The data set includes the mass balances of Hailuogou Glacier, Parlung No.94 Glacier, Qiyi glacier, Xiaodongkemadi Glacier, Muztagh No.15 Glacier, Meikuang Glacier and NM551 Glacier in the Qinghai Tibet Plateau from 1975 to 2013. Based on several mass balance observations collected from World Glacier Inventory (https://nsidc.org/data/g10002/versions/1) and The Third Pole Environment Database (http://en.tpedatabase.cn/, doi:10.11888/GlaciologyGeocryology.tpe.96.db) by Tandong Yao and the meteorological data obtained from Global Land Assimilation System (GLDAS) (meteorological variables, including precipitation, air temperature, net radiation, evaporation on snow surface, and snow depth, in the central grid of each glacier are extracted from GLDAS data set shown in meteo.xlsx), the mass balances of the above seven glaciers from 1975 to 2013 are reconstructed by using the glacier material balance calculation formula. This reconstruction data is based on the published glacier material balance data to calibrate the parameters in the glacier material balance formula, and to reconstruct the long-time series material balance by using the glacier material balance formula, in which the parameter calibration results and the reconstruction results of the long-time series data are compared with the relevant research results, demonstrating the rationality of the data results Please refer to the following papers. The data can be used to study the change of water resources in the glacial region, expand the data set of Glacier Mass Balance in the Qinghai Tibet Plateau, and provide reference for the future research of Glacier Mass Balance reconstruction.
LIU Xiaowan
The surface air temperature dataset of the Tibetan Plateau is obtained by downscaling the China regional surface meteorological feature dataset (CRSMFD). It contains the daily mean surface air temperature and 3-hourly instantaneous surface air temperature. This dataset has a spatial resolution of 0.01°. Its time range for surface air temperature dataset is from 1979 to 2018. Spatial dimension of data: 73°E-106°E, 23°N-40°N. The surface air temperature with a 0.01° can serve as an important input for the modeling of land surface processes, such as surface evapotranspiration estimation, agricultural monitoring, and climate change analysis.
DING Lirong, ZHOU Ji, WANG Wei , MA Jin
We compiled the Seismic Zonation Map of Western Asia using the ArcGIS platform through data collecting and digitization. The Seismic Zonation map of Western Asia covers Iran and its surrounding countries and regions. Based on the “Major active faults of Iran” map, the map is replenished with massive published data and depicts the location and nature of the seisogenic faults or active faults and the epicenter of earthquakes with M ≥ 5 from 1960 to 2019. The zonation map shows the mean values of peak ground acceleration (PGA) with 10% probability of being exceeded in 50 years. The two maps can not only be used in the research of active faults and seismic risks in Western Asia, but also will be applied to the seismic safety evaluation for infrastructure construction.
LIU Zhicheng
Chinese Cryospheric Information System is a comprehensive information system for the management and analysis of cryospheric data over China. The establishment of Chinese Cryospheric Information System is to meet the needs of earth system science, and provide parameters and verification data for the development of response and feedback models of permafrost, glacier and snow cover to global changes under GIS framework. On the other hand, the system collates and rescues valuable cryospheric data to provide a scientific, efficient and safe management and analysis tool. Chinese Cryospheric Information System selected three regions with different spatial scales as its main research areas to highlight the research focus. The research area along the Qinghai-Tibet highway is mainly about 700 kilometers long from Xidatan to Naqu, and 20 to 30 kilometers wide on both sides of the highway. The datasets of the Tibetan highway contains the following types of data: 1. Cryosphere data.Including: snow depth distribution. 2. Natural environment and resources.Include: Digital elevation topography (DEM) : elevation elevation, elevation zoning, slope and slope direction; Fundamental geology: Quatgeo 3. Boreholes: drilling data of 200 boreholes along the qinghai-tibet highway. Engineering geological profile (CAD) : lithologic distribution, water content, grain fraction data, etc 4. Model of glacier mass equilibrium distribution along qinghai-tibet highway: prediction of frozen soil grid data. The graphic data along the qinghai-tibet highway includes 13 map scales of 1:250,000.The grid size is 100×100m. For details, please refer to the documents (in Chinese): "Chinese Cryospheric Information System design. Doc", "Chinese Cryospheric Information System data dictionary. Doc", "Database of the Tibetan highway. Doc".
LI Xin
Data set contains tree age of trees growing at different glacier moraines in the central Himalayas. The data were obtained using tree ring samples. Cores samples were collected (almost near to the ground level to estimate the minimum age of the related moraine) using an increment borer. Samples were processed by using standard dendrochronological techniques.
SIGDEL Shalik Ram, ZHNAG Hui, ZHU Haifeng, SHER Muhammad, LIANG Eryuan
A gridded ocean temperature dataset with complete global ocean coverage is a highly valuable resource for the understanding of climate change and climate variability. The Institute of Atmospheric Physics (IAP) provides a new objective analysis of historical ocean subsurface temperature since 1990 for the upper 2000m through several innovative steps. The first was to use an updated set of past observations that had been newly corrected for biases (e.g., in XBTs). The XBT bias was corrected by CH14 scheme, which is recommended by the XBT community. The second was to use co-variability between values at different places in the ocean and background information from a number of climate models that included a comprehensive ocean model. The third was to extend the influence of each observation over larger areas, recognizing the relative homogeneity of the vast open expanses of the southern oceans. Then the observations were also used to provide finer scale detail. Finally, the new analysis was carefully evaluated by using the knowledge of recent well-observed ocean states, but subsampled using the sparse distribution of observations in the more distant past to show that the method produces unbiased historical reconstruction. The ocean wind data set is constructed using RSS Version-7 microwave radiometer wind speed data. The input microwave data are processed by Remote Sensing Systems with funding from the NASA MEaSUREs Program and from the NASA Earth Science Physical Oceanography Program. This wind speed product is intended for climate study as the input data have been carefully intercalibrated and consistently processed. Each netCDF file contains: 1) monthly means of wind speed, grid size 360x180xnumber of all months since Jan 1988(increases over time) 2) a 12-month set of climatology wind speed, grid size 360x180, the climatology is an average calculated over the 20-year period 1988-2007 3) monthly anomalies of wind speed derived by subtracting the above climatology maps from the monthly means, grid size 360x180x#months since Jan 1988 (increases over time) 4) a wind speed trend map, grid size 360x180, the trend is calculated from 1988-01-01 to the latest complete calendar year 5) a time-latitude plot (a minimum of 10% of latitude cells is required for valid data), grid size 180x#months since Jan 1988 (increases over time).
GE Yong, LI Qiangzi, DONG Wen
This data comes from the result of teleseismic data, mainly including the velocity and radial anisotropic structures beneath western Tibet. In the process of processing, bandwidth filtering is adopted, and the filtering range is 0.05-2 Hz. Due to the use of teleseismic data, the cross-correlation method is used in the acquisition process to "align" the waveform. The data quality is good, because the extracted data are all from the earthquakes with magnitude greater than 5.0 located in the global seismic catalog, and each event has an obvious take-off point. The data can be used by other seismologists to reconstruct and analyze the underground structures in this area.
ZHANG Heng
The data set contains nearly 15 years of eddy covariance data from an alpine steppe ecosystem on the central Tibetan Plateau.The data was processed following standardized quality control methods to allow for comparability between the different years of our record and with other data sets. To ensure meaningful estimates of ecosystem atmosphere exchange, careful application of the following correction procedures and analyses was necessary: (1) Due to the remote location, continuous maintenance of the eddy covariance (EC) system was not always possible, so that cleaning and calibration of the sensors was performed irregularly. Furthermore, the high proportion of bare soil and high wind speeds led to accumulation of dirt in the measurement path of the infrared gas analyzer (IRGA). The installation of the sensor in such a challenging environment resulted in a considerable drift in CO2 and H2O gas density measurements. If not accounted for, this concentration bias may distort the estimation of the carbon uptake. We applied a modified drift correction procedure following Fratini et al. (2014) which, instead of a linear interpolation between calibration dates, uses the CO2 concentration measurements from the Mt. Waliguan atmospheric observatory as reference time series. (2) We applied rigorous quality filtering of the calculated fluxes to retain only fluxes which represent actual physical processes. (3) During the long measurement period, there were several buildings constructed in the near vicinity of the EC system. We investigated the influence of these obstacles on the turbulent flow regime to identify fluxes with uncertain land cover contribution and exclude them from subsequent computations. (4) We calculated the de-facto standard correction for instrument surface heating during cold conditions (hereafter called sensor self heating correction) following Burba et al. (2008) and a revision of the original method following Frank and Massman (2020). (5)Subsequently, we applied the traditional and widely used gap filling procedure following Reichstein et al. (2005) to provide a more complete overview of the annual net ecosystem CO2 exchange.(6) We estimated the flux uncertainty by calculating the random flux error (RE) following Finkelstein and Sims (2001) and by using the standard deviation of the fluxes used for gap filling(NEE_fsd) as a measure for spatial and temporal variation.
Felix Nieberding, MA Yaoming, Cristian Wille, Gerardo Fratini, Magnus Ole Asmussen, Yuyang Wang*, MA Weiqiang*, Torsten Sachs
The field observation platform of the Tibetan Plateau is the forefront of scientific observation and research on the Tibetan Plateau. The land surface processes and environmental changes based comprehensive observation of the land-boundary layer in the Tibetan Plateau provides valuable data for the study of the mechanism of the land-atmosphere interaction on the Tibetan Plateau and its effects. This dataset integrates the 2005-2016 hourly atmospheric, soil hydrothermal and turbulent fluxes observations of Qomolangma Atmospheric and Environmental Observation and Research Station, Chinese Academy of Sciences (QOMS/CAS), Southeast Tibet Observation and Research Station for the Alpine Environment, CAS (SETORS), the BJ site of Nagqu Station of Plateau Climate and Environment, CAS (NPCE-BJ), Nam Co Monitoring and Research Station for Multisphere Interactions, CAS (NAMORS), Ngari Desert Observation and Research Station, CAS (NADORS), Muztagh Ata Westerly Observation and Research Station, CAS (MAWORS). It contains gradient observation data composed of multi-layer wind speed and direction, temperature, humidity, air pressure and precipitation data, four-component radiation data, multi-layer soil temperature and humidity and soil heat flux data, and turbulence data composed of sensible heat flux, latent heat flux and carbon dioxide flux. These data can be widely used in the analysis of the characteristics of meteorological elements on the Tibetan Plaetau, the evaluation of remote sensing products and development of the remote sensing retrieval algorithms, and the evaluation and development of numerical models.
MA Yaoming
Solar global and direct radiation are measured by radiation sensors (Model TBQ-4-1, TBS-2, China), and temperature and humidity are measured by a HOBO weather station (Model H21, onset company, USA). This dataset is solar radiation and meteorological variables, including solar globla and direct radiation in the wavelength range of 270-3200nm, unit: w/m2. The units of temperature, humidity and water vapor pressure are ℃, %, hPa, respectively. The dataset of solar radiation and meteorological elements come from the measurements of data providers. Data coverage time is 2013-2016. The data set can be used to study the solar radiation and its change mechanism in a subtropical region, China.
BAI Jianhui
We use waveform cross-correlation to analyze the recordings of eight earthquakes (2009-2018) beneath the Indian Ocean at stations from the Chinese Digital Seismic Network. We obtain 929 high quality residual traveltime differences between the phases ScS and S (Differential traveltimes.dat). We interpret variations of δt up to 10 seconds as due to horizontal shear-velocity variations in D” beneath northern India, Nepal, and southwestern China. The shear velocity can vary by as much as 7% over distances shorter than 300 km. Our observations provide additional observational evidence that compositional heterogeneity and possibly melt contribute to the seismic structure of the lower mantle characterized by long-term subduction and mantle downwelling.
LI Guohui, BAI Ling
Thematic data on desertification in Western Asia, includes two parts: Distribution Map of Sandy Land in Western Asia, Distribution Map of Grassland Degradation in Western Asia. The spatial resolution of the data is 30m. The data produced by the key laboratory of remote sensing and GIS, Xinjiang institute of ecology and geography, Chinese Academy of Sciences, the spatial resolution of data is 30 m. Data production Supported by the Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDA20030101. The map of artificial oasis pattern in Amu river basin is based on Landsat TM and ETM image data in 2015. Firstly, with the help of eCognition software, the object-oriented classification is carried out. Secondly, the classification results are checked and corrected manually.
This dataset includes the concentrations and spatial pattern of organic carbon (OC) and Elemental carbon (EC) in the carbonaceous aerosol (CA) of the Tibetan Plateau and surroundings. OC and EC were measured by Desert Research Institute Model 2001 Thermal/Optical Carbon Analyzer. The limit of detection (LOD) for OC and EC were 0.43 and 0.12 ug/cm2, respectively. In addition, MAC was also calculated for assessing the effect of EC. This dataset will provide the informations of CA contamination and background values over the Tibetan Plateau and surroundings.
Snow is a significant component of the ecosystem and water resources in high-mountain Asia (HMA). Therefore, accurate, continuous, and long-term snow monitoring is indispensable for the water resources management and economic development. The present study improves the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua satellites 8 d (“d” denotes “day”) composite snow cover Collection 6 (C6) products, named MOD10A2.006 (Terra) and MYD10A2.006 (Aqua), for HMA with a multistep approach. The primary purpose of this study was to reduce uncertainty in the Terra–Aqua MODIS snow cover products and generate a combined snow cover product. For reducing underestimation mainly caused by cloud cover, we used seasonal, temporal, and spatial filters. For reducing overestimation caused by MODIS sensors, we combined Terra and Aqua MODIS snow cover products, considering snow only if a pixel represents snow in both the products; otherwise it is classified as no snow, unlike some previous studies which consider snow if any of the Terra or Aqua product identifies snow. Our methodology generates a new product which removes a significant amount of uncertainty in Terra and Aqua MODIS 8 d composite C6 products comprising 46 % overestimation and 3.66 % underestimation, mainly caused by sensor limitations and cloud cover, respectively. The results were validated using Landsat 8 data, both for winter and summer at 20 well-distributed sites in the study area. Our validated adopted methodology improved accuracy by 10 % on average, compared to Landsat data. The final product covers the period from 2002 to 2018, comprising a combination of snow and glaciers created by merging Randolph Glacier Inventory version 6.0 (RGI 6.0) separated as debris-covered and debris-free with the final snow product MOYDGL06*. We have processed approximately 746 images of both Terra and Aqua MODIS snow containing approximately 100 000 satellite individual images. Furthermore, this product can serve as a valuable input dataset for hydrological and glaciological modelling to assess the melt contribution of snow-covered areas. The data, which can be used in various climatological and water-related studies, are available for end users at https://doi.org/10.1594/PANGAEA.901821 (Muhammad and Thapa, 2019).
SHER Muhammad
This data set is output from WRF model. The data include ‘LU_INDEX’ (land use category), ‘ZNU’(eta values on half (mass) levels), ‘ZNW’(eta values on full (w) levels),’ZS’(depths of centers of soil layers), ‘DZS’ (thicknesses of soil layers), ‘VAR_SSO’ (variance of subgrid-scale orography), ‘U’(x-wind component), ‘V’(y-wind component),’W’(z-wind component),’T’(perturbation potential temperature (theta-t0)), ‘Q2’ ('QV at 2 M), ‘T2’ (TEMP at 2 M), ‘TH2’ ('POT TEMP at 2 M), ‘PSFC’ (SFC pressure), ‘U10’ (U at 10 M), ‘V10’ (V at 10 M), ‘QVAPOR’ (Water vapor mixing ratio), ‘QLOUD’ (Cloud water mixing ratio),’QRAIN’ (Rain water mixing ratio), ‘QICE’ (Ice mixing ratio), ‘QSNOW’ (Snow mixing ratio), ‘SHDMAX’ (annual max veg fraction), ‘SHDMIN’ (annual min veg fraction), ‘SNOALB’ (annual max snow albedo in fraction), ‘TSLB’ (soil temperature), ‘SMOIS’ (soil moisture), ‘GRDFLX’ (ground heat flux), ‘LAI’ (Leaf area index),’ HGT’ (Terrain Height), ‘TSK’ (surface skin temperature), ‘SWDOWN’ (downward short wave flux at ground surface), ‘GLW’ (downward long wave flux at ground surface), ‘HFX’ (upward heat flux at the surface), ‘QFX’ (upward moisture flux at the surface), ‘LH’ (latent heat flux at the surface), ‘SNOWC’ (flag indicating snow coverage (1 for snow cover)), and so on. The data is in netCDF format with a spatial resolution of 10 km.
CHEN Xuelong
1) Data content: including the central Asian region, the regional scope: 30°N ~ 60°N, 40°E ~ 90°E; 2) Data source: process the CMIP data set and use bilinear interpolation to interpolate the data of different resolution modes to 0.5°× 0.5°,CRU observation data from 1901 to 2014;; 3) Data quality: the time length is long, the data quality is good, and the missing values are marked by 999; 3) Prospect of data application achievement set: the data has been used to evaluate the simulation capability of temperature in central Asia, and the capability of climate system model to simulate historical climate change in central Asia has been evaluated through calculation and analysis of regional mean, relative error, root-mean-square error, Taylor diagram, EOF. 4) data reliability: by comparing and analyzing the annual changes of the observed and simulated data, the data results show a significant warming trend. By carrying out correlation test on the data results, they all pass the 99% reliability test.At the same time, CMIP plan data and CRU data are also common data sets, which are often used in many studies on climate change.
Ma Jinyu
Water scarcity,food crises and ecological deterioration caused by drought disasters are a direct threat to food security and socio-economic development. Improvement of drought disaster risk assessment and emergency management is now urgently required. This article describes major scientific and technological progress in the field of drought disaster risk assessment. Drought is a worldwide natural disaster that has long affected agricultural production as well as social and economic activities. Frequent droughts have been observed in the Belt and Road area, in which much of the agricultural land is concentrated in fragile ecological environment. Soil relative humidity index is one of the indicators to characterize soil drought and can directly reflect the status of crops' available water.
GE Yong, WU Hua
The Three-River-Source National Park with an area of 123,100 km2 and include three sub regions, they are source region of the Yangtze River in the national park, source region of Yellow River in the national park and source region of Lancang River in the national park. The national park is located between longitude 89°50'57" -- 99°14'57", latitude 32°22'36" -- 36°47'53". It accounts for 31.16% of the total area of Three-River-Source region. This data set is generated by digitizing the location map of Three-River-Source national park in the comprehensive planning of Three-River-Source national park. The data include the boundary for the national park. Data format is Shapefile. Arcmap is recommended to open the data.
WANG Xufeng
The Three-River-Source National Park with an area of 123,100 km2 and include three sub regions, they are source region of the Yangtze River in the national park, source region of Yellow River in the national park and source region of Lancang River in the national park. The national park is located between longitude 89°50'57" -- 99°14'57", latitude 32°22'36" -- 36°47'53". It accounts for 31.16% of the total area of Three-River-Source region. This data set is generated by digitizing the location map of Three-River-Source national park in the comprehensive planning of Three-River-Source national park. The data include the boundary for the national park. Data format is Shapefile. Arcmap is recommended to open the data.
WANG Xufeng
This data set describes the temporal and spatial distribution of precipitation in the Upper Brahmaputra River Basin. We integrate (CMA, GLDAS, ITP-Forcing, MERRA2, TRMM) five sets of reanalysis precipitation products and satellite precipitation products, and combine the observation precipitation of 9 national meteorological stations from China Meteorological Administration (CMA) and 166 rain gauges of the Ministry of Water Resources (MWR) in the basin. The time range is 1981-2016, the time resolution is 3 hours, the spatial resolution is 5 km, and the unit is mm/h. The data will provide better data support for the study of Upper Brahmaputra River Basin, and can be used to study the response of hydrological process to climate change. Please refer to the instruction document uploaded with the data for specific usage information.
WANG Yuanwei, WANG Lei, LI Xiuping, ZHOU Jing
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn