Large-ensemble simulations of the atmosphere-only time-slice experiments for the Polar Amplification Model Intercomparison Project (PAMIP) were carried out by the model group of the Chinese Academy of Sciences (CAS) Flexible Global Ocean-Atmosphere-Land System (FGOALS-f3-L). Eight groups of experiments forced by different combinations of the sea surface temperature (SST) and sea ice concentration (SIC) for pre-industrial, present-day, and future conditions were performed and published. The time-lag method was used to generate the 100 ensemble members, with each member integrating from 1 April 2000 to 30 June 2001 and the first two months as the spin-up period. All of these model datasets will contribute to PAMIP multi-model analysis and improve the understanding of polar amplification.
HE Bian
Meteorological elements of the dataset include the near-surface land-air exchange parameters, such as downward/upward longwave/shortwave radiation flux, momentum flux, sensible heat flux, latent heat flux, etc. In addition, the vertical distributions of 3-dimensional wind, temperature, humidity, and pressure from the surface to the tropopause are also included. Independent evaluations were conducted for the dataset by comparison between the observational data and the most recent ERA5 reanalysis data. The results demonstrate the accuracy and superiority of this dataset against reanalysis data, which provides great potential for future climate change research.
LI Fei, Ma Shupo, ZHU Jinhuan, ZOU Han , LI Peng , ZHOU Libo
This data is generated based on meteorological observation data, hydrological station data, combined with various assimilation data and remote sensing data, through the preparation of the Qinghai Tibet Plateau multi-level hydrological model system WEB-DHM (distributed hydrological model based on water and energy balance) coupling snow, glacier and frozen soil physical processes. The time resolution is monthly, the spatial resolution is 5km, and the original data format is ASCII text format, Data types include grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation in the month). If the asc cannot be opened normally in arcmap, please top the first 5 lines of the asc file.
WANG Lei, CHAI Chenhao
This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation), simulated and output through the WEB-DHM distributed hydrological model of the Indus River basin, with temperature, precipitation, barometric pressure, etc. as input data.
WANG Lei, LIU Hu
CMIP6 is the sixth climate model comparison plan organized by the World Climate Research Program (WCRP). Original data from https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6 。 This dataset contains four SSP scenarios of Scenario MIP in CMIP6. (1) SSP126: Upgrade of RCP2.6 scenario based on SSP1 (low forcing scenario) (radiation forcing will reach 2.6W/m2 in 2100). (2) SSP245: Upgrade of RCP4.5 scenario based on SSP2 (moderate forcing scenario) (radiation forcing will reach 4.5 W/m2 in 2100). (3) SSP370: New RCP7.0 emission path based on SSP3 (medium forcing scenario) (radiation forcing will reach 7.0 W/m2 in 2100). (4) SSP585: Upgrade the RCP8.5 scenario based on SSP5 (high forcing scenario) (SSP585 is the only SSP scenario that can make the radiation forcing reach 8.5 W/m2 in 2100). Using GRU data to correct the post-processing deviation of the original CMIP data, the post-processing data set of monthly precipitation (pr) and temperature (tas) estimates from 2046-2065 was obtained, with a reference period of 1985-2014.
YE Aizhong
We utilized 12 datasets covering the period 900–1999 CE, including two summer temperature gridded datasets from the Qinghai–Tibetan Plateau, two summer temperature series from the Arctic, a summer temperature gridded dataset from the Arctic, six global gridded annual temperature reconstruction datasets, and a last millennium reanalysis dataset with seasonal resolution. We used the optimal information extraction method to reconstruct the summer temperature anomalies in the Qinghai-Tibet Plateau and the Arctic over the past millennium (900–1999 CE) with annual resolution. The range of the Qinghai-Tibetan Plateau is 27°N–36°N, 77°E–106°E, and the range of the Arctic is 60°N–90°N. The reconstruction target is the summer (June–August) temperature anomalies (with respect to 1961–1990 CE period) in the instrumental CRUTEM4v dataset. The data can be used to study the mechanism of temperature variability in the Qinghai-Tibetan Plateau and Arctic over the past millennium.
SHI Feng
As a huge elevated surface and atmospheric heat source in spring and summer, the Qinghai Tibet Plateau (TP) has an important impact on regional and global climate and climate. In order to explore the thermal forcing effect of TP, the sensitivity test data set of sensible heat anomaly on the Qinghai Tibet Plateau was prepared. This data includes three groups of sensitivity tests: (1) in the fully coupled model cesm1.2.0, the plateau sensible heat is stronger CGCM from March to may in spring_ lar_ mon_ 3-12-2.nc and plateau thermal sensitivity are weak (CGCM)_ sma_ mon_ 3-12-2. Sensitivity test of NC; (2) In the single general circulation model cam4.0, the sensible heat of the plateau is stronger in spring (March may)_ lar_ Mon 3-8.nc and low sensible heat cam_ sma_ Mon3-8.nc sensitivity test. Including: 3D wind, potential height, air temperature, surface temperature, specific humidity, sensible heat flux, latent heat flux, precipitation and other conventional variables Space scope: global simulation results
DUAN Anmin
The Qinghai-Tibet Engineering Corridor runs from Golmud to Lhasa. It passes through the core region of the Qinghai-Tibet Plateau and is an important passage connecting the interior and Tibet. As the primary parameter in the surface energy balance, the land surface temperature represents the degree of energy and water exchange between the earth and the atmosphere, and is widely used in the research of climatology, hydrology and ecology. The annual average surface land temperature is obtained by using the four day and night observations of Aqua and Terra. Therefore, the 8-day land surface temperature synthesis products MOD11A2 and MYD11A2 with a resolution of 1km were downloaded first, and then the data were batch projected by MRT (MODIS Reprojection Tool). Finally, the annual average MODIS land surface temperature data after 2010 was calculated by IDL.
NIU Fujun
According to the data of three future scenarios of CMIP5 (RCP2.6、RCP4.5、RCP8.5), the spatial variation characteristics and temporal variation trend of the global mean annual air temperature from 2006 to 2100 are analyzed. Under rcp2.6 scenario, the mean annual air temperature shows an increasing trend, with the growth rate ranging from 0.0 ° c/decade to 0.2 ° c/decade (P<0.05), the growth in high latitude regions is faster, ranging from 0.1 ° c/decade to 0.2 ° C / decade. Based on the spatial and temporal characteristics of the mean annual air temperature in the northern hemisphere in the 21st century, under different scenarios, the mean annual air temperature shows a warming trend, and the high latitudes show a more sensitive and rapid growth.
NIU Fujun
The global high-resolution simulated near sea surface temperature precipitation SST data set from 1990 to 2020 is from the latest cmip6 project. Cmip6 is the sixth climate model comparison program organized by the world climate research project (WCRP). Original data source: https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6 。 The data set includes the global near ocean surface temperature (TMP), precipitation (PR) and sea surface temperature (TOS). The air temperature and precipitation data include the rectangular combination of shared social economic path (SSP) and representative concentration path (RCP) of four different experimental scenarios of scenario MIP in cmip6. (1) Ssp126: upgrade rcp2.6 scenario based on ssp1 (low forcing scenario) (radiation forcing will reach 2.6w/m2 in 2100). (2) Ssp245: upgrade rcp4.5 scenario based on SSP2 (moderate forcing scenario) (radiation forcing will reach 4.5 w / m2 in 2100). (3) Ssp370: a new rcp7.0 emission path based on ssp3 (medium forcing scenario) (radiation forcing will reach 7.0 w / m2 in 2100). (4) Ssp585: upgrade rcp8.5 scenario based on ssp5 (high forcing scenario) (ssp585 is the only SSP scenario that can make radiation forcing reach 8.5 w / m2 in 2100). SST data provides ssp126 scenario data.
YE Aizhong
The high-resolution atmosphere-hydrologic simulation dataset over Tibetan Plateau is prepared by WRFv4.1.1 model with grids of 191 * 355 and spatial resolution of 9 km, and a spatial range covering the entire plateau. The main physics schemes are configured with Thompson microphysics scheme, the rapid radiative transfer model (RRTM), and the Dudhia scheme for longwave and shortwave radiative flux calculations, respectively, the Mellor-Yamada-Janjic (MYJ) TKE scheme for the planetary boundary layer and the Unified Noah Land Surface Model. The time resolution is 3h and the time span is 2000-2010. Variables include: precipitation (Rain), temperature (T2) and water vapor (Q2) at 2m height on the ground, surface skin temperature (TSK), ground pressure (PSFC), zonal component (U10) and meridional component (V10) at 10m heigh on the ground, downward long-wave flux (GLW) and downward short-wave flux (SWDOWN) at surface, ground heat flux (GRDFLX), sensible heat flux (HFX), latent heat flux (LH), surface runoff (SFROFF) and underground runoff (UDROFF). The data can effectively support the study of regional climate characteristics, climate change and its impact over the Tibet Plateau, which will provide scientific basis for the sustainable development of the TP under the background of climate change.
MENG Xianhong, MA Yuanyuan
This data set is the conventional meteorological observation data of the Ngoring Lake Grassland Observation site (GS) in the source region of the Yellow River from 2017 to 2020, obtained by using Kipp&Zonen CNR4, Vaisala HMP155A, PTB110 and other instruments, with a time resolution of half an hour. Mainly include wind speed, wind direction, temperature, relative humidity(specific humidity in 2020), air pressure, downward short-wave radiation, downward long-wave radiation, precipitation.
MENG Xianhong, LI Zhaoguo
1) Data content: spatial and temporal dataset of near-surface monthly air temperature of Antarctic ice sheet from 2001 to 2018。 2) Data source and processing method: MODIS (MODerate resolution Imaging Spectroradiometer) Land Surface Temperature measurements in combination with in-situ air temperature records from 119 meteorological stations are used to reconstruct a monthly near-surface air temperature product over the Antarctic Ice Sheet (AIS) by means of a neural network model. The product is generated on a regular grid of 0.05°×0.05°, spanning from 2001 to 2018. 3) Data quality description: the accuracy is better than that of ERA5 reanalysis data. 4) Data application achievements and prospects: the database can be used to study the temporal and spatial distribution characteristics of near-surface air temperature of Antarctic ice sheet, and the impact of SAM and ENSO on the interannual variation of Antarctic temperature. In addition, the dataset has the potential application for climate model validation and data assimilation due to the independence of the input of a numerical weather prediction model.
ZHANG Xueying
The data set is the monthly average temperature data of China's multi scenario and multi-mode, with a spatial resolution of 0.0083333 ° (about 1km) from January 2021 to December 2100. The data is in NetCDF format. The data is generated in China through the delta spatial downscaling scheme according to the global > 100 km climate model data set released in the sixth phase of the IPCC coupled model comparison program (cmip6) and the global high-resolution climate data set released by worldclim. The data adopts the latest SSP scenarios (ssp119, ssp245, ssp585) released by IPCC. Each scenario contains three GCMS (ec-earth3, gfdl-esm4, mri-esm2-0) climate data. The geospatial range contained in the dataset is China's main land, excluding islands and reefs in the South China Sea. The unit is 0.1 ℃. The file name is GCM_ SSP_ Tmp-30s-serial number NC, 30s, i.e. 0.0083333 °, serial number from 1-40, serial number 1 represents 2021.1-2022.12, and represents the year in turn; Based on ec-earth3_ ssp119_ tmp-30s-1. NC file, for example, represents the monthly average temperature data of ec-earth3 climate model with 1km resolution from 2021.1 to 2022.12 under ssp119 scenario, including 24 layers. For a deeper understanding of the data, please refer to the data cited in the literature and the published papers of the authors.
PENG Shouzhang
Ta (Near-surface air temperature) is an important physical parameter that reflects climate change. In order to obtain daily Ta data (Tmax, Tmin, and Tavg) with high spatial and temporal resolution in China, we fully analyzed the advantages and disadvantages of various existing data (reanalysis, remote sensing, and in situ data) ,Different Ta reconstruction models are constructed for different weather conditions, and we further improve data accuracy through building correction equations for different regions. Finally, a dataset of daily temperature (Tmax, Tmin, and Tavg) in China from 1979 to 2018 was obtained with a spatial resolution of 0.1° For Tmax, validation using in situ data shows that the root mean square error (RMSE) ranges from 0.86 °C to 1.78 °C, the mean absolute error (MAE) varies from 0.63 °C to 1.40 °C, and the Pearson coefficient (R2) ranges from 0.96 to 0.99. For Tmin, RMSE ranges from 0.78 °C to 2.09 °C, the MAE varies from 0.58 °C to 1.61 °C, and the R2 ranges from 0.95 to 0.99. For Tavg, RMSE ranges from 0.35 °C to 1.00 °C, the MAE varies from 0.27 °C to 0.68 °C, and the R2 ranges from 0.99 to 1.00. Furthermore, a variety of evaluation indicators were used to analyze the temporal and spatial variation trends of Ta, and the Tavg increase was more than 0.0 °C/a, which is consistent with the general global warming trend. In conclusion, this dataset had a high spatial resolution and reliable accuracy, which makes up for the previous missing temperature value (Tmax, Tmin, and Tavg) at high spatial resolution. This dataset also provides key parameters for the study of climate change, especially high-temperature drought and low-temperature chilling damage。
FANG Shu, MAO Kebiao
Near-surface air temperature variability and the reliability of temperature extrapolation within glacierized regions are important issues for hydrological and glaciological studies that remain elusive because of the scarcity of high-elevation observations. Based on air temperature data in 2019 collected from 12 automatic weather stations, 43 temperature loggers and 6 national meteorological stations in six different catchments, this study presents air temperature variability in different glacierized/nonglacierized regions and assesses the robustness of different temperature extrapolations to reduce errors in melt estimation. The results show high spatial variability in temperature lapse rates (LRs) in different climatic contexts, with the steepest LRs located on the cold-dry northwestern Tibetan Plateau and the lowest LRs located on the warm-humid monsoonal-influenced southeastern Tibetan Plateau. Near-surface air temperatures in high-elevation glacierized regions of the western and central Tibetan Plateau are less influenced by katabatic winds and thus can be linearly extrapolated from off-glacier records. In contrast, the local katabatic winds prevailing on the temperate glaciers of the southeastern Tibetan Plateau exert pronounced cooling effects on the ambient air temperature, and thus, on-glacier air temperatures are significantly lower than that in elevation-equivalent nonglacierized regions. Consequently, linear temperature extrapolation from low-elevation nonglacierized stations may lead to as much as 40% overestimation of positive degree days, particularly with respect to large glaciers with a long flowline distances and significant cooling effects. These findings provide noteworthy evidence that the different LRs and relevant cooling effects on high-elevation glaciers under distinct climatic regimes should be carefully accounted for when estimating glacier melting on the Tibetan Plateau.
YANG Wei
The Central Asia Reanalysis (CAR) dataset is generated based on the Weather Research and Forecast (WRF) model version 4.1.2 and WRF Data Assimilation (WRFDA) Version 4.1.2. Variables include temperature,, pressure, wind speed, precipitation and radiation. The reanalysis is established through cyclic assimilation, which performs data assimilation every 6 hours by 3DVAR. The assimilated data include conventional atmospheric observation and satellite radiation data. The main source of conventional data is Global Teleconnection System (GTS), including surface station, automatic station, radiosonde and aircraft report, and the observation elements include temperature, air pressure, wind speed and humidity. Satellite observations include retrievals and radiation data, The retrievals are mainly atmospheric motion vectors from polar orbiting meteorological satellites (NOAA-18, NOAA-19, MetOP-A and MetOP-B) and resampled to a horizontal resolution of 54km; the radiation data includes microwave radiation from MSU, AMSU and MHS and HIRS infrared radiation data. The simulation applies nesting with a horizontal resolution of 27km and 9km respectively, a total of 38 layers in the vertical direction and a top of the model layer of 10hPa. The lateral boundary conditions of the model are provided by ERA-Interim every 6 hours. The physical schemes used in the model are Thompson microphysics scheme, CAM radiation scheme, MYJ boundary layer scheme, Grell convection scheme and Noah land surface model. The data covers five countries in Central Asia, including Kazakhstan, Tajikistan, Kyrgyzstan, Turkmenistan and Uzbekistan, as well as lakes in Central Asia, such as Caspian Sea, Aral Sea, Balkash lake and Isaac lake, which can be used for the study of climate, ecology and hydrology in the region. Compared with gauge-based precipitation in Central Asia, the simulation by CAR shows similar performance with MSWEP ( a merged product) and outperforms ERA5 and ERA-Interim.
YAO Yao
1) The Qinghai Tibet plateau surface meteorological driving data set (2019-2020) includes four meteorological elements: land surface temperature, mean total precipitation rate, mean surface downward long wave radiation flux and mean surface downward short wave radiation flux. 2) The data set is based on era5 reanalysis data, supplemented by MODIS NDVI, MODIS DEM and fy3d mwri DEM data products. The era5 reanalysis data were downscaled by multiple linear regression method, and finally generated by resampling. 3) All data elements of the Qinghai Tibet plateau surface meteorological driving data set (2019-2020) are stored in TIFF format. The time resolution includes (daily, monthly and annual), and the spatial resolution is unified as 0.1 ° × 0.1°。 4) This data is convenient for researchers and students who will not use such assimilated data in. NC format. Based on the long-term observation data of field stations of the alpine network and overseas stations in the pan third pole region, a series of data sets of meteorological, hydrological and ecological elements in the pan third pole region are established; Complete the inversion of meteorological elements, lake water quantity and quality, aboveground vegetation biomass, glacier and frozen soil change and other data products through intensive observation in key areas and verification of sample plots and sample points; Based on the Internet of things technology, a multi station networked meteorological, hydrological and ecological data management platform is developed to realize real-time acquisition, remote control and sharing of networked data.
ZHU Liping, DU Baolong
Central Asia (referred to as CA) is among the most vulnerable regions to climate change due to the fragile ecosystems, frequent natural hazards, strained water resources, and accelerated glacier melting, which underscores the need of high-resolution climate projection datasets for application to vulnerability, impacts, and adaption assessments. We applied three bias-corrected global climate models (GCMs) to conduct 9-km resolution dynamical downscaling in CA. A high-resolution climate projection dataset over CA (the HCPD-CA dataset) is derived from the downscaled results, which contains four static variables and ten meteorological elements that are widely used to drive ecological and hydrological models. The static variables are terrain height (HGT, m), land use category (LU_INDEX, 21 categories), land mask (LANDMASK, 1 for land and 0 for water), and soil category (ISLTYP, 16 categories). The meteorological elements are daily precipitation (PREC, mm/day), daily mean/maximum/minimum temperature at 2m (T2MEAN/T2MAX/T2MIN, K), daily mean relative humidity at 2m (RH2MEAN, %), daily mean eastward and northward wind at 10m (U10MEAN/V10MEAN, m/s), daily mean downward shortwave/longwave flux at surface (SWD/LWD, W/m2), and daily mean surface pressure (PSFC, Pa). The reference and future periods are 1986-2005 and 2031-2050, respectively. The carbon emission scenario is RCP4.5. The results show the data product has good quality in describing the climatology of all the elements in CA, which ensures the suitability of the dataset for future research. The main feature of projected climate changes in CA in the near-term future is strong warming (annual mean temperature increasing by 1.62-2.02℃) and significant increase in downward shortwave and longwave flux at surface, with minor changes in other elements. The HCPD-CA dataset presented here serves as a scientific basis for assessing the impacts of climate change over CA on many sectors, especially on ecological and hydrological systems.
QIU Yuan QIU Yuan
Meteorological forcing dataset for Arctic River Basins includes five elements: daily maximum, minimum and average temperature, daily precipitation and daily average wind speed. The data is in NetCDF format with a horizontal spatial resolution of 0.083°, covering Yenisy, Lena, ob, Yukon and Mackenzie catchments. The data can be used to dirve hydrolodical model (VIC model) for hydrological process simulation of the Arctic River Basins. The further quality control were made for daily observation data from Global Historical Climatology Network Daily database(GHCN-D), Global Summary of the Day (GSPD),The U.S. Historical Climatology Network (USHCN),Adjusted and homogenized Canadian climate data (AHCCD) and USSR / Russia climate data set (USSR / Russia). The thin plate spline interpolating method, which similar to the method used in PNWNAmet datasets (Werner et al., 2019), was employed to interpolate daily station data to 5min spatial resolution daily gridded forcing data using WorldClim and ClimateNA monthly climate normal data as a predictor.
ZHAO Qiudong, WU Yuwei
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn