The continuous snow cover area in time and space is one of key elements to study of land surface energy and water exhange, mountain hydrology, land surface model, numerical weather forecast and climate change. However, the large number of clouds causes data gaps in the snow cover area from optical remote sensing. The MODIS observations of Terra and aqua, FY-2E and FY-2F VISSR are used to obtain fractional snow cover (subpixel snow cover) which is less affected by the cloud, and the snow cover of the remaining cloud pixels is supplemented according to the time series information. Finally the cloudless daily snow fraction is obtained. This data set includes the daily fractional snow cover at 5 km spatial resolution in the Tibetan Plateau and China.
JIANG Lingmei
The Tibetan Plateau Glacier Data –TPG2017 is a glacial coverage data on the Tibetan Plateau from selected 210 scenes of Landsat 8 Operational Land Imager (OLI) images with 30-m spatial resolution from 2013 to 2018, among of which 90% was in 2017 and 85% in winter. Therefore, 2017 was defined as the reference year for the mosaic image. Glacier outlines were digitized on-screen manually from the 2017 image mosaic, relying on false-colour image composites (RGB by bands 654), which allowed us to distinguish ice/snow from cloud. Debris-free ice was distinguished from the debris and debris-covered ice by its higher reflectance. Debris-covered ice was not delineated in this data. The delineated glacier outlines were compared with band-ratio (e.g. TM3/TM5) results, and validated by overlapping them onto Google Earth imagery, SRTM DEM, topographic maps and corresponding satellite images. For areas with mountain shadows and snow cover, they were verified by different methods using data from different seasons. For glaciers in deep shadow, Google EarthTM imagery from different dates was used as the reference for manual delineation. Steep slopes or headwalls were also excluded in the TPG2017. Areas that appeared in any of these sources to have the characteristics of exposed ground/basement/bed rock were manually delineated as non-glacier, and were also cross-checked with CGI-1 and CGI-2. Steep hanging glaciers were included in TPG2017 if they were identifiable on images in all other three epochs (i.e. TPG1976, TPG2001, and TPG2013). The accuracy of manual digitization was controlled within one half-pixel. All glacier areas were calculated on the WGS84 spheroid in an Albers equal-area map projection centred at (95°E, 30°N) with standard parallels at 15°N and 65°N. Our results showed that the relative deviation of manual interpretation was less than 3.9%.
YE Qinghua
1 High resolution gridded West Antarctic surface mass balance dataset, its project is Polar Stereographic Projection 2. The kriging like interpolation method is used to reconstruct the high‐spatial resolution surface mass balance (SMB) over the West Antarctic Ice Sheet (WAIS) from 1800 to 2010, based on ice core records, the outputs of the European Centre for Medium‐Range Weather Forecasts “Interim” reanalysis (ERA‐Interim) as well as the latest polar version of the Regional Atmospheric Climate Model (RACMO2.3p2). 3. Its accuracy is higher than reanalysis data. 4. Temporal resolution: 1800-2010; Temporal resolution: 1 year; Spatial coverage : the whole West Antarctic Ice Sheet, Spatial resolution: 25km х 25km
WANG Yetang
This dataset includes data recorded by the Heihe integrated observatory network obtained from the automatic weather station (AWS) at the Sidaoqiao mixed forest station from January 1 to December 31, 2018. The site (101.134° E, 41.990° N) was located on a tamarix and populous forest (Tamarix chinensis Lour. and Populus euphratica Olivier.) surface in the Sidaoqiao, Dalaihubu Town, Ejin Banner, Inner Mongolia Autonomous Region. The elevation is 874 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (28 m, north), wind speed and direction profile (28 m, north), air pressure (in tamper box), rain gauge (28 m, south), four-component radiometer (24 m, south), two infrared temperature sensors (24 m, south, vertically downward), two photosynthetically active radiation (24 m, south, one vertically upward and one vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, -1.0, -1.6, -2.0, -2.4 m), and soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.6, -1.0, -1.6, -2.0, -2.4 m). The observations included the following: air temperature and humidity (Ta_28 m; RH_28 m) (℃ and %, respectively), wind speed (Ws_28 m) (m/s), wind direction (WD_28 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_up and PAR_down) (μmol/ (s m^-2)), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, Ts_100, Ts_160, Ts_200, Ts_240 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, Ms_100, Ms_160, Ms_200, Ms_240 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. Due to the power loss of datalogger, there were occasionally data missing during January 1 to 9, and November 10 to December 14; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
The dataset was produced based on MODIS data. Parameters and algorithm were revised to be suitable for the land cover type in the Three-River-Source Regions. By using the Markov de-cloud algorithm, SSM/I snow water equivalent data was fused to the result. Finally, high accuracy daily de-cloud snow cover data was produced. The data value is 0(no snow) or 1(snow). The spatial resolution is 500m, the time period is from 2000-2-24 to 2019-12-31. Data format is geotiff, Arcmap or python+GDAL were recommended to open and process the data.
HAO Xiaohua
This data is the aridity index (AI) under the rcp4.5 scenario. AI data is the ratio of precipitation to potential evapotranspiration. This data is calculated by the average of 14 models. These 14 modes are canesm2; ccsm4; cnrm-cm5; csiro-mk3-6-0; giss-e2-r; hadgem2-cc; hadgem2-es; inmcm4; ipsl-cm5a-lr; miroc5; miroc-esm-chem; miroc-esm; mpi-esm-lr; mri-cgcm3. The spatial resolution is 2 * 2 degrees, and the temporal resolution is from January 2020 to December 2099. This data set can be used to analyze the future dry and wet change scenarios in the Great Lakes region of Central Asia, as well as the dry and wet past and pattern in other regions of the world under the future scenarios.
HUA Lijuan
This data set includes the daily values of temperature, air pressure, relative humidity, wind speed, precipitation, total radiation, etc. observed at Namuco station from January 1, 2017 to December 31, 2018.
WANG Junbo, WU Guangjian
The fraction snow cover (FSC) is the ratio of the snow cover area SCA to the pixel space. The data set covers the Arctic region (35 ° to 90 ° north latitude). Using Google Earth engine platform, the initial data is the global surface reflectance product with a resolution of 1000m with mod09ga, and the data preparation time is from February 24, 2000 to November 18, 2019. The methods are as follows: in the training sample area, the reference data set of FSC is prepared by using Landsat 8 surface reflectance data and snomap algorithm, and the data set is taken as the true value of FSC in the training sample area, so as to establish the linear regression model between FSC in the training sample area and NDSI based on MODIS surface reflectance products. Using this model, MODIS global surface reflectance product is used as input to prepare snow area ratio time series data in the Arctic region. The data set can provide quantitative information of snow distribution for regional climate simulation and hydrological model.
MA Yuan, LI Hongyi
The recent glacial changes in the third polar region have become the focus of the governments of the surrounding countries because of their important significance to the downstream water supply. Based on SRTM acquired in 2000 and aster stereo image pairs before and after 2015, more than 40 Typical Glaciers in the third polar region were selected to estimate the glacial surface elevation in corresponding period. This product estimates the surface elevation changes of more than 14000 glaciers in the third polar region in 2000-2015s, and the investigated area accounts for about 25% of the total glaciers in the third polar region. The data covers the whole third pole area except Altai mountain, with a spatial resolution of 30m.
CHEN An‘an
This dataset was derived from long-term daily snow depth in China based on the boundary of the three-river-source area. The snow depth ranges from 0 to 100 cm, and the temporal coverage is from January 1 1980 to December 31 2020. The spatial and temporal resolutions are 0.25o and daily, respectively. Snow depth was produced from satellite passive microwave remote sensing data which came from three different sensors that are SMMR, SSM/I and SSMI/S. Considering the systematic bias among these sensors, the inter-sensor calibrations were performed to obtain temporal consistent passive microwave remote sensing data. And the long-term daily snow depth in China were produced from this consistent data based on the spectral gradient method.For header file information, refer to the data set header.txt.
DAI Liyun
The dataset records the Ali Desert Environment Integrated Observation and Research Station, the meteorological dataset for 2017-2018, and the time resolution of the data is days. It includes the following basic meteorological parameters: temperature (1.5 meters from the ground, once every half hour, unit: Celsius), relative humidity (1.5 meters from the ground, half an hour, unit: %), wind speed (1.5 meters from the ground, half an hour) , unit: m / s), wind direction (1.5 meters from the ground, once every half hour, unit: degrees), air pressure (1.5 meters from the ground, once every half hour, unit: hPa), precipitation (24 hours, unit: mm ), water vapor pressure (unit: Kpa), evaporation (unit: mm), downward short-wave radiation (unit: W/m2), upward short-wave radiation (unit: W/m2), downward long-wave radiation (unit: W/m2) ), upward long-wave radiation (unit: W/m2), net radiation (unit: W/m2), surface albedo (unit: %). Data collection location: Observation Field of Ali Desert Environment Comprehensive Observation and Research Station, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Longitude: 79°42'5"; Latitude: 33°23'30"; Altitude: 4264 meters.
ZHAO Huabiao
The Tibetan Plateau, featuring the most extensive lake distribution in China, has seen rapid expansion of most its lakes. These lakes are important nodes for regional water and energy cycles, and highly sensitive to climate change. It is therefore imperative to unravel lake water storage changes under climate variation and change to improve the understanding of mechanisms of the interactions between regional hydrology and climate and their changes. This developed data set provides water level, hypsometric curves, and lake storage changes for 52 large lakes across the TP from 2000 to 2017, comprising traditional altimetry water levels and a unique source of information termed as the optical water levels derived from tremendous amounts of Landsat archives using Google Earth Engine. Field experiments agree with the theoritical analysis that the uncertainty of optical water level is 0.1 - 0.2 m, comparable with that of altimetry water level. The uncertainty of altimetry water level is represented by the standard deviation of water levels obtained from effective footprints of the same cycle, which is included in the dataset. This dataset is applicable in water resource and security management, lake basin hydrological analysis, water balance analysis and the like. For instance, it has great potential in monitoring lake overflow flood.
LI Xingdong, LONG Di, HUANG Qi, HAN Pengfei, ZHAO Fanyu, WADA Yoshihide
There is a lack of a set of high-resolution precipitation gridded data with long time series in the main basin of the Arctic. This dataset provides daily precipitation in the main basin of the Arctic. The range of data set is from 45 ° N to 76.15 °N. The metadata used includes: the meteorological station data during 1980-2015 obtained from GSOD and the reanalysis data of ERA-interim during 1980-2018. This dataset was obtained by bias correction of ERA-interim data with the improved quantile mapping method, and the background data used for bias correction is the interpolation gridded precipitation, in interpolation process, we not only take into account the effect of elevation, but fully consider the influence of wind on gauge measurements, the gauge used in interpolation all undergo bias adjustment. This dataset performs well both in region scale and cell grid scale, with high accuracy, which providing a set of reliable precipitation gridded data for the hydrological research of the Arctic.
LEI Huajin, LI Hongyi
The permafrost stability map was created based on the classification system proposed by Guodong Cheng (1984), which mainly depended on the inter-annual variation of deep soil temperature. By using the geographical weighted regression method, many auxiliary data was fusion in the map, such as average soil temperature, snow cover days, GLASS LAI, soil texture and organic from SoilGrids250, soil moisture products from CLDAS of CMA, and FY2/EMSIP precipitation products. The permafrost stability data spatial resolution is 1km and represents the status around 2010. The following table is the permafrost stability classification system. The data format is Arcgis Raster.
RAN Youhua
Data description: This dataset includes the grid data of annual temperature and annual precipitation on the Tibetan Plateau from 1998 to 2017. It is the basic data for study of climate change and its impact on the ecological environment. Data source and processing: The meta data was aquired from the temperature and precipitation daily data of China's ground high-density stations (above 2,400 national meteorological stations) based on the latest compilation of the National Meteorological Information Center's basic data. After removing the missing stations, the software's thin plate spline method in ANUSPLIN was used to perform spatial interpolation, in order to generate grid data with spactial resolution of 1 km on the Tibetan Plateau . Data application: This data can be used to indentify the impact of climate change on the ecological environment.
DING mingjun
The RCM employed is the International Center for Theoretical Physics (ICTP) Regional Climate Model version 4 (RegCM4, Giorgi et al., 2012). The domain used is the Coordinated Regional Climate Downscaling Experiment (CORDEX) Phase II East Asia domain, covering whole of China and its surrounding East Asia areas. The model is run at 25 km gird spacing, with its standard configuration of 18 vertical sigma layers with a model top at 10 hPa. Configuration of the model follows Gao et al. (2016, 2017), with land cover data over China was updated as reported by Han et al. (2015) to better represent the realistic vegetation. The initial and lateral boundary conditions needed to drive RegCM4 are derived from the CMIP5 models of HadGEM2-ES (RCP4.5 pathways), and the data set include temperature and precipitation.
GAO Xuejie
The original data of the Arctic and Antarctic sea ice data set is generated by the National Snow and Ice Data Center (NSIDC) through remote sensing data. The data format is GeoTIFF format and image format. The spatial resolution of the data is 25km and the time resolution is day. The data content is the sea ice range and sea ice density of the north and south poles. In this study, NetCDF format products are generated by post-processing the extent and density of sea ice in the north and south poles. The product data includes the sea ice range and sea ice density data of the north and south poles from 1979 to 2019. The time resolution is day by day, the coverage range is the South Pole and the north pole, and the horizontal spatial resolution is 12.5km. The data value of 1 in the sea ice range matrix indicates that the grid is sea ice, and the sea ice density is expressed by 0-1000. The grid value divided by 10 is the sea ice density value of the grid.
YE Aizhong
Mean annual ground temperature (MAGT) at a depth of zero annual amplitude and permafrost thermal stability type are fundamental importance for engineering planning and design, ecosystem management in permafrost region. This dataset is produced by integrating remotely sensed freezing degree-days and thawing degree-days, snow cover days, leaf area index, soil bulk density, high-accuracy soil moisture data, and in situ MAGT measurements from 237 boreholes for the 2010s (2005-2015) on the Tibetan Plateau (TP) by using an ensemble learning method that employs a support vector regression (SVR) model based on distance-blocked resampling training data with 200 repetitions. Validation of the new permafrost map indicates that it is probably the most accurate of all available maps at present. The RMSE of MAGT is approximately 0.75 °C and the bias is approximately 0.01 °C. This map shows that the total area of permafrost on the TP is approximately 115.02 (105.47-129.59) *104 km2. The areas corresponding to the very stable, stable, semi-stable, transitional, and unstable types are 0.86*104 km2, 9.62*104 km2, 38.45*104 km2, 42.29*104 km2, and 23.80*104 km2, respectively. This new dataset is available for evaluate the permafrost change in the future on the TP as a baseline. More details can be found in Ran et al., (2020) that published at Science China Earth Sciences.
RAN Youhua, LI Xin
The dataset is a nearly 36-year (1983.7-2018.12) high-resolution (3 h, 10 km) global SSR (surface solar radiation) dataset, which can be used for hydrological modeling, land surface modeling and engineering application. The dataset was produced based on ISCCP-HXG cloud products, ERA5 reanalysis data, and MODIS aerosol and albedo products with an improved physical parameterization scheme. Validation and comparisons with other global satellite radiation products indicate that our SSR estimates were generally better than those of the ISCCP flux dataset (ISCCP-FD), the global energy and water cycle experiment surface radiation budget (GEWEX-SRB), and the Earth's Radiant Energy System (CERES). This SSR dataset will contribute to the land-surface process simulations and the photovoltaic applications in the future. The unit is W/㎡, instantaneous value.
TANG Wenjun
Since 2006, China Geological Survey Bureau has organized and implemented the work of "Integration and comprehensive research on the basic geological survey results of the Tibetan Plateau". Based on the 1:250,000 regional geological survey on the blank area of the Tibetan Plateau and the latest research results at home and abroad, with the integration and comprehensive research, one of a series of maps, "1:1.5 million geological map of the Tibetan Plateau and its surrounding areas" have been compiled. The map is published by Geological Publishing House. Based on 177 1:250,000 Regional Geological Survey data, the regional strata and structure stratigraphic system are systematically determined, including 9 strata and structure stratigraphic areas, 36 strata and structure stratigraphic areas and 63 strata and structure stratigraphic areas. The lithostratigraphic division and correlation sequence of the Tibetan Plateau and its surrounding areas are established. A large number of geological records of geological evolution and uplift of the Tibetan Plateau are presented, which focus on the new discovery, new progress and new understanding of geological investigation and research. The projection of the map is Conformal Conic Projection, the first standard latitude is 28 °, the second standard latitude is 37 °, the central longitude is 89 °, and the projection origin latitude is 26 ° north latitude. This data is obtained by scanning the paper map “1:1.5 million geological map of the Tibetan Plateau and its surrounding areas” with a high-resolution scanner, and splicing the sub maps. In the process of scanning, keep the map surface as flat as possible to reduce the error. The copyright of the map belongs to the publishing house. This data can be used by researchers who are engaged in the geological and geomorphological research of the Tibetan Plateau, it can be used for the research of regional resources exploration, geological science research, construction of major engineering facilities, environmental protection and disaster prevention in the Tibetan Plateau.
Geological Publishing House GPH
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn