积雪面积比例(fractional snow cover, FSC)是单位像元内积雪覆盖面积(Snow Cover Area SCA)与单位像元面积的比值。本数据集的制作方法为BV-BLRM积雪面积比例线性回归经验模型;采用的源数据为MOD09GA 500米全球逐日地表反射率产品,以及MOD09A1 500m的8天合成全球地表反射率产品;制作平台使用的是Google Earth Engine;数据范围为全球范围,数据制备时间为2000至2021年,空间分辨率为500米,时间分辨率为逐年。该套数据可为区域气候模拟、水文模型等提供积雪分布的定量信息。
2022-07-20
该数据集包含了2021年7月22日至2021年9月5日的黑河水文气象观测网中游大满超级站叶面积指数观测数据。站点(100.376° E, 38.853° N)位于甘肃省张掖市大满灌区内,海拔1556m,下垫面是玉米。观测样方共计3个,每个样方大小约30m×30m,经纬度分别为(100.374°E, 38.855°N)、(100.371° E, 38.854°N)、(100.369°E, 38.854°N)。每个样方内布设4个冠层下节点和1个冠层上节点。 本数据集由叶面积指数无线传感网(LAINet)获取,该仪器原始观测数据为仪器自动获取的每个节点逐日逐小时的光照数据(Level0),利用LAINet软件对原始观测数据进行处理,逐节点计算每天LAI(Level1),进一步对无效值识别与填充,并5天滑动平均消除天气变化对LAI计算的影响(Level2),对有多个LAINet节点的观测子区,节点的均值为该子区的最终观测值(Level3)。 本次发布的数据集为处理后的Level3产品,数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Qu et al. (2014)。
2022-06-14
该数据集包含2021年5月2日至12月26日黑河流域地表过程综合观测网下游四道桥超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(Gcc)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
2022-06-14
该数据集包含2021年1月1日至12月31日黑河流域地表过程综合观测网中游大满超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集为相对绿度指数(Gcc)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
2022-06-14
该数据集包含2021年1月1日至12月31日黑河流域地表过程综合观测网中游阿柔超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(Gcc)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
2022-06-14
该数据集包含了2020年7月25日至2020年10月20日的黑河水文气象观测网下游四道桥超级站叶面积指数观测数据。站点位于内蒙古额济纳旗四道桥,海拔870 m,下垫面是柽柳。观测在四道桥超级站(101.1374E, 42.0012N)旁开展,样方1个,大小约30m×30m,每个样方内布设5个冠层下节点和1个冠层上节点。 本数据集由叶面积指数无线传感网(LAINet)获取,该仪器原始观测数据为仪器自动获取的每个节点逐日逐小时的光照数据(Level0),利用LAINet软件对原始观测数据进行处理,逐节点计算每天LAI(Level1),进一步对无效值识别与填充,并7天滑动平均消除天气变化对LAI计算的影响(Level2),对有多个LAINet节点的观测子区,节点的均值为该子区的最终观测值(Level3)。 本次发布的数据集为处理后的Level3产品,数据以*.xlsx格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Qu et al. (2014)。
2021-07-07
该数据集包含了2020年7月26日至2020年10月20日的黑河水文气象观测网下游混合林站叶面积指数观测数据。站点位于内蒙古额济纳旗四道桥,海拔870 m,下垫面是胡杨与柽柳混合。观测在混合林站(101.1335E, 41.9903N)旁开展,样方大小约30m×30m,每个样方内布设5个冠层下节点和1个冠层上节点。 本数据集由叶面积指数无线传感网(LAINet)获取,该仪器原始观测数据为仪器自动获取的每个节点逐日逐小时的光照数据(Level0),利用LAINet软件对原始观测数据进行处理,逐节点计算每天LAI(Level1),进一步对无效值识别与填充,并7天滑动平均消除天气变化对LAI计算的影响(Level2),对有多个LAINet节点的观测子区,节点的均值为该子区的最终观测值(Level3)。 本次发布的数据集为处理后的Level3产品,数据以*.xlsx格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Qu et al. (2014)。
2021-07-07
该数据集包含了2020年5月31日以前,和2020年9月2日以后的黑河流域地表过程综合观测网下游四道桥超级站的物候相机观测数据。2020年5月31日至2020年9月2日,由于物候相机供电故障,造成时间缺失,另外,在9月2日重新安装相机时,由于相机经过移动重新安装,造成视场内的目标物与5月31日以前有所变化,可能会造成前后数据的不一致性。站点位于内蒙古额济纳旗达来呼布镇四道桥,下垫面是柽柳。观测点的经纬度是101.1374E, 42.0012N,海拔873m。仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于物候期的计算,首先,根据感兴趣区计算物候指标,如相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值)。然后对数据进行质量控制、无效值填充和滤波平滑。最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等。本数据集为该站点2020年相对绿度指数(GCC)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
2021-07-07
该数据集包含了2020年1月1日至2020年12月31日的黑河流域地表过程综合观测网上游阿柔超级站的物候相机观测数据。站点位于青海省祁连县阿柔乡草达坂村,下垫面是亚高山山地草甸。观测点的经纬度是100.4643E, 38.0473N,海拔3033m。仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于物候期的计算,首先,根据感兴趣区计算物候指标,如相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值)。然后对数据进行质量控制、无效值填充和滤波平滑。最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等。本数据集为该站点2020年相对绿度指数(GCC)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
2021-07-07
该数据集包含2020年1月1日至2010年12月31日黑河流域地表过程综合观测网中游大满超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于物候期的计算,首先,根据感兴趣区计算物候指标,如相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值)。然后对数据进行质量控制、无效值填充和滤波平滑。最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等。本数据集为该站点2020年相对绿度指数(GCC)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
2021-07-07
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件