This data set contains statistical tables on the community situation of each county in Three-River-Source National Park. The specific contents include: Table 1 includes: number of administrative villages, number of natural villages, number of households, population, number of rural labor force, total value of primary and secondary industries, net income per capita, and number of livestock. Table 2 includes: the ethnic composition of the population (population of each ethnic group), education-related statistics (number of primary and secondary schools and number of students), health-related statistics (number of hospitals, health rooms and medical personnel), and statistics on the education level of the population (number of people with different education levels); Table 3 includes: the grassland (total grassland area, usable grassland area, moderately degraded area and grassland vegetation coverage), woodland (total area, arbor forest area, shrub forest area and sparse forest area), water area (total area, river area, lake area, glacier area, snowy mountain area and wetland area). A total of four counties were designed: Maduo, Qumalai, Zaduo and Zhiduo. This data comes from statistics of government departments.
National Bureau of Statistics
The two regions of North Pole are defined by the Arctic Monitoring and Assessment Programme (AMAP) working group and Arctic Human Development Report (AHDR). The AMAP Arctic’s geographical coverage extends from the High Arctic to the sub Arctic areas of Canada, the Kingdom of Denmark (Greenland and the Faroe Islands), Finland, Iceland, Norway, the Russian Federation, Sweden and the United States, including associated marine areas. The AHDR Arctic encompasses all of Alaska, Canada North of 60°N together with northern Quebec and Labrador, all of Greenland, the Faroe Islands, and Iceland, and the northernmost counties of Norway, Sweden and Finland. The situation in Russia is harder to describe in simple terms. The area included, as demarcated by demographers, encompasses the Murmansk Oblast, the Nenets, YamaloNenets, Taimyr, and Chukotka autonomus okrugs, Vorkuta City in the Komi Republic, Norilsk and Igsrka in Krasnoyarsky Kray, and those parts of the Sakha Republic whose boundaries lie closest to the Arctic Circle.
Arctic Monitoring And Assessment Programme
This dataset is a pixel-based maximum fractional vegetation cover map within the Yellow River source region on the Qinghai-Tibet Plateau, with an area of about 44,000 square kilometers. Based on the time series images acquired from MODIS with a resolution of 250 m and Landsat-8 with a resolution of 30 m in 2015 during the vegetation growing season, the data are derived using dimidiate pixel model and time interpolation. The spatial resolution of the image is 30 m, using the WGS 1984 UTM projected coordinate system, and the data is in the format of grid.
WANG Guangjun
As the “water tower of Asia”, Tibetan Plateau (TP) are the resource of major rivers in Asia. Black carbon (BC) aerosol emitted from surrounding regions can be transported to the inner TP by atmospheric circulation and consequently deposited in snow, which can significantly influence precipitation and mass balance of glaciers. Five Aethalometers are used to mornitoring black carbon concentration at 5 stations on the Tibetan Plateau. It can provide basic dataset to study the effects of BC to the environment and climate over the Tibetan Plateau, as well as the pollutants transport.
This dataset includes the ground surface temperature in the Qilian Mountains on the Qinghai-Tibet Plateau during 1980-2013. This dataset was obtained from the ERA-interim reanalysis product. The ERA-interim system includes a 4-dimensional variational analysis (4D-Var). The quality of the data has been improved using the bias correction of satellite data. The spatial resolution of the dataset is 0.125°. The dataset includes the grid data of the ground surface temperature in the Qilian Mountains during the past 30 years, and may provide a basic data for relevant studies such as climatic change, ecosystem succession, and earth system models.
WU Xiaodong
The Tibetan Plateau in China covers six provinces including Tibet, Qinghai, Xinjiang, Yunnan, Gansu and Sichuan, including Tibet and Qinghai, as well as parts of Xinjiang, Yunnan, Gansu and Sichuan. The research on water and soil resources matching aims to reveal the equilibrium and abundance of water resources and land resources in a certain regional scale. The higher the level of consistency between regional water resources and the allocation of cultivated land resources, the higher the matching degree, and the superior the basic conditions of agricultural production. The general agricultural water resource measurement method based on the unit area of cultivated land is used to reflect the quantitative relationship between the water supply of agricultural production in the study area and the spatial suitability of cultivated land resources. The Excel file of the data set contains the generalized agricultural soil and water resource matching coefficient data of the Tibetan Plateau municipal administrative region in China from 2008 to 2015, the vector data is the boundary data of the Tibetan Plateau municipal administrative region in China in 2004, and the raster data pixel value is the generalized agricultural soil and water resource matching coefficient of the year in the region.
DONG Qianjin, DONG Lingxiao
The near surface atmospheric forcing and surface state dataset of the Tibetan Plateau was yielded by WRF model, time range: 2000-2010, space range: 25-40 °N, 75-105 °E, time resolution: hourly, space resolution: 10 km, grid number: 150 * 300. There are 33 variables in total, including 11 near surface atmospheric variables: temperature at 2m height on the ground, specific humidity at 2m height on the ground, surface pressure, latitudinal component of 10m wind field on the ground, longitudinal component of 10m wind field on the ground, proportion of solid precipitation, cumulative cumulus convective precipitation, cumulative grid precipitation, downward shortwave radiation flux at the surface, downward length at the surface Wave radiation flux, cumulative potential evaporation. There are 19 surface state variables: soil temperature in each layer, soil moisture in each layer, liquid water content in each layer, heat flux of snow phase change, soil bottom temperature, surface runoff, underground runoff, vegetation proportion, surface heat flux, snow water equivalent, actual snow thickness, snow density, water in the canopy, surface temperature, albedo, background albedo, lower boundary Soil temperature, upward heat flux (sensible heat flux) at the surface and upward water flux (sensible heat flux) at the surface. There are three other variables: longitude, latitude and planetary boundary layer height.
PAN Xiaoduo
Thematic data on desertification (land desertification, salinization and vegetation degradation) in Central Asia, includes three parts: Distribution Map of Sandy Land in Central Asia, Distribution Map of Salinized Land in Central Asia and Distribution Map of Land Vegetation Degradation in Central Asia. The spatial resolution of the data is 1km, the time resolution is in 2015. The data produced by the key laboratory of remote sensing and GIS, Xinjiang institute of ecology and geography, Chinese Academy of Sciences. Data production Supported by the Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDA20030101.
XU Wenqiang
Koppen Geiger climate type map is a high-resolution grid data set after Rubel (2017) downscaling, which provides two data subsets: a data NetCDF file and an NCL code for individual visualization. The dataset represents the climate type distribution from 1986 to 2010, with a resolution of 5 minutes of arc (1 / 12 degree, about 10km). Using the downscaling algorithm developed by Rubel et al. (2017), the reanalyzed K ö ppen Geiger climate type data obtained a high-resolution version of 5 arc minutes. It represents the distribution of climate types in the last 25 years. In addition, the color meter needle optimizes the higher resolution, resulting in slightly different map appearance.
HE Yongli
Basic Geographic Data Set of Resources and Environment in Central and Western Asia Region, includes six parts: administrative divisions map, topographic and geomorphological map, river system maps, precipitation map, temperature map and potential evapotranspiration map. The precipitation and temperature datasets are interpolated based on the ground observations, while the potential evapotranspiration dataset is calculated based on the Penman-Monteith equation. The precipitation, temperature and potential evapotranspiration datasets are resampled from the original 0.5° CRU dataset by using the linear interpolation method in ArcGIS software. This dataset is made based a large number of gauge observations with good quality control and homogeneity check. The results of the related studies (Deng and Chen, 2017; Li et al., 2017; Li et al., 2016) suggested that this dataset is applicable and satisfactory for the climatological studies. The data produced by the key laboratory of remote sensing and GIS, Xinjiang institute of ecology and geography, Chinese Academy of Sciences. Data production Supported by the Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDA20030101.
Data Set of Key Elements of Desertification in Typical Watershed of Central and Western Asia includes four parts: distribution and change of agricultural land of Amu River Basin, distribution and change of grassland of Amu River Basin, distribution and change of shrub land of Amu River Basin, distribution and change of forests of Amu River Basin. the spatial resolution of data is 30 m. All the data is based on Landsat TM/ETM image data in 1990, 2000 and 2010. The data produced by the key laboratory of remote sensing and GIS, Xinjiang institute of ecology and geography, Chinese Academy of Sciences. Data production Supported by the Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDA20030101.
1) Data content : total column water / precipitable water; 2) Data sources and processing methods: ECMWF-interm monthly mean analysis; 3) Data quality description: time resolution: monthly, spatial resolution: 0.7°*0.7°; 4) Data application results and prospects: this data can be used for analysis of water resources in the air.
YAN Hongru
The data set covers 599 meteorological stations in five Central Asian countries, including the following elements: * daily maximum temperature, * daily minimum temperature, * observed temperature, * Precipitation (i.e. rain, melting snow), covering the following dates: 1980-1986; 1996-2005; 2010; 2014; 2015 The data comes from ghcn-d, a data set containing global land area daily observation data, which integrates climate records. The data is a direct measurement of surface temperature, without interpolation or model assumptions, and contains many long-term site records. The disadvantage is uneven space coverage. Due to changes in observation time, site location, and the type of thermometer used, the records contain many heterogeneity. For more information about this dataset, see https://www.ncdc.noaa.gov/ghcnd-data-access
The data was obtained from the 30-second global elevation dataset developed by the US Geological Survey (USGS) and completed in 1996. Downloaded the data from the NCAR and UCAR Joint Data Download Center (https://rda.ucar.edu/datasets/ds758.0/) and redistributed it through this data center. GTOPO30 divides the world into 33 blocks. The sampling interval is 30 arc seconds, which is 0.00833333333333333 degrees. The coordinate reference is WGS84. The DEM is the distance from the sea level in the vertical direction, ie the altitude, in m, the altitude range from -407 to 8752, the ocean depth information is not included here, the negative value is the altitude of the continental shelf; the ocean is marked as -9999, the elevation above the coastline is at least 1; the island less than 1 square kilometer is not considered. In order to facilitate the user's convenience, on the basis of the block data, splice 10 blocks in -10S-90N and 20W-180E without any resampling processing. This data file is DEM_ptpe_Gtopo30.nc
HE Yongli
The daily cloudless MODIS Snow area ratio data set (2000-2015) of the Qinghai Tibet Plateau is based on MODIS daily snow product - mod10a1, which is obtained by using a cloud removal algorithm based on cubic spline interpolation. The data set is projected by UTM with spatial resolution of 500m, providing daily snow cover FSC results in the Tibetan Plateau. The data set is a day-to-day document, from 24 February 2000 to 31 December 2015. Each file is the result of snow area proportion on that day, the value is 0-100%, which is envi standard file, the naming rule is: yyyddd_fsc_0.5km.img, where yyyy represents the year, DDD represents Julian day (001-365 / 366). Files can be opened and viewed directly with envi or ArcMap. The original MODIS Snow data product for cloud removal comes from the mod10a1 product processed by the National Snow and Ice Data Center (NSIDC). This data set is in the format of HDF and uses the sinusional projection. The attributes of the daily cloudless MODIS Snow area ratio data set (2000-2015) on the Qinghai Tibet Plateau consist of the spatial-temporal resolution, projection information and data format of the data set. Temporal and spatial resolution: the temporal resolution is day by day, the spatial resolution is 500m, the longitude range is 72.8 ° ~ 106.3 ° e, and the latitude is 25.0 ° ~ 40.9 ° n. Projection information: UTM projection. Data format: envi standard format. File naming rules: "yyyyddd" + ". Img", where yyyy stands for year, DDD stands for Julian day (001-365 / 366), and ". Img" is the file suffix added for easy viewing in ArcMap and other software. For example, 2000055 ﹐ FSC ﹐ 0.5km.img represents the result on the 55th day of 2000. The envi file of this data set is composed of header file and body content. The header file includes row number, column number, band number, file type, data type, data record format, projection information, etc.; take 2000055 ﹣ FSC ﹣ 0.5km.img file as an example, the header file information is as follows: ENVI Description = {envi file, created [sat APR 27 18:40:03 2013]} Samples = 5760 Lines = 3300 Bands = 1 Header offset = 0 File type = envi standard Data type = 1: represents byte type Interleave = BSQ: data record format is BSQ Sensor type = unknown Byte order = 0 Map Info = {UTM, 1.500, 1.500, - 711320.359, 4526650.881, 5.0000000000e + 002, 5.0000000000e + 002, 45, north, WGS-84, units = meters} Coordinate system string = {projcs ["UTM [u zone [45N], geocs [" GCS [WGS [1984], data ["d [WGS [1984", organization ID ["WGS [1984", 6378137.0298.257223563]], prime ["Greenwich", 0.0], unit ["degree", 0.01745532925199433]]] project ["transfer [Mercator"]] parameter ["false [easting", 500000.0], parameter ["false [easting", 500000.0], parameter [500000.0], parameter [500000.0], parameter [false [false [easting ", 500000.0], parameter], parameter [500000.0], parameter [500000.0], parameter [500000.0], parameter [false [easting", 500000.0], parameter [500000.0], parameter [500000.0], parameter [500000.0], parameter ["false_northing", 0.0], parameter ["central_meridian", 87.0], parameter ["scale" _Factor ", 0.9996], parameter [" latitude ﹣ of ﹣ origin ", 0.0], unit [" meter ", 1.0]]} Wavelength units = unknown, band names = {2000055}
TANG Zhiguang, WANG Jian
This data set contains the temperature anomaly series for each quarter and month of the years from January, 1951 to December, 2006 on the Tibetan Plateau. Based on the “China Homogenized Historical Temperature Data Set (1951–2004) Version 1.0” and the daily average temperature data from 2005 to 2006, the monthly average temperature of 123 sites on the Tibetan Plateau and its neighboring areas were gridded using the Climate Anomaly Method (CAM). Further, the average monthly temperature anomaly sequences from 1951 to 2006 were established using the area weighting factor method. To maximize the use of the observation data, the method using the data at a nearby reference station to correct the short series of the climatic standard values of the air temperature data is emphatically discussed. Reference: Yu Ren, Xueqin Zhang, Lili Peng. Construction and Analysis of Mean Air Temperature Anomaly Series for the Qinghai-Xizang Plateau during 1951-2006. Plateau Meteorology, 2010. The “China Homogenized Historical Temperature Data Set (1951–2004) Version 1.0” and the daily average temperature data from 2005 to 2006 meet the relevant national standards. There are five fields in the monthly temperature anomaly data table. Field 1: Year Field 2: Month Field 3: Number of grids Number of grids included in the calculation Field 4: Number of sites Number of sites included in the calculation Field 5: Monthly Temperature Anomaly Unit °C There are five fields in the year and quarter temperature anomaly data table. Field 1: Year Field 2: Quarter Field 3: Number of grids Number of grids included in the calculation Field 4: Number of sites Explanation: Number of sites included in the calculation Field 5: Temperature anomaly °C In the quarter field: 1. If it is null, it is the annual temperature anomaly 2. DJF: Winter (Last December to this February) temperature anomaly °C 3. MAM: Spring (March-May) temperature anomaly °C 4. JJA: Summer (June-August) temperature anomaly °C 5. SON: Fall (September-November) temperature anomaly °C Data accuracy: the monthly average temperature anomaly to the third decimal places, the annual and quarterly average temperature anomaly to the second decimal places.
LIU Linshan
Soil is mineral particles of different sizes formed by weathering of rocks. Soil not only provides nutrients and water for crops, but also has a transforming effect on various nutrients. In addition, the soil also has a self-cleaning function, which can improve organic matter content, soil temperature and humidity, pH value, anion and cation. The soil pollution causes several environmental problems: industrial sewage, acid rain, exhaust emissions, accumulations, agricultural pollution. After the land is polluted, the contaminated tops with high concentration of heavy metals are easily entered under the action of wind and water. Other secondary ecological and environmental problems such as air pollution, surface water pollution, groundwater pollution and ecosystem degradation in the atmosphere and water.he data set comes from the World Soil Database (Harmonized World Soil Database version 1.1) (HWSD) UN Food and Agriculture (FAO) and the Vienna International Institute for Applied Systems Research Institute (IIASA) constructed, which provides data model input parameters for the modeler, At the same time, it provides a basis for research on ecological agriculture, food security and climate change.
Food and Agriculture Organization of the United Nation FAO
The data include soil organic matter data of Tibetan Plateau , with a spatial resolution of 1km*1km and a time coverage of 1979-1985.The data source is the soil carbon content generated from the second soil census data.Soil organic matter mainly comes from plants, animals and microbial residues, among which higher plants are the main sources.The organisms that first appeared in the parent material of primitive soils were microorganisms.With the evolution of organisms and the development of soil forming process, animal and plant residues and their secretions become the basic sources of soil organic matter.The data is of great significance for analyzing the ecological environment of Tibetan Plateau
FANG Huajun
The Pan-Third Polar region has strong seismic activity, which is driven by the subduction and collision of the Indian plate, the Arab plate and the Eurasian plate. 3809 earthquakes with Magnitude 6 or larger have occurred in Pan-Third Polar region (north latitude 0-56 degrees and east longitude 43-139 degrees) since 1960. Among them, 59 earthquakes with Magnitude 8 or larger, 689 earthquakes with Magnitude 7.0-7.9 and 3061 earthquakes with Magnitude 6.0-6.9 have occurred. Earthquakes occurred mainly in the foothills of the India-Myanmar Mountains, the Himalaya Mountains, the Sulaiman Mountains, where the India Plate collided with the Eurasian plate, and the Zagros Mountains where the Arab plate collided with the Eurasian plate.
WANG Ji
The data set records the total socio-demographic data of five central Asian countries from 1991 to 2017.Population indicators including annual population, estimated life expectancy, total fertility rate (1000 people), and total mortality (1000 people), infant mortality, maternal mortality, the total marriage rates, the overall divorce rate, migration of all flow balance, the number of medical institutions, hospital beds (m), the number of preschool institutions (a), kindergarten school student number (m) number, number of middle school, high school students (m), the number of the university, the number of students, institutions of higher learning, the number of students of institutions of higher learning.The data are from the statistical yearbooks of five central Asian countries.
HUANG Jinchuan, MA Haitao
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn