据不再根据SSMI/S数据更新。AMSR-E数据结束时间是2011年9月27日。AMSR2数据从2012年9月1日开始,目前仍在运行,今后将根据AMSR2数据继续更新中国长时间序列数据集。
车涛, 戴礼云, 李新
本数据集采用SMMR(1978-1987)、SSM/I(1987-2009)和SSMIS(2009-2015)逐日亮温数据,由双指标(TB,37v,SG)冻融判别算法生成,分类结果包含冻结地表、融化地表、沙漠及水体四种类型。数据覆盖范围为中国大陆主体部分,空间分辨率为25.067525 km,EASE-Grid投影方式,以ASCIIGRID格式存储。 该数据集中的所有ASCII码文件可以直接用文本程序(如记事本)打开。除了头文件,主体内容为数值表征地表冻融的状态:1代表冻结,2代表融化,3代表沙漠,4代表降水。如果要用图示来显示的话,我们推荐用ArcView + 3D 或 Spatial Analyst 扩展模块来读取,在读取过程中会生成grid格式的文件,所显示的grid文件就是该ASCII码文件的图形表达。读取方法: [1] 在ArcView软件中添加3D或Spatial Analyst扩展模块,然后新建一个View; [2] 将View激活,点击File菜单,选择Import Data Source选项,弹出Import Data Source选择框,在此框中的Select import file type:中选择ASCII Raster,自动弹出选择源ASCII文件的对话框,点击寻找该数据集中的任一个ASCII文件,,然后按OK键; [3] 在Output Grid对话框中键入的Grid文件名字(建议使用有意义的文件名,以便以后自己查看)和点击存放此Grid文件的路径,再次按Ok键,然后按Yes(要选择整型数据),Yes(把生成grid文件调入到当前的view中)。生成的文件可以按照Grid文件标准进行属性编辑。这样就完成了显示将ASCII文件显示成Grid文件的过程。 [4] 批处理时,可以使用ARCINFO的ASCIIGRID命令,编写成AML文件,再用Run命令在Grid模块中完成: Usage: ASCIIGRID <in_ascii_file> <out_grid> {INT | FLOAT} 本数据的生产得到自然科学基金项目:中国西部环境与生态科学数据中心(90502010)、中国西部地区陆面数据同化系统研究(90202014)以及冻土主被动微波辐射传输模拟及其辐射散射特性研究(41071226)的支持。
晋锐, 李新
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件