The thickness of the active layer of the three pole permafrost combines two sets of data products. The main reference data is the annual value of the active layer thickness from 1990 to 2015 generated by GCM model simulation. The data format of this data set is netcdf4 format, with a spatial resolution of 0.5 ° and a temporal resolution of years. The reference correction data set is the average value of active layer thickness from 2000 to 2015 simulated by statistical and machine learning (ML) methods. The data format is GeoTIFF format, the spatial resolution is 0.1 °, and the data unit is m. Through post-processing operations such as data format conversion, spatial interpolation, data correction, etc., this research work generates the permafrost active layer thickness data in netcdf4 format, with a spatial resolution of 0.1 °, a temporal resolution of years, a time range of 1990-2015, and a data unit of CM.
YE Aizhong
The original data of carbon flux in the three pole permafrost region are generated by GCM model simulation, and the original data are from http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b 。 This data set contains the prediction of future scenarios under different representative concentration paths (RCPs) in the next 2046-2065 years, including rcp2.6 scenario, rcp4.5 scenario and rcp8.5 scenario. The original data include parameters representing carbon flux such as NPP and GPP in the permafrost region of the Qinghai Tibet Plateau. The data format is netcdf4 format, with a spatial resolution of 0.5 ° and a temporal resolution of years. Through data format conversion, spatial interpolation and other post-processing operations, the NPP and GPP data in permafrost region in netcdf4 format are generated. The spatial resolution is 0.1 °, the time resolution is years, the time range is 2046-2065, and the data unit is gc/m2yr.
YE Aizhong
The original thickness data of the active layer of the three pole permafrost are generated by GCM model simulation, and the original data are from http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b 。 This data set contains the prediction of future scenarios under different representative concentration paths (RCPs) in the next 2046-2065 years, including rcp2.6 scenario, rcp4.5 scenario and rcp8.5 scenario. The content of the original data is the thickness of the active layer in the permafrost area of the Qinghai Tibet Plateau. The data format is netcdf4, with a spatial resolution of 0.5 ° and a temporal resolution of years. Through data format conversion, spatial interpolation and other post-processing operations, the active layer thickness in permafrost area in netcdf4 format is generated, with a spatial resolution of 0.1 °, a time resolution of years, a time range of 2046-2065, and the unit is cm.
YE Aizhong
The original data of the three pole permafrost range are generated by GCM model simulation, and the original data are from http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b 。 This data set contains the prediction of future scenarios under different representative concentration paths (RCPs) in the next 2046-2065 years, including rcp2.6 scenario, rcp4.5 scenario and rcp8.5 scenario. The original data content is the spatial range of permafrost and seasonal frozen soil in the Qinghai Tibet Plateau. The data format is netcdf4 format, with a spatial resolution of 0.5 ° and a temporal resolution of years. Through data format conversion, spatial interpolation and other post-processing operations, this research work generates the permafrost range data in netcdf4 format, with a spatial resolution of 0.1 °, a time resolution of years, and a time range of 2046-2065. Permafrost is represented by 1, and seasonal permafrost is represented by 0.
YE Aizhong
As an important part of the global carbon pool, Arctic permafrost is one of the most sensitive regions to global climate change. The rate of warming in the Arctic is twice the global average, causing rapid changes in Arctic permafrost. The NDVI change data set of different types of permafrost regions in the Northern Hemisphere from 1982 to 2015 has a temporal resolution of every five years, covers the entire Arctic Rim countries, and a spatial resolution of 8km. Based on multi-source remote sensing, simulation, statistics and measured data, GIS method and ecological method are used to quantify the regulation and service function of permafrost in the northern hemisphere to the ecosystem, and all the data are subject to quality control.
WANG Shijin
Soil freezing depth (SFD) is necessary to evaluate the balance of water resources, surface energy exchange and biogeochemical cycle change in frozen soil area. It is an important indicator of climate change in the cryosphere and is very important to seasonal frozen soil and permafrost. This data is based on Stefan equation, using the daily temperature prediction data and E-factor data of canems2 (rcp45 and rcp85), gfdl-esm2m (rcp26, rcp45, rcp60 and rcp85), hadgem2-es (rcp26, rcp45 and rcp85), ipsl-cm5a-lr (rcp26, rcp45, rcp60 and rcp85), miroc5 (rcp26, rcp45, rcp60 and rcp85) and noresm1-m (rcp26, rcp45, rcp60 and rcp85), The data set of annual average soil freezing depth in the Qinghai Tibet Plateau with a spatial resolution of 0.25 degrees from 2007 to 2065 was obtained.
PAN Xiaoduo, LI Hu
Freezing (thawing) index refers to the sum of all temperatures less than (greater than) 0 ℃ in a year. Surface freezing (thawing) index is an important parameter to measure the time and capacity of surface freezing (thawing), which can reflect the characteristics of regional freezing and thawing environment. Based on the modis-lst data product, which comes from the national Qinghai Tibet Plateau science data center, the data in the Sanjiang River Basin are read by MATLAB language, and combined with the calculation of freezing (thawing index) formula, the spatial distribution data set of surface freezing and thawing index of dynamic environmental factors outside the Sanjiang River basin (average from 2003 to 2015) is obtained. This data set can better reflect the ability of surface freezing and thawing in the Sanjiang River Basin, so as to reflect the characteristics of regional freezing and thawing environment, It provides important external dynamic environmental factors for the development of freeze-thaw landslide.
LIU Minghao
This data set takes the freezing index calculated by the long-time scale (1901-2016) temperature provided by UEA-CRU and UDEL as the input data, calculates the soil freezing depth of Yarlung Zangbo River Basin through Stefan empirical formula, and interpolates the 30-year scale average soil freezing depth data set output by simulation. This data set takes the freezing index calculated by the long-time scale (1901-2016) temperature provided by UEA-CRU and UDEL as the input data, calculates the soil freezing depth of Yarlung Zangbo River Basin through Stefan empirical formula, and interpolates the 30-year scale average soil freezing depth data set output by simulation.
LIU Lei , LUO Dongliang , WANG Lei
The vegetation type map was created by the random forest (RF) classification approach, based on 319 ground-truth samples, combined with a set of input variables derived from the visible, infrared, and thermal Landsat-8 images. According to vegetation characteristics, four types include alpine swamp meadow (ASM), alpine meadow (AM), alpine steppe (AS), and alpine desert (AD) were classified in this map. Based on a spatial resolution of 30 m, the map can provide more detailed vegetation information.
ZHOU Defu, ZOU Defu, ZOU Defu, Zhao Lin, ZHAO Lin, Liu Guangyue, LIU Guangyue, Du Erji, DU Erji, LI Zhibin , LI Zhibin, Wu Tonghua, WU Xiaodong, CHEN Jie CHEN Jie
The data set mainly includes the investigation data set of geological disasters, pavement diseases and bridge and culvert diseases along Qinghai Tibet highway g109, Qinghai Tibet railway and Xinzang highway G219. The investigation time is August 12, 2020 - August 19, 2020, and July 26, 2021 - August 15, 2021. The survey objects are South Asia channel and Himalayan Mountain project. The types of diseases investigated mainly include geological disasters induced by freeze-thaw (rockfall, dangerous rock mass, debris flow gully and debris slope), pavement crack diseases, loose diseases, pit diseases, subgrade deformation diseases, bridge and culvert diseases, etc. The method of manual investigation shall be adopted to observe the damage of various diseases, and the quantity (range), damage degree and location of various damage types of pavement, bridge and culvert and geological disasters shall be recorded in detail as required. The data set can provide a basis for a comprehensive understanding of the freeze-thaw diseases of South Asia channel and Himalayan mountain projects and related research.
LI Guoyu
The maximum freezing depth is an important index of the thermal state of seasonal frozen ground. Due to global warming, the maximum freezing depth of seasonal frozen ground continues to decline. The maximum freezing depth data set of five provinces in Northwest China, Tibet and surrounding areas from 1961 to 2020 was released, with a spatial resolution of 1 km. The data set is a support vector regression (SVR) model based on the measured data of maximum freezing depth from 2001 to 2010 and spatial environmental variables, which simulates the maximum freezing depth in Northwest China, Tibet and surrounding areas from 1961 to 2020. The validation results show that the SVR model has good spatial generalization ability, and there is a high consistency between the predicted value and the observed value of the maximum soil freezing depth. The determination coefficients of the simulation results in the four periods of 1980s, 1990s, 2000s and 2010s are 0.77, 0.83, 0.73 and 0.71 respectively. The percentile range of the prediction results shows that the simulation results have good stability. Based on this data set, it is found that the maximum soil freezing depth in Northwest China continues to decline, among which Qinghai has the fastest decline rate, with an average decline of 0.53 cm every decade. The data set provides data support for the study of seasonal frozen soil in Northwest China, High Mountain Asia and the Third Pole.
WANG Bingquan, RAN Youhua
This biophysical permafrost zonation map was produced using a rule-based GIS model that integrated a new permafrost extent, climate conditions, vegetation structure, soil and topographic conditions, as well as a yedoma map. Different from the previous maps, permafrost in this map is classified into five types: climate-driven, climate-driven/ecosystem-modified, climate-driven/ecosystem protected, ecosystem-driven, and ecosystem-protected. Excluding glaciers and lakes, the areas of these five types in the Northern Hemisphere are 3.66×106 km2, 8.06×106 km2, 0.62×106 km2, 5.79×106 km2, and 1.63×106 km2, respectively. 81% of the permafrost regions in the Northern Hemisphere are modified, driven, or protected by ecosystems, indicating the dominant role of ecosystems in permafrost stability in the Northern Hemisphere. Permafrost driven solely by climate occupies 19% of permafrost regions, mainly in High Arctic and high mountains areas, such as the Qinghai-Tibet Plateau.
RAN Youhua, M. Torre Jorgenson, LI Xin, JIN Huijun, Wu Tonghua, Li Ren, CHENG Guodong
Based on gipl1.0 permafrost spatial distribution model, combined with the existing basic data, including climate change, soil types, and vegetation data, the permafrost and seasonal permafrost characteristics of Sichuan Tibet railway are simulated. The data result is 500m spatial resolution grid, including the maximum depth of permafrost and the maximum freezing depth of seasonal permafrost. The results are verified by drilling data. The data date is 2001-20192041-20602081-2100 (20-year average), in which the water body and glacier area are excluded from the calculation range through the mask (null value). The climate data is monthly mean, other data remain unchanged in the process of simulation, and the spatial resolution is 500m. Data sources and "woeldc" lim:https :// www.worldclim.org/ , DEM and vegetation soil: https://data.tpdc.ac.cn/zh-hans/ ”According to the characteristics of different data sources, the authenticity and consistency of the original data are checked and standardized; The permafrost model is used to simulate the permafrost and seasonal frozen soil. The output results are ground temperature and active layer (maximum frozen depth). The simulation results are verified with the borehole ground temperature. Finally, the spatial data set is mapped by ArcGIS. Make digital processing operation standard. In the process of processing, the operators are required to strictly abide by the operation specifications, and the special person is responsible for the quality review. The data integrity, logical consistency, position accuracy, attribute accuracy, edge connection accuracy and current situation are all in line with the requirements of relevant technical regulations and standards formulated by the State Bureau of Surveying and mapping. The data can provide necessary data support for the later research on the freezing (thawing) depth of the corridor of Sichuan Tibet project.
YIN Guoan
This data includes the soil microbial composition data in permafrost of different ages in Barrow area of the Arctic. It can be used to explore the response of soil microorganisms to the thawing in permafrost of different ages. This data is generated by high through-put sequencing using the earth microbiome project primers are 515f – 806r. The region amplified is the V4 hypervariable region, and the sequencing platform is Illumina hiseq PE250; This data is used in the articles published in cryosphere, Permafrost thawing exhibits a greater influence on bacterial richness and community structure than permafrost age in Arctic permafrost soils. The Cryosphere, 2020, 14, 3907–3916, https://doi.org/10.5194/tc-14-3907-2020https://doi.org/10.5194/tc-14-3907-2020 . This data can also be used for the comparative analysis of soil microorganisms across the three poles.
KONG Weidong
A comprehensive understanding of the permafrost changes in the Qinghai Tibet Plateau, including the changes of annual mean ground temperature (Magt) and active layer thickness (ALT), is of great significance to the implementation of the permafrost change project caused by climate change. Based on the CMFD reanalysis data from 2000 to 2015, meteorological observation data of China Meteorological Administration, 1 km digital elevation model, geo spatial environment prediction factors, glacier and ice lake data, drilling data and so on, this paper uses statistics and machine learning (ML) method to simulate the current changes of permafrost flux and magnetic flux in Qinghai Tibet Plateau The range data of mean ground temperature (Magt) and active layer thickness (ALT) from 2000 to 2015 and 2061 to 2080 under rcp2.6, rcp4.5 and rcp8.5 concentration scenarios were obtained, with the resolution of 0.1 * 0.1 degree. The simulation results show that the combination of statistics and ML method needs less parameters and input variables to simulate the thermal state of frozen soil, which can effectively understand the response of frozen soil on the Qinghai Tibet Plateau to climate change.
Ni Jie, Wu Tonghua
These datasets include mean annual ground temperature (MAGT) at the depth of zero annual amplitude (approximately 3 m to 25 m), active layer thickness (ALT), the probability of the permafrost occurrence, and the new permafrost zonation based on hydrothermal condition for the period of 2000-2016 in the Northern Hemisphere with an 1-km resolution by integrate unprecedentedly large amounts of field data (1,002 boreholes for MAGT and 452 sites for ALT) and multisource geospatial data, especially remote sensing data, using statistical learning modelling with an ensemble strategy, and thus more accurate than previous circumpolar maps.
RAN Youhua, LI Xin, CHENG Guodong, CHE Jinxing, Juha Aalto, Olli Karjalainen, Jan Hjort, Miska Luoto, JIN Huijun, Jaroslav Obu, Masahiro Hori, YU Qihao, CHANG Xiaoli
The Qinghai Tibet Plateau is known as "the third pole of the Earth". The long-term and large-scale observation data of permafrost is of great significance to understand the changes and effects of Permafrost on the Qinghai-Xizang Plateau (QXP). Especially in such a cold and anoxic area, the extreme shortage of data resources greatly limits the development, improvement and validation of various remote sensing inversion algorithms, as well as the earth system simulation and scientific research of the QXP. In the past few decades, our research team has established a synthesis network in the permafrost region of the QXP. For the first time, the database systematically integrates the long-time series observation data of 6 automatic meteorological stations, 12 active layer sites and 84 boreholes. In the process of data collection and processing, all observation data have been strictly controlled. The data set will be released to scientists with multi-disciplinary backgrounds (e.g., cryosphere, hydrology, ecology and meteorology), which will greatly promote the validation, development and improvement of hydrological model, land surface process model and climate model of the QXP.
Zhao Lin, ZHAO Lin, ZHOU Defu, ZOU Defu, ZOU Defu, Wu Tonghua, Du Erji, DU Erji, Liu Guangyue, LIU Guangyue, Xiao Yao, Li Ren, Pang Qiangqiang, Qiao Yongping, WU Xiaodong, SUN Zhe, Xing Zangping, Zhao Yonghua, Shi Jianzong, Xie Changwei, Wang Lingxiao, Wang Chong, CHENG Guodong
The widely definition of seasonally frozen ground include seasonally frozen layer (seasonally frozen ground regions) and seasonally thaw layer (active layer in permafrost regions). So the area extent of seasonally frozen ground occupied more than 80% land surface over Northern Hemisphere. Soil freeze/thaw cycle is one special character of seasonally frozen ground, which covers area extent, depth, time duration, variation of soil freeze/thaw. These changes in seasonally frozen ground have substantial impacts on energy, water and carbon exchange between the atmosphere and the land surface, surface and sub-surface hydrologic processes, vegetation growth, the ecosystem, carbon dioxide cycle, agriculture, and engineering constructuion, as a whole.Based on the observations from sites, CRU air temperature, we used the Stefan solution to calculate the spatial distribution of active layer thickness and soil freeze depth during 1971-2000. These results are helpful to further study the physical mechanism between seasonally frozen ground and climate change, eco-hydrology process.
PENG Xiaoqing, ZHANG Tingjun
This data set is the distribution data of permafrost and underground ice in Qilian Mountains. Based on the existing borehole data, combined with the Quaternary sedimentary type distribution data and land use data in Qilian mountain area, this paper estimates the distribution of underground ice from permafrost upper limit to 10 m depth underground. In this data set, 374 boreholes in Qilian mountain area are used, and the indication function of Quaternary sedimentary type to underground ice storage is considered, so it has certain reliability. This data has a certain scientific value for the study of permafrost and water resources in Qilian Mountains. In addition, it has a certain promotion value for the estimation of underground ice reserves in the whole Qinghai Tibet Plateau.
This dataset contains measurements of L-band brightness temperature by an ELBARA-III microwave radiometer in horizontal and vertical polarization, profile soil moisture and soil temperature, turbulent heat fluxes, and meteorological data from the beginning of 2016 till August 2019, while the experiment is still continuing. Auxiliary vegetation and soil texture information collected in dedicated campaigns are also reported. This dataset can be used to validate the Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) satellite based observations and retrievals, verify radiative transfer model assumptions and validate land surface model and reanalysis outputs, retrieve soil properties, as well as to quantify land-atmosphere exchanges of energy, water and carbon and help to reduce discrepancies and uncertainties in current Earth System Models (ESM) parameterizations. ELBARA-III horizontal and vertical brightness temperature are computed from measured radiometer voltages and calibrated internal noise temperatures. The data is reliable, and its quality is evaluated by 1) Perform ‘histogram test’ on the voltage samples (raw-data) of the detector output at sampling frequency of 800 Hz. Statistics of the histogram test showed no non-Gaussian Radio Frequency Interference (RFI) were found when ELBAR-III was operated. 2) Check the voltages at the antenna ports measured during sky measurements. Results showed close values. 3) Check the instrument internal temperature, active cold source temperature and ambient temperature. 3) Analysis the angular behaviour of the processed brightness temperatures. -Temporal resolution: 30 minutes -Spatial resolution: incident angle of observation ranges from 40° to 70° in step of 5°. The area of footprint ranges between 3.31 m^2 and 43.64 m^2 -Accuracy of Measurement: Brightness temperature, 1 K; Soil moisture, 0.001 m^3 m^-3; Soil temperature, 0.1 °C -Unit: Brightness temperature, K; Soil moisture, m^3 m^-3; Soil temperature, °C/K
BOB Su, WEN Jun
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn