当前浏览: 遥感


格陵兰冰盖典型冰川冰裂隙数据集(2018-2020)

我们提出利用U-net网络进行冰裂隙识别探测的算法,可以实现格陵兰冰盖典型冰川冰裂隙的自动化探测。基于Sentinel-1 IW每年7、8月的数据,为了抑制SAR图像的相干斑噪声,选择Probabilistic Patch-Based Weights (PPB)算法进行滤波,然后选择具有代表性的样本输入U-net网络进行模型训练,根据训练的模型进行冰裂隙的预测。以格陵兰2个典型冰川(Jakobshavn、Kangerdlussuaq)为例分类结果的平均准确率可达94.5%,其中裂隙区域的局部准确率可达78.6%,召回率为89.4%。

2022-07-29

南极典型冰架冰裂隙数据集(2015、2016、2020)

我们提出利用U-net网络进行冰裂隙识别探测的算法,可以实现南极冰裂隙的自动化探测。基于Sentinel-1 EW 1月、2月的数据,为了抑制SAR图像的相干斑噪声,选择Probabilistic Patch-Based Weights(PPB)算法进行滤波,然后选择具有代表性的样本输入U-net网络进行模型训练,根据训练的模型进行冰裂隙的预测。以南极5个典型冰架(Amery、Fimbul、Nickerson、Shackleton、Thwaiters)为例分类结果的平均准确率可达94.5%,其中裂隙区域的局部准确率可达78.6%,召回率为89.4%。

2022-07-28

珠峰太阳辐射数据集(2007-2020)

太阳总辐射采用辐射表(CM21, Kipp & Zonen, 荷兰)测量,波长范围200-3600 nm。温湿度分别采用温湿度传感器HMP45C-GM (Vaisala Inc., Vantaa, Finland)测量。本数据集包括:利用经验模型计算的地面太阳总辐射、损失于大气中的吸收和散射辐射(小时累计值,单位MJ/m2)、大气顶和地表反照率;还包括散射因子(AF)地面水汽压(E,单位hPa)。太阳辐射数据来源于数据提供者的计算、实验站测量,数据覆盖时间为2007-2020年。关于数据处理和太阳总辐射计算等可参考文献:Bai, J.; Zong, X.; Ma, Y.; Wang, B.; Zhao, C.; Yang, Y.; Guang, J.; Cong, Z.; Li, K.; Song, T. 2022. Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. Int. J. Environ. Res. Public Health, 19, 8906. https://doi.org/10.3390/ijerph19158906。该数据集可以用于珠峰地区太阳辐射及其衰减等相关研究。珠峰站太阳辐射和其他气象数据可以参考:https://data.tpdc.ac.cn/zh-hans/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/。

2022-07-26

InSAR识别的青藏高原泛三江并流区活动性滑坡(2007-2019)

针对青藏高原泛三江并流区的17.9万km2的区域,通过Sentinel-1升降轨,以及Palsar-1升轨三种SAR数据进行InSAR变形观测,根据获取的InSAR变形图像,结合地貌和光学影像特征进行综合解译。共识别得到海拔4000m以下的活动性滑坡949处。需要注意的是,因不同SAR数据的观测角度、敏感度和观测时相的差异,同一滑坡用不同数据解译存在一定的差异,在滑坡的范围、边界方面需要借助地面和光学影像进行修正。滑坡InSAR识别比例尺的概念与传统空间分辨率不同,主要依靠变形强度,因此一些规模较小,但与背景相比变形特征突出,整体性强,与地物具有逻辑空间关系的滑坡也能得以解译(配合SAR的强度图、地形阴影图、光学遥感影像为地物参照)。本次最小解译区域可达几个像素,如参考怒江沿江公路解译了一处只有4个像素的公路边坡滑坡。

2022-03-19

东南亚地区下垫面数据(2015)

本数据为东南亚地区2015年的地表类型数据,空间分辨率为30米,数据类型为NetCDF,变量名为“land cover type”。该数据基于FROM-GLC数据加工而成,通过对原始影像的拼接、裁剪得到覆盖东南亚的地表类型数据,剔除东南亚地区不存在的雪冰等下垫面类型并重新整合图例。修改下垫面类型编码生成包含东南亚的地表类型数据。该数据提供耕地、森林、草地、灌木、湿地、水体、不透水面、及裸地共8种下垫面的信息。数据总体精度为71% (Gong et al., 2019),可为水文模型、区域气候模式等提供东南亚地区的下垫面信息。

2022-01-03

青藏高原0.05°逐日积雪深度数据集(2000-2018)

在国家重点研发计划“冰冻圈和极地环境变化关键参数观测与反演”第一课题“冰冻圈关键参数多尺度观测与数据产品研制“的资助下,中国科学院青藏高原研究所张寅生课题组发展了青藏高原地区降尺度雪深产品。青藏高原积雪深度降尺度数据集来源于积雪概率数据和中国雪深长时间序列数据集的融合结果,采用新发展的亚像元时空分解算法对原始0.25度的积雪深度数据进行时空降尺度,得到0.05度逐日积雪深度产品。通过降尺度前后的雪深产品精度评估的对比,发现降尺度后雪深产品的均方根误差由原产品的2.15 cm减少到了1.54 cm。 青藏高原积雪深度降尺度数据集(2000-2018)的产品信息细节如下。投影为经纬度,空间分辨率0.05 度(约5公里),时间范围为2000年9月1日-2018年9月1日,为Tif格式文件,命名规则为:SD_YYYYDDD.tif,其中YYYY代表年,ddd代表儒略日(001-365)。积雪深度(SD),单位:厘米(cm)。空间分辨率为0.05度。时间分辨率为逐日。

2021-10-08

青藏高原Landsat系列卫星遥感归一化差值水体(NDWI)产品(1980s-2019)

1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序NDWI产品。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过NDWI的计算公式进行生产的,即利用绿光波段和近红外波段的差异比值来增强水体信息,并减弱植被、土壤、建筑物等地物的信息;3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4) 数据应用成果及前景:该指数便于地表水体信息有效提取,广泛应用于水资源、水文以及林农业等领域。

2021-06-21

青藏高原地区10m不透水面产品(2018)

数据内容:该数据集产品包含青藏高原地区10米分辨率的不透水面产品,可作为青藏高原地区生态系统相关研究的关键参数。数据来源及加工方法:产品反演主要基于Sentinel系列数据,从联合特征出发,结合深度空间特征、长时序的NDVI等指数特征、地形特征,采用随机森林模型实现不透水面信息提取。数据质量:整体精度较高。数据应用成果及前景:数据集将持续更新,可用于进一步明晰人类活动对青藏高原地区生态系统的影响。

2021-06-07

青藏高原光合有效辐射吸收系数(1987-2020)

光合有效辐射吸收系数(FPAR)是碳循环研究的一个关键生理变量,被认为是表述植被生态系统的基本变量之一。基于30米空间分辨率的LANDSAT反射率数据,得到青藏高原区域的地表植被类型分类结果,根据不同植被类型NDVI值差异,构建遥感反演模型生产各植被类型的生长季FPAR产品。光合有效辐射吸收系数(FPAR)产品可以用来作为参数之一计算植被固碳量,评价植被生态系统状态等,广泛用于生态环境、林业等领域。该数据集投影坐标信息为经纬度WGS84。

2021-04-26

川藏铁路沿线典型植被无人机高光谱遥感数据(2019)

本数据集是2019年9月川藏铁路沿线典型植被无人机高光谱观测数据,使用的是大疆M600 Resonon成像系统的机载光谱仪。包括2019年在拉萨的草原区域观测的高光谱数据,自带经纬度。高光谱调查时基本为晴天。飞行前进行了白板校准;采集数据时设有靶标(即适于草地的标准反光布),用于光谱校准;设有地面标志点(即有字母的泡沫板照片),并记录了每个标志点的经纬度坐标,用于几何精确校准。无人机高光谱相机记录的dn值,可使用Spectronon Pro软件转换为反射率。高光谱数据用于提取不同植被类型光谱特征、植被分类、反演植被覆盖度等。

2021-03-31