The vegetation data of the Antarctic Peninsula were obtained from the Antarctic Pioneer vegetation cover classification data of the spatio-temporal three-level environmental big data platform by applying pure image element PPI to extract the end element spectra of mosses, lichens, rocks, sea and snow and applying the linear Mixture Model (LMM) to calculate them. The characteristic vegetation cover of the Fildes Peninsula was obtained based on its correlation with the linear relationship of abundance. The data format is geotiff format. The data content is the vegetation cover of the typical zone of the Antarctic Peninsula in a typical year. In this research work, tif raster format products were generated by post-processing the typical annual vegetation cover of the typical area of the Antarctic Peninsula, and the value of the main body of the raster is the vegetation cover. The vegetation cover of the Antarctic Peninsula typical area obtained in this study is a mosaic of Antarctic pioneer plant abundance data products, including the plant abundance data products in and around the Antarctic Peninsula. The typical area of the Antarctic Peninsula including Adley, north and south were mosaicked by ArcGIS to obtain six vegetation cover maps identified by spectral angle matching method (SAM) and spectral information scatter method (SID) including 2008, 2017 and 2018.
YE Aizhong
The vegetation type map was created by the random forest (RF) classification approach, based on 319 ground-truth samples, combined with a set of input variables derived from the visible, infrared, and thermal Landsat-8 images. According to vegetation characteristics, four types include alpine swamp meadow (ASM), alpine meadow (AM), alpine steppe (AS), and alpine desert (AD) were classified in this map. Based on a spatial resolution of 30 m, the map can provide more detailed vegetation information.
ZHOU Defu, ZOU Defu, ZOU Defu, Zhao Lin, ZHAO Lin, Liu Guangyue, LIU Guangyue, Du Erji, DU Erji, LI Zhibin , LI Zhibin, Wu Tonghua, WU Xiaodong, CHEN Jie CHEN Jie
A total of 52 sample sites were selected in the desert belts of Qinghai and Tibet for field sampling of aboveground biomass of vegetation during the vegetation growing season in 2019 and 2020. At the same time, the longitude, latitude and altitude of the experimental site were recorded using handheld GPS devices. The field setting method of the quadrate is as follows: select a section with uniform vegetation. When the vegetation is relatively abundant, the quadrate is set as a 10 m x10 m square plot, and when the vegetation is relatively sparse, the quadrate is set as a 30 m x30 m square plot or a 30 m x90 m rectangular plot. 3-5 small sample boxes (1m x 1m) were randomly thrown into the set sample plot to determine the specific location of the sample. Collect plant samples by sample harvesting method: register plant species, number of plants of each species and other information in sample area of 1 square meter. All kinds of plants in the quadrate were planted and mowed on the ground, and the collected herbaceous plant samples were placed in archives and marked with species, sample site name and number, collection time and other information. They were brought back to the laboratory and dried to a constant weight in a constant temperature drying oven at 65 ℃. The dry weight of the plant samples was measured. Finally, the aboveground biomass of the vegetation was calculated. In addition, two kinds of remote sensing net primary productivity (NPP) data of the 52 sample points were extracted by the longitude and latitude of the sampling points. (1) Enhanced Vegetation Index (EVI) from 2000 to 2018, and calculated the annual Integrated Enhanced Vegetation Index (IEVI). IEVI was highly correlated with net primary productivity (NPP). Can be used as a proxy indicator of net primary productivity (He et al. 2021, Science of The Total Environment). (2) Percentage of remote sensing net primary productivity (NPP) and its quality control (QC) in 2001-2020, NPP remote sensing data from MOD17A3HGF Version 6 product (https://lpdaac.usgs.gov/products/mod17a3hgfv006/), the net photosynthetic value (the total primary productivity - keep breathing) is calculated. In the sample sites with low vegetation coverage, there may be null value (NA) of remote sensing net primary productivity.
YE Jiansheng
The data include raw sequencing result of plant DNA in surface sediments of 33 lakes in the Qinghai-Tibetan Plateau and arid northwestern China. We used PowerMax Soil Kit of Qiagen company in Germany to extract DNA, then used universal plant primer g-h (Taberlet et et al., 2007) to amplify P6 loop of chloroplast trnL (UAA) intron in the sample. The PCR products were then sent to Fasteris company in Switzerland for the next-generation paired-end sequencing. The sequencing instrument is Illumina Nextseq 550. The data quality score (Q30) is 81.97.
LIU Xingqi, JIA Weihan
1) Data content It includes the observation year, latitude and longitude, altitude, ecosystem type and soil layer (soc0-100 (kgcm-2); 0-100 represents soil layer), underground biomass content. 2) Data sources This part of the data is obtained from the literature, specific literature sources refer to the documentation. 3) Data quality description The data cover a wide range, including comprehensive indicators, showing the content of soil organic carbon under different soil layers, with high integrity and accuracy, which can meet the estimation of soil carbon storage of grassland in Qinghai Tibet Plateau. 4) Data application achievements and Prospects It provides basic data for predicting the carbon source sink effect of soil and realizing the sustainable development of ecosystem carbon in the future.
HU Zhongmin
1) Data content It includes the observation year, longitude and latitude, ecosystem type, annual rainfall, drought index, annual net primary productivity, aboveground biomass, underground biomass and other data. 2) Data sources One part is from literature (1980-1995), the other part is from field sampling (2005-2006). 3) Data quality description The data has a long observation year, a large time span, a wide coverage, and many indicators, which has high integrity and accuracy, and can meet the estimation of grassland carbon storage in the Qinghai Tibet Plateau. 4) Data application achievements and Prospects It provides basic data for predicting the carbon source sink effect and realizing the sustainable development of ecosystem carbon in the future.
HU Zhongmin
This data set is hyperspectral observation data of typical vegetation along Sichuan Tibet Railway in September 2019, using the airborne spectrometer of Dajiang M600 resonon imaging system. Including the hyperspectral data observed in the grassland area of Lhasa in 2019, with its own latitude and longitude. The hyperspectral survey was mainly sunny. Before flight, whiteboard calibration was carried out; when data were collected, there was a target (that is, the standard reflective cloth suitable for the grass), which was used for spectral calibration; there were ground mark points (that is, letters with foam plates), and the longitude and latitude coordinates of each mark were recorded for geometric precise calibration. The DN value recorded by Hyperspectral camera of UAV can be converted into reflectivity by using Spectron Pro software. Hyperspectral data is used to extract spectral characteristics of different vegetation types, vegetation classification, inversion of vegetation coverage and so on.
ZHOU Guangsheng, JI Yuhe, LV Xiaomin, SONG Xingyang
Grassland actual net primary production (NPPa) was calculated by CASA model. CASA model was calculated with the combination of satellite-observed NDVI and climate (e.g. temperature, precipitation and radiation) as the driving factors, and other factors, such as land-use change and human harvest from plant material, were reflected by the changes of NDVI. CASA NPP was determined by two variables, absorbed photosynthetically active radiation’ (APAR) and the light-use efficiency (LUE). Grassland potential net primary production (NPPp) was calculated by TEM model. TEM is one of process-based ecosystem model, which was driven by spatially referenced information on vegetation type, climate, elevation, soils, and water availability to calculate the monthly carbon and nitrogen fluxes and pool sizes of terrestrial ecosystems. TEM can be only applied in mature and undisturbed ecosystem without take the effects of land use into consideration due to it was used to make equilibrium predications. Grassland potential aboveground biomass (AGBp) was estimated by random forest (RF) algorithm, using 345 AGB observation data in fenced grasslands and their corresponding climate data, soil data, and topographical data.
NIU Ben, ZHANG Xianzhou
Based on a large number of measured aboveground biomass data of grassland, the temperate grassland types were divided according to the vegetation type map of China in 1980s Based on the Landsat remote sensing data of engine platform, the random forest model of grassland aboveground biomass and remote sensing data was constructed for different grassland types. On the basis of reliable verification, the annual aboveground biomass of grassland from 1993 to 2019 was estimated, and the annual spatial data set of aboveground biomass of temperate grassland in Northern China from 1993 to 2019 was formed. Aboveground biomass is defined as the total amount of organic matter of vegetation living above the ground in unit area. The original grid value has been multiplied by a factor of 100, unit: 0.01 g / m2 (g / m2). This data set can provide a scientific basis for the dynamic monitoring and evaluation of temperate grassland resources and ecological environment in northern China.
ZHANG Na
Based on a large number of measured aboveground biomass data of grassland, the temperate grassland types were divided according to the vegetation type map of China in 1980s Based on the Landsat remote sensing data of engine platform, the random forest model of grassland aboveground biomass and remote sensing data was constructed for different grassland types. On the basis of reliable verification, the annual aboveground biomass of grassland from 1993 to 2019 was estimated, and the annual spatial data set of aboveground biomass of temperate grassland in Northern China from 1993 to 2019 was formed. Aboveground biomass is defined as the total amount of organic matter of vegetation living above the ground in unit area. The original grid value has been multiplied by a factor of 100, unit: 0.01 g / m2 (g / m2). This data set can provide a scientific basis for the dynamic monitoring and evaluation of temperate grassland resources and ecological environment in northern China.
ZHANG Na
1) Data content: the main ecological environment data retrieved from remote sensing in Pan third polar region, including PM2.5 concentration, forest coverage, Evi, land cover, and CO2; 2) data source and processing method: PM2.5 is from the atmospheric composition analysis group web site at Dalhousie University, and the forest coverage data is from MODIS Vegetation continuum Fields (VCF), CO2 data from ODIAC fossil fuel emission dataset, EVI data from MODIS vehicle index products, and land cover data from ESA CCI land cover. 65 pan third pole countries and regions are extracted, and others are not processed; 3) data quality description: the data time series from 2000 to 2015 is good; 4) data application achievements and prospects: it can be used for the analysis of ecological environment change.
LI Guangdong
Data set contains tree age of trees growing at different glacier moraines in the central Himalayas. The data were obtained using tree ring samples. Cores samples were collected (almost near to the ground level to estimate the minimum age of the related moraine) using an increment borer. Samples were processed by using standard dendrochronological techniques.
SIGDEL Shalik Ram, ZHNAG Hui, ZHU Haifeng, SHER Muhammad, LIANG Eryuan
Thematic data on desertification in Western Asia, includes two parts: Distribution Map of Sandy Land in Western Asia, Distribution Map of Grassland Degradation in Western Asia. The spatial resolution of the data is 30m. The data produced by the key laboratory of remote sensing and GIS, Xinjiang institute of ecology and geography, Chinese Academy of Sciences, the spatial resolution of data is 30 m. Data production Supported by the Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDA20030101. The map of artificial oasis pattern in Amu river basin is based on Landsat TM and ETM image data in 2015. Firstly, with the help of eCognition software, the object-oriented classification is carried out. Secondly, the classification results are checked and corrected manually.
This dataset is land surface phenology estimated from 16 days composite MODIS NDVI product (MOD13Q1 collection6) in the Three-River-Source National Park from 2001 to 2020. The spatial resolution is 250m. The variables include Start of Season (SOS) and End of Season (EOS). Two phenology estimating methods were used to MOD13Q1, polynomial fitting based threshold method and double logistic function based inflection method. There are 4 folders in the dataset. CJYYQ_phen is data folder for source region of the Yangtze River in the national park. HHYYQ_phen is data folder for source region of Yellow River in the national park. LCJYYQ_phen is data folder for source region of Lancang River in the national park. SJY_phen is data folder for the whole Three-River-Source region. Data format is geotif. Arcmap or Python+GDAL are recommended to open and process the data.
WANG Xufeng
PML_V2 terrestrial evapotranspiration and total primary productivity dataset, including gross primary product (GPP), vegetation transpiration (Ec), soil evaporation (Es), vaporization of intercepted rainfall , Ei) and water body, ice and snow evaporation (ET_water), a total of 5 elements. The data format is tiff, the space-time resolution is 8 days, 0.05°, and the time span is 2002.07-2019.08. Based on the Penman-Monteith-Leuning (PML) model, PML_V2 is coupled to the GPP process based on stomatal conductance theory. GPP and ET mutually restrict and restrict each other, which makes PML_V2 in ET simulation accuracy, which is greatly improved compared with the previous model. The parameters of PML_V2 are divided into different vegetation types and are determined on 95 vorticity-related flux stations around the world. The parameters were then migrated globally according to the MODIS MCD12Q2.006 IGBP classification. PML_V2 uses GLDAS 2.1 meteorological drive and MODIS leaf area index (LAI), reflectivity (Albedo), emissivity (Emissivity) as inputs, and finally obtains PML_V2 terrestrial evapotranspiration and total primary productivity data sets.
ZHANG Yongqiang
The Antarctic Peninsula is also called "Palmer peninsula" or "Graham land". Located in the southwest polar continent, it is the largest peninsula in the Antarctic continent and the farthest peninsula extending northward into the ocean (63 ° south latitude), bordering the Weddell Sea and berengske sea in the East and West. The Antarctic Peninsula is known as the "tropics" of Antarctica. This is a typical sub polar marine climate. Compared with the Antarctic continent, it is one of the warmest and wettest regions in Antarctica. There are a small number of pioneer plants distributed on the islands in the marginal area, mainly bryophytes and lichens. The plant abundance data products of Antarctic Peninsula and its surrounding areas are matched with remote sensing images through measured spectra, and the end element spectra of moss, lichen, rock, sea and snow are extracted with pure pixel PPI. The linear mixture model (LMM) is applied to calculate.
XU Xiyan
The Antarctic Peninsula is also called "Palmer peninsula" or "Graham land". Located in the southwest polar continent, it is the largest peninsula in the Antarctic continent and the farthest peninsula extending northward into the ocean (63 ° south latitude), bordering the Weddell Sea and berengske sea in the East and West. The Antarctic Peninsula is known as the "tropics" of Antarctica. This is a typical sub polar marine climate. Compared with the Antarctic continent, it is one of the warmest and wettest regions in Antarctica. There are a small number of pioneer plants distributed on the islands in the marginal area, mainly bryophytes and lichens. The plant abundance data products of Antarctic Peninsula and its surrounding areas are matched with remote sensing images through measured spectra, and the end element spectra of moss, lichen, rock, sea and snow are extracted with pure pixel PPI. The linear mixture model (LMM) is applied to calculate. The vegetation coverage of Fildes Peninsula is obtained according to the linear relationship between the vegetation coverage and the abundance.
XU Xiyan
The Antarctic Peninsula is also called "Palmer peninsula" or "Graham land". Located in the southwest polar continent, it is the largest peninsula in the Antarctic continent and the farthest peninsula extending northward into the ocean (63 ° south latitude), bordering the Weddell Sea and berengske sea in the East and West. The Antarctic Peninsula is known as the "tropics" of Antarctica. This is a typical sub polar marine climate. Compared with the Antarctic continent, it is one of the warmest and wettest regions in Antarctica. There are a small number of pioneer plants distributed on the islands in the marginal area, mainly bryophytes and lichens. The spectrum and annotation data of Antarctic Peninsula and its surrounding plants are the spectral data of 37 sample points in 9 regions of Fildes Peninsula and Adeli island around the Antarctic Peninsula on January 7-22, 2018, which provide the background information for the study of the distribution and change of Antarctic plants.
XU Xiyan
Svalbard, Spitsbergen. The archipelago in the Arctic region is the territory of the northernmost border of Norway. It is located in the north of the European continent, between the Norwegian continent and the Arctic point. Vegetation is mainly lichens and bryophytes, the only trees are small polar willow and birch. The vegetation spectrum data set collected in this area is mainly based on the pioneer plant survey of 283 sample points in the new Olson area of Svalbard Islands in the Arctic. The survey time is July 6-22, 2018. The collection place includes London Island, the Yellow River Station area and the front of glaciers, which provides background information for the study of plant distribution and change in the Arctic tundra area.
XU Xiyan
The dataset is the ground verification point dataset of land cover and vegetation type in the Source Region of the Yangtze River (in the south of Qinghai Province) which collected during August 2018. In the dataset, the homogeneous patches are considered as the main targets of this collection. They are easy to be recognized out and distinguished from other vegetation types. And these samples have high representativeness comparing with other land surface features. In each sample, the geographical references, longitude and latitude (degree, minute, second), time (24h) and elevation (0.1m) are recorded firstly according to GPS positioning. Vegetation types, constructive species, characteristics, land types and features, landmarks, etc. are recorded into the property table manually for checking in laboratory. At last, each sample place has been taken at least 1 photography. In this dataset, 90% or more samples have been taken 2 or more in field landscape photographs for land use type and vegetation classification examination. We have carefully examined the position accuracy of each sample in Google Earth. After 2 rounds of checking and examination, the accuracy and reliability of the property of each sample have been guaranteed.
WANG Xufeng
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn