Lake salinity is an important parameter of lake water environment, an important embodiment of water resources, and an important part of climate change research. This data is based on the measured salinity data of lakes in the Qinghai Tibet Plateau. The salinity is characterized by the practical salinity unit (PSU), which is converted from the specific conductivity (SPC) measured by the conductivity sensor. ArcGIS software was used to convert the measured data into space vector format. SHP format, and the measured salinity spatial distribution data file was obtained. The data can be used as the basic data of lake environment, hydrology, water ecology, water resources and other related research reference.
ZHU Liping
This dataset provides the in-situ lake water parameters of 124 closed lakes with a total lake area of 24,570 km2, occupying 53% of the total lake area of the TP.These in-situ water quality parameters include water temperature, salinity, pH,chlorophyll-a concentration, blue-green algae (BGA) concentration, turbidity, dissolved oxygen (DO), fluorescent dissolved organic matter (fDOM), and water clarity of Secchi Depth (SD).
ZHU Liping
The data set records the water quality evaluation results of the monitoring sections of the Yangtze River, Yellow River and Huangshui (2010-2012). The data is collected from Yushu ecological environment bureau. The data set contains 18 files, which are: water quality assessment of national control section of Yangtze River in April 2010, water quality assessment of national control section of Yangtze River in May 2010, water quality assessment of national control section of Yangtze River in September 2010, water quality assessment of national control section of Yangtze River in October 2010, etc. the data table structure is the same. There are seven fields in each data table Field 1: monitoring section Field 2: classification of water environment functional areas Field 3: water quality category Field 4: main pollution indicators Field 5: water quality status Field 6: water quality last month Field 7: water quality in the same period of last year
Ecological Environment Bureau of Yushu Prefecture
一. data description The data included the precipitation, river water and groundwater in the small calabash valley from July to September 2015 2H, 18O, with a sampling frequency of 2 weeks/time. 二. Sampling location (1) the precipitation sampling point is located in the ecological hydrology station of the institute of cold and dry regions, Chinese academy of sciences, with the latitude and longitude of 99 ° 53 '06.66 "E, 38 ° 16' 18.35" N. (2) the sampling point of the river is located at the outlet flow weir of haugugou small watershed in the upper reaches of the heihe river, with the latitude and longitude of 99 ° 52 '47.7 "E and 38 ° 16' 11" N.The water sampling point number 2 position for heihe river upstream hoist ditch Ⅱ area exports, latitude and longitude 99 ° 52 '58.40 "E, 38 ° 14' 36.85" N. (3) underground water spring and well water sampling points.The sampling point of spring water is located at 20m to the east of the outlet of the basin, with the latitude and longitude of 99°52 '50.9 "E, 38°16' 11.44" N. The well water sampling point is located near the intersection of east and west branches, with the latitude and longitude of 99 ° 52 '45.38 "E, 38 ° 15' 21.27" N. 三. Test method The δ2H and δ18O values of the samples were measured by PICARRO L2130-i ultra-high precision liquid water and water vapor isotope analyzer. The results were expressed by the test accuracy value of v-smow relative to the international standard substance, and the measurement accuracy was 0.038‰ and 0.011‰, respectively.
MA Rui , XING Wenle
1、 Data Description: the data includes the samples of anions and anions of river water and groundwater in hulugou small watershed from July to September 2015 for test and analysis. The sampling frequency is once every two weeks. 2、 Sampling location: (1) there are two river water sampling points. One is located at the outlet flow weir of hulugou small watershed in the upper reaches of Heihe River, with latitude and longitude of 99 ° 52 ′ 47.7 ″ E and 38 ° 16 ′ 11 ″ n. The second sampling point of the river is located at the outlet of hulugou area II at the upper reaches of Heihe River, with the longitude and latitude of 99 ° 52 ′ 58.40 ″ E and 38 ° 14 ′ 36.85 ″ n. (2) Underground water spring and well water sampling points are 20 m to the east of the drainage basin outlet, with longitude and latitude of 99 ° 52 ′ 50.9 ″ E and 38 ° 16 ′ 11.44 ″ n. The well water sampling point is located near the intersection of the East and West Branch ditches, with the longitude and latitude of 99 ° 52 ′ 45.38 ″ E and 38 ° 15 ′ 21.27 ″ n. 3、 Test method: the cation of sample is tested by inductively coupled plasma atomic emission spectrometer (ICP-AES), the test accuracy is 0.05mg/l, and the anion is tested by ion chromatograph (ics1100), the test accuracy is 0.002mg/l.
MA Rui , HU Yalu
The data include the collection of elements and isotopes of river water and groundwater (including spring water) in hulugou small watershed of Heihe River. Sampling location: (1) There are two river water sampling points, one of which is located at the outlet weir of hulugou small watershed in the upper reaches of Heihe River, with longitude and latitude of 99 ° 52 ′ 47.7 ″ E and 38 ° 16 ′ 11 ″ n. The second sampling point is located at the outlet of hulugou area II in the upper reaches of Heihe River, with longitude and latitude of 99 ° 52 ′ 58.40 ″ E and 38 ° 14 ′ 36.85 ″ n. (2) The sampling points of groundwater spring and well water are located at 20m to the east of the drainage basin outlet, with longitude and latitude of 99 ° 52 ′ 50.9 ″ E and 38 ° 16 ′ 11.44 ″ n. The well water sampling point is located near the intersection of East and West Branch ditches, with longitude and latitude of 99 ° 52 ′ 45.38 ″ E and 38 ° 15 ′ 21.27 ″ n. Data Description: 1. Doc and DIC values of river water and groundwater at the outlet of hulugou small watershed from July to September 2014 were analyzed. The DOC and DIC values of the samples were tested by oiaurora 1030w TOC instrument, and the detection range was 2ppb c-30000ppm C. 2. From July to September 2014, the δ D and δ 18O values of precipitation, river water and groundwater in hulugou small watershed were measured by Picaro l2130-i ultra-high precision liquid water and water vapor isotope analyzer. The results were expressed by δ values relative to the international standard material v-smow, with the measurement accuracy of 0.038 ‰ and 0.011 ‰ respectively. 3. Doc values of river water and soil water at the outlet of hulugou small watershed from May to September 2013 were determined by analytikjena multi n / C 3100 total nitrogen and total carbon tester. 4. Doc and DIC values of river water and groundwater at the outlet of hulugou small watershed from July to September 2014 were measured by oiaurora 1030w TOC instrument, and the detection range was 2ppb c-30000ppm C.
MA Rui , CHANG Qixin
1、 Data Description: from June 2012 to June 2013, the rainfall, river water and soil water in the basin were sampled and analyzed. 2、 Sampling location: rainfall sampling point is located in Qilian station of Chinese Academy of Sciences, with longitude and latitude of 99 ° 52 ′ 39.4 ″ e, 38 ° 15 ′ 47 ″ n; river water sampling point is located at the outlet of hulugou watershed, with longitude and latitude of 99 ° 52 ′ 47.7 ″ e, 38 ° 16 ′ 11 ″ n, with sampling frequency of once a week; soil water sampling point is located in the middle and lower part of hongnigou catchment, with sampling depth of 180cm underground and longitude and latitude of 99 ° 52 ′ 25.98 ″ E, 38 ° 15 ′ 36.11 ″ n, only one sample is taken. 3、 Test method: thermofisher TM flash 2000 and mat 253 gas stable isotope ratio mass spectrometer were used to measure the samples in 2012; l2130-i ultra-high precision liquid water and water vapor isotope analyzer was used to measure the samples in 2013.
SUN Ziyong, CHANG Qixin
The Land Surface Temperature in China STC dataset contains land surface temperature data for China (about 9.6 million square kilometers of land) during the period of 2003-2017, in Celsius, in monthly temporal and 5600 m spatial resolution. It is produced by combing MODIS daily data(MOD11C1 and MYD11C1), monthly data(MOD11C3 and MYD11C3) and meteorological station data to reconstruct real LST under cloud coverage in monthly LST images, and then a regression analysis model is constructed to further improve accuracy in six natural subregions with different climatic conditions.
WANG Xusheng, HU Xiaonong
1. Data overview: this data is sampled from June 21, 2012 to August 25, 2012. The sampling frequency is once a week. The sampling point is located at the outlet flow weir of hulugou small watershed in the upper reaches of Heihe River, with the longitude and latitude of 99 ° 52 ′ 47.7 ″ E and 38 ° 16 ′ 11 ″ n. 2. Data content: this data set includes the ammonia nitrogen value, Doc value and anion ion value of river water at the outlet of the basin. Data acquisition means: ammonia nitrogen value is measured by hash DR2800 ultraviolet spectrophotometer; doc value is measured by analytikjena multi n / c3100 total nitrogen and total carbon tester; anion value is measured by 761 / 813 ion chromatograph of Swiss Wantong; cation is measured by iris intrepid Ⅱ xspicp-aes of us thermoelectricity.
SUN Ziyong, CHANG Qixin
1、 Data overview The sampling period of this data set is from June 17, 2012 to August 13, 2012. The sampling location is in the Institute of ecological hydrology experiment and research, Institute of cold and drought, Chinese Academy of Sciences, hulugou small watershed. The longitude and latitude of the sampling point are 99 ° 53 ′ 06.66 ″ e, 38 ° 16 ′ 18.35 ″ n. 2、 Data content This data is obtained by using the hash DR2800 ultraviolet spectrophotometer to test the rainwater obtained from the rain gauge. This data contains silica values for three rainfall periods.
CHANG Qixin, SUN Ziyong
In August 2011 to October, 2012 in gansu province during may to August mazong mountain region field hydrogeological investigation, for each of groundwater, surface water outcropping points, according to the requirements of sampling, collecting water samples of 500 ml, sealed bottle, tag sampling time, location, number, send relevant qualification of laboratory tests, groundwater, surface water chemical analysis testing data obtained.Cations: Na+,K+,Mg2+,Ca2+, PH;Anions: F-,Cl-,NO3-,SO42-,HCO3-,CO32-;Trace elements, etc.In order to understand the chemical distribution of surface water and groundwater in the ma mane shan research area.
GUO Yonghai
This data is from the central station of environmental monitoring in gansu province. The data includes three observation elements that are disclosed on the network, namely PH, permanganate index and ammonia nitrogen. The data format is a text file. The first column is the city name, the second column is PH, the third column is permanganate index, the fourth column is ammonia nitrogen, and the fifth column is the observation date. The data include 6 sections of gushuizi, niubei village, wufo temple, shichuan bridge, xincheng bridge and bikou. Gansu section of the Yellow River: xincheng bridge (lanzhou upstream section), shichuan bridge (lanzhou - baiyin junction section), wufo temple (gansu-ningxia junction section), niubei village (gansu-shaanxi junction section).Bailong river wudu section :(section of gushuizi village). Lanzhou city bridge automatic water quality monitoring station is located in xigu district, lanzhou city, gansu province.Point coordinates 103 degrees 35 minutes 02 seconds east longitude, 36 degrees 07 minutes 20 seconds north latitude.Yellow River system (Yellow River main stream), state - controlled provincial boundary section.By lanzhou city environmental monitoring station custody.It's 35 kilometers away.Built in March 2001. PH: the index that characterizes the acidity and alkalinity of water. When the pH value is 7, it is neutral, less than 7 is acidic, and greater than 7 is alkaline.The pH value of natural surface water is generally between 6 and 9. When algae grow in the water, they absorb carbon dioxide due to photosynthesis, resulting in an increase in surface pH value. Permanganate index (CODMn) : the amount consumed when treating surface water samples with potassium permanganate as the oxidant, expressed as mg/L of oxygen.Under these conditions, reductive inorganic substances (ferrous salts, sulphides, etc.) and organic pollutants in water can consume potassium permanganate, which is often used as a comprehensive indicator of the degree of surface water pollution by organic pollutants.Also known as the chemical oxygen demand potassium permanganate method, as distinct from the chemical oxygen demand (COD) of the potassium dichromate method, which is often used to monitor wastewater discharge. Ammonia nitrogen (nh3-n) : ammonia nitrogen exists in water in the form of dissolved ammonia (also known as free ammonia, NH3) and ammonium salt (NH4+). The ratio of the two depends on the pH value and water temperature of the water, and the content of ammonia nitrogen is expressed by the amount of N element.The main sources of ammonia nitrogen in the water are domestic sewage and some industrial wastewater (such as coking and ammonia synthesis industry) and surface runoff (mainly refers to the fertilizer used in farmland entering rivers, lakes, etc.). This data will be updated automatically and continuously according to the data source.
Gansu environmental monitoring center station
The observation frequency is 1 time / 30 minutes with hobo automatic temperature recorder. No. 01: the observation point is located at the exit of zone III divided by Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, and the boundary point between the cold desert zone and the cold meadow zone. The coordinates of the observation point (99 ° 53 ′ 37 ″ e, 38 ° 13 ′ 34 ″ n) are 100cm from the surface of the air temperature recorder. The observation period is from July 28 to September 2, 2012. No. 02: the observation point is located at the exit of No. 2 area divided by Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, where the terrain is gentle, at the outlet of the alluvial delta valley where there is no other tributary flowing in. The observation point coordinates (99 ° 52 ′ 58 ″ e, 38 ° 14 ′ 36 ″ n) the temperature recorder in the air is 120cm from the ground surface. The observation period is from July 4, 2012 to September 6, 2012
SUN Ziyong, CHANG Qixin
In the lower reaches of Tarim River, groundwater is the only water source to maintain the survival of natural vegetation. The change of groundwater level directly affects the growth and decline of plants and controls the evolution and composition of plant communities. Strengthening the research on chemical characteristics of groundwater is an important content of water resources quality evaluation, which is of great significance to the utilization mode, sustainable development, management and protection and construction of ecological environment of watershed water resources. At fixed points and on a regular basis, 40 groundwater level monitoring wells in the lower reaches of the Tarim River were collected with groundwater samples, sealed and sent to the laboratory for chemical analysis. The analysis content includes 13 indexes including salinity, pH, CO3=, HCO3-, Cl-, SO4=, Ca++, Mg++, Na+, K+, etc. The analysis methods are as follows: (1) Salinity: gravimetric method; (2) Total alkalinity, HCO3- and CO3=: double indicator titration; (3) Cl-: silver nitrate titration; (4) SO4 =: EDTA volumetric method and barium chromate photometric method; (5) Total hardness: EDTA volumetric method; (6) Ca++, Mg++: EDTA volumetric method and atomic absorption spectrophotometry;
CHEN Yaning, HAO Xingming
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn