Geladandong region is an important and typical source region of great rivers and lakes in the Qinghai Tibet Plateau. This data set provides DEM covering glaciers in the source region of the Yangtze River and Selin Co with different time scales and resolutions to calculate the seasonal and decadal changes of glacier surface elevation in the source region. This data set includes seven 5-meter resolution TanDEM-X data from July 2016 to 2017, which can be used to calculate the seasonal change of glacier surface elevation; it includes one KH-9 DEM with a resolution of 30m in 1976, five TanDEM-X with a resolution of 30m in 2011, one TanDEM-X in 2014 and three TanDEM-X in 2017 with a resolution of 30m. The data can be used to calculate the change of glacier surface elevation during 1976-2000, 2000-20112011-2017. At the same time, Landsat ETM data are used to extract the glacier outline in 1976and we divide it according to the RGI6.0; The right figure shows the spatial and temporal coverage information of the data set, and the base figure is the orthophoto corrected kh-9 image.
CHEN Wenfeng
The surface elevation of the ice sheet is very sensitive to climate change, so the elevation change of the ice sheet is considered as an important variable to evaluate climate change. The time series of long-term ice sheet surface elevation change has become a fundamental data for understanding climate change. The longest time series of ice sheet surface elevation can be established by combining the observation records of radar satellite altimetry missions. However, the previous methods for correcting the intermission bias still have error residue when cross-calibrating different missions. Therefore,we modify the commonly used plane-fitting least-squares regression model by restricting the correction of intermission bias and the ascending–descending bias at the same time to ensure the self-consistency and coherence of surface elevation time series across different missions. Based on this method, we use Envisat and CryoSat-2 data to construct the time series of Antarctic ice sheet elevation change from 2002 to 2019. The time series is the monthly grid data, and the spatial grid resolution is 5 km×5 km. Using airborne and satellite laser altimetry data to evaluate the results, it is found that compared with the traditional method, this method can improve the accuracy of intermission bias correction by 40%. Using the merged elevation time series, combining with firn densification-modeled volume changes due to surface processes, we find that ice dynamic processes make the ice sheet along the Amundsen Sea sector the largest volume loss of the Antarctic ice sheet. The surface processes dominate the volume changes in Totten Glacier sector, Dronning Maud Land, Princess Elizabeth Land, and the Bellingshausen Sea sector. Overall, accelerated volume loss in the West Antarctic continues to outpace the gains observed in the East Antarctic. The total volume change during 2002–2019 for the AIS was −68.7 ± 8.1 km3/y, with an acceleration of −5.5 ± 0.9 km3/y2.
ZHANG Baojun, WANG Zemin, YANG Quanming, LIU Jingbin, AN Jiachun, LI Fei, GENG Hong
This biophysical permafrost zonation map was produced using a rule-based GIS model that integrated a new permafrost extent, climate conditions, vegetation structure, soil and topographic conditions, as well as a yedoma map. Different from the previous maps, permafrost in this map is classified into five types: climate-driven, climate-driven/ecosystem-modified, climate-driven/ecosystem protected, ecosystem-driven, and ecosystem-protected. Excluding glaciers and lakes, the areas of these five types in the Northern Hemisphere are 3.66×106 km2, 8.06×106 km2, 0.62×106 km2, 5.79×106 km2, and 1.63×106 km2, respectively. 81% of the permafrost regions in the Northern Hemisphere are modified, driven, or protected by ecosystems, indicating the dominant role of ecosystems in permafrost stability in the Northern Hemisphere. Permafrost driven solely by climate occupies 19% of permafrost regions, mainly in High Arctic and high mountains areas, such as the Qinghai-Tibet Plateau.
RAN Youhua, M. Torre Jorgenson, LI Xin, JIN Huijun, Wu Tonghua, Li Ren, CHENG Guodong
As an important part of global semi-arid grassland, adequately understanding the spatio-temporal variability of evapotranspiration (ET) over the temperate semi-arid grassland of China (TSGC) could advance our understanding of climate, hydrological and ecological processes over global semi-arid areas. Based on the largest number of in-situ ET measurements (13 flux towers) within the TSGC, we applied the support vector regression method to develop a high-quality ET dataset at 1 km spatial resolution and 8-day timescale for the TSGC from 1982 to 2015. The model performed well in validation against flux tower‐measured data and comparison with water-balance derived ET.
LEI Huimin
Kilometer-level spatially complete (seamless) land surface temperature products have a wide range of applications needs in climate change and other fields. Satellite retrieved LST has high reliability. Integrating the LST retrieved from thermal infrared and microwave remote sensing observation is an effective way to obtain the SLT with certain accuracy and spatial integrity. Based on this guiding ideology, the author developed a framework for retrieving 1km and seamless LST over China landmass, and generated the LST data set accordingly (2002-2020) Firstly, a look-up table based empirical retrieval algorithm is developed for retrieving microwave LST from AMSR-E/AMSR2 observations. Then, AMSR-E/AMSR2 LST is downscaled by using geographic weighted regression to obtain 1km LST. Finally, the multi-scale Kalman filter is used to fuse AMSR-E/AMSR2 LST and MODIS LST to generate a 1km seamless LST data set. The ground valuation results show that the root mean square error (RMSE) of the 1km seamless LST is about 3K. In addition, the spatial distribution of the 1km seamless LST is consistent with MODIS LST and CLDAS LST.
CHENG Jie, DONG Shengyue, SHI Jiancheng
Snow over sea ice controls the energy budgets, affects the sea ice growth/melting, and thus has essential climatic effects. Snow depth, one of the fundamental properties of snow cover, is essential for understanding of the rapid change in Antarctic climate and for sea ice thickness estimation. Passive microwave radiometer can be used for basin-scale snow depth estimation in daily scale, however, previous published methods applied for Antarctic snow depth shows clear underestimation, which limits their further application. Here, we construct a new and robust linear regression equation for snow depth retrieval using microwave radiometers by including lower frequencies, and we produce the snow depth product over Antarctic sea ice from 2002 to 2020 from AMSR-E, AMSR-2, SSMIS based on this method. A regression analysis using 7 years of Operation IceBridge (OIB) airborne snow depth measurements shows that the gradient ratio (GR) calculated using brightness temperatures in vertical polarized 37 and 19 GHz, i.e., GR(37/7), is the optimal one for deriving Antarctic snow depth with an root mean square deviation (RMSD) of 8.92 cm and a correlation coefficient of -0.64, the related equation coefficients are then derived. GR(37/19) is used to retrieve snow depth from SSMIS data to fill the observation gaps between AMSR-E and AMSR-2, and the estimated snow depth is corrected for the consistence with these from AMSR-E/2. An averaged uncertainty of 3.81 cm is found based on a Gaussian error propagation, which accounts for 12% of the estimated mean snow depth. The evaluation of proposed method with in-situ measurements from Australian Antarctic Data Centre shows that the proposed method outperforms the previous available method, with a mean difference of 5.64 cm and an RMSD of 13.79 cm, comparing to -14.47 cm and 19.49 cm. Comparison to shipborne observations from Antarctic Sea Ice Processes and Climate indicates that the proposed method shows slight better performance than previous method (RMSDs of 16.85 cm and 17.61 cm, respectively); and comparable performances in growth and melting seasons suggests that the proposed method can still be used in the melting season. We generate a complete snow depth product over Antarctic sea ice from 2002 to 2020 in daily scale, and negative trends can be found in all sea sectors and seasons. This dataset can be further used in the reanalysis data evaluation, sea ice thickness estimation, climate model and other aspects.
SHEN Xiaoyi, KE Changqing
Land surface temperature (LST) is a key parameter in the study of surface energy balance. It is widely used in the fields of meteorology, climate, hydrology, agriculture and ecology. As an important means to obtain global and regional scale LST information, satellite (thermal infrared) remote sensing is vulnerable to the influence of cloud cover and other atmospheric conditions, resulting in temporal and spatial discontinuity of LST remote sensing products, which greatly limits the application of LST remote sensing products in related research fields. The preparation of this data set is based on the empirical orthogonal function interpolation method, using Terra / Aqua MODIS surface temperature products to reconstruct the lst under ideal clear sky conditions, and then using the cumulative distribution function matching method to fuse era5 land reanalysis data to obtain the lst under all-weather conditions. This method makes full use of the spatio-temporal information of the original MODIS remote sensing products and the cloud impact information in the reanalysis data, alleviates the impact of cloud cover on LST estimation, and finally reconstructs the high-quality global 0.05 ° spatio-temporal continuous ideal clear sky and all-weather LST data set. This data set not only realizes the seamless coverage of space-time, but also has good verification accuracy. The reconstructed ideal clear sky LST data in the experimental areas of 17 land cover types in the world, the average correlation coefficient (R) is 0.971, the bias (bias) is -0.001 K to 0.049 K, and the root mean square error (RMSE) is 1.436 K to 2.688 K. The verification results of the reconstructed all-weather LST data and the measured data of ground stations: the average R is 0.895, the bias is 0.025 K to 2.599 K, and the RMSE is 4.503 K to 7.299 K. The time resolution of this data set is 4 times a day, the spatial resolution is 0.05 °, the time span is 2002-2020, and the spatial range covers the world.
ZHAO Tianjie, YU Pei
This data set includes the average concentrations of chemical species (Na+, K+, Mg2+, Ca2+ and TDS) in meltwater runoff draining 77 glaciers worldwide, annual glacial runoff from eight mountain ranges in Asia, and the mineral compositions of glacial deposits in some typical glacial catchments within Asia. This data set comes from the field monitoring of 19 glaciers in Asia by the data set provider, the previous published data worldwide, and the data shared by the authors of published papers. This data set can be used to evaluate the impact of climate warming on glacier erosion process and chemical weathering process, and the impact of glacier melt caused by climate warming on downstream ecosystems and element cycles.
LI Xiangying
China's daily snow depth simulation and prediction data set is the estimated daily snow depth data of China in the future based on the nex-gdpp model data set. The artificial neural network model of snow depth simulation takes the maximum temperature, minimum temperature, precipitation data and snow depth data of the day as the input layer of the model, The snow depth data of the next day is used as the target layer of the model to build the model, and then the snow depth simulation model is trained and verified by using the data of the national meteorological station. The model verification results show that the iterative space-time simulation ability of the model is good; The spatial correlations of the simulated and verified values of cumulative snow cover duration and cumulative snow depth are 0.97 and 0.87, and the temporal and spatial correlations of cumulative snow depth are 0.92 and 0.91, respectively. Based on the optimal model, this model is used to iteratively simulate the daily snow depth data in China in the future. The data set can provide data support for future snow disaster risk assessment, snow cover change research and climate change research in China. The basic information of the data is as follows: historical reference period (1986-2005) and future (2016-2065), as well as rcp4.5 and rcp8.5 scenarios and 20 climate models. Its spatial resolution is 0.25 ° * 0.25 °. The projection mode of the data is ease GR, and the data storage format is NC format. The following is the data file information in NC Time: duration (unit: day) Lon = 320 matrix, 320 columns in total Lat = 160 matrix, 160 rows in total X Dimension: Xmin = 60.125; // Coordinates of the corner points of the lower left corner grid in the X direction of the matrix Y Dimension: Ymin = 15.125; // Coordinates of the corner points of the grid at the lower left corner of the Y-axis of the matrix
CHEN Hongju, YANG Jianping, DING Yongjian
This data is precipitation data, which is the monthly precipitation product of tropical rainfall measurement mission TRMM 3b43. It integrates the main area of the Qinghai Tibet Plateau (25 ~ 40 ° n; 25 ~ 40 ° n); The precipitation data of 332 meteorological stations are from the National Meteorological Information Center of China Meteorological Administration. The reanalysis data set is obtained by the station 3 ° interpolation optimization variational correction method. For the monthly sample data from January 1998 to December 2018, the spatial coverage is 25 ~ 40 ° n; 73 ~ 105 ° e, the spatial resolution is 1 ° * 1 °.
XU Xiangde, SUN Chan
The data set is the seasonal hydrological observation data of the Yellow River from the hydrological station of the Qinghai Tibet Plateau. There are two hydrological stations: 1. Longmen hydrological station in the middle reaches of the Yellow River, which is the weekly hydrological data in 2013, including water temperature (T), runoff (QW), physical erosion rate (per) and pH. 2. Tangnaihai hydrological station of the Yellow River is monthly data from July 2012 to June 2014, including runoff (QW), sediment (salt), pH and EC. The data set was commissioned to be observed by the staff of the hydrological station of the Yellow River Water Conservancy Commission to provide basic hydrological data for the study of hydrology, hydrochemistry and hydrosphere cycle under the background of Qinghai Tibet Plateau uplift.
JIN Zhangdong, ZHAO Zhiqi
The data coverage area is Sichuan Tibet traffic corridor, which is vector line data. The data defines its active period and names it. The strike, nature, active period and exposure of the fault are described. However, the content is missing, and the secondary fault zone is not named. There are 590 linear elements within the Sichuan Tibet traffic corridor in this data set, but some linear elements are multiple elements of the same fault zone. The active fault zone is often the combination zone of different plates and different blocks. It is a relatively weak zone of the crust, which is easy to induce extremely serious earthquake disasters. It is also a concentrated development zone of geological disasters such as collapse, landslide and debris flow. The judgment of the location and nature of fault zone is of great significance to the risk susceptibility evaluation of geological disasters, and it is the key factor to study geological disasters.
WANG Lixuan
The Tibet-Obs established in 2008 consists of three regional-scale soil moisture (SM) monitoring networks, i.e. the Maqu, Naqu, and Ngari (including Ali and Shiquanhe) networks. This surface SM dataset includes the original 15-min in situ measurements collected at a depth of 5 cm by multiple SM monitoring sites of all the networks, and the spatially upscaled SM records produced for the Maqu and Shiquanhe networks.
ZHANG Pei, ZHENG Donghai, WEN Jun, ZENG Yijian, WANG Xin, WANG Zuoliang, MA Yaoming, SU Zhongbo
In recent years, the melting of the Antarctic ice sheet has accelerated, and a large amount of surface melt water has appeared on the surface of the Antarctic ice sheet. Understandings of the spatial distribution and dynamics of surface melt water on the Antarctic ice sheet is of great significance for the study of the mass balance of the Antarctic ice sheet. This dataset is 2000-2020 surface melt water dataset of Antarctica Ice Sheet typical melting area (Prydz bay) based on 10-30m Landsat-7, 8 and Sentinel-2 images. The projections are polar azimuthal projections in vector format (ESRI Shapefile) and raster format (GeoTIFF) and the time is Southern Hemisphere summer (December-to-February).
YANG Kang
Snow water equivalent (SWE) is an important parameter of the surface hydrological model and climate model. The data is based on the ridge regression algorithm of machine learning, which integrates a variety of existing snow water equivalent data products to form a set of snow water equivalent data products with continuous time series and high accuracy. The spatial range of the data is Pan-Arctic (45 N° to 90 N °), The data time series is 1979-2019. The dataset is expected to provide more accurate snow water equivalent data for the hydrological and climate model, and provide data support for cryosphere change and global change.
LI Hongyi, SHAO Donghang, LI Haojie, WANG Weiguo, MA Yuan, LEI Huajin
The data set mainly includes typical rare earth deposits in China, such as Maoniuping and Lizhuang rare earth deposits in Mianning, Western Sichuan, and Gansha OBO rare earth deposits in Gansu Province. These rare earth deposits are genetically related to carbonate alkaline rock complex. In situ U-Pb dating, whole rock major and trace elements, Sr nd Pb radioisotopes, C-O-B-Ca stable isotopes and mineral in situ major and trace elements contents of rocks or ores in these complexes were analyzed. The major elements were measured by X-ray fluorescence spectrometer (XRF), the trace elements were measured by inductively coupled plasma mass spectrometry (ICP-MS), and the isotopes were mainly measured by mc-icp-ms. The main conclusions are as follows: (1) it is revealed that the magma source area of alkaline carbonate type REE deposit experienced the addition of strong subduction material, and its formation depth may be deeper than previously thought(2) It is revealed that the aegirization may be related to carbonatite and alkaline magmatism, and there may be differences in the aegirization between the two types of magma(3) The later reformation of the rare earth deposits with younger age may be relatively weak, while the rare earth deposits with older age are easy to be influenced by the later geological process and difficult to distinguish.
WENG Qiang, LI Ningbo, LI Ao
Based on the analysis of brgdgts and hydrogen isotopes of leaf wax in lake sediments from Tengchong Qinghai (tcqh) in Yunnan Province, this study shows for the first time the high-resolution annual average temperature change history of low latitude land since the last glacial period (since the last 88000 years). According to the annual average temperature of South Asia established by tcqh core, there are two warm periods of 88000-71000 years and 45000-22000 years in this region, and the temperature range is about 2-3 ° C. Since the Holocene, the temperature has been increasing for about 1-2 years ° C。
ZHAO Cheng
This dataset contains the glacier outlines in Qilian Mountain Area in 2020. The dataset was produced based on classical band ratio criterion and manual editing. Chinese GF series images collected in 2020 were used as basic data for glacier extraction. Google images and Map World images were employed as reference data for manual adjusting. The dataset was stored in SHP format and attached with the attributions of coordinates, glacier ID and glacier area. Consisting of 1 season, the dataset has a spatial resolution of 2 meters. The accuracy is about 1 pixel (±2 meter). The dataset directly reflects the glacier distribution within the Qilian Mountain in 2020, and can be used for quantitative estimation of glacier mass balance and the quantitative assessment of glacier change’s impact on basin runoff.
Li Jia Li Jia LI Jia LI Jia
Based on AVHRR-CDR SR products, a daily cloud-free snow cover extent dataset with a spatial resolution of 5 km from 1981 to 2019 was prepared by using decision tree classification method. Each HDF4 file contains 18 data elements, including data value, data start date, longitude and latitude, etc. At the same time, to quickly preview the snow distribution, the daily file contains the snow area thumbnail, which is stored in JPG format. This data set will be continuously supplemented and improved according to the real-time satellite remote sensing data and algorithm update (up to may 2019), and will be fully open and shared.
HAO Xiaohua
The data include K, Na, CA, Mg, F, Cl, so 4 and no 3 in the glacier runoff of zhuxigou, covering most of the inorganic dissolved components. The detection limit is less than 0.01 mg / L and the error is less than 10%; The data can be used to reflect the contribution of chemical weathering processes such as sulfide oxidation, carbonate dissolution and silicate weathering to river solutes in zhuxigou watershed, and then accurately calculate the weathering rates of carbonate and silicate rocks, so as to provide scientific basis for evaluating the impact of glaciation on chemical weathering of rocks and its carbon sink effect.
WU Guangjian
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn