Based on the data of GF-1 and GF-2 in China, the freeze-thaw disaster distribution data of Qinghai Tibet project corridor is produced by using the deep learning classification method and manual visual interpretation and correction. The geographical range of the data is 40km along the Xidatan Anduo section of Qinghai Tibet highway. The data include the distribution data of thermokast lakes and the distribution data of thermal melting landslides. The dataset can provide data basis for the research of freeze-thaw disaster and engineering disaster prevention and reduction in Qinghai Tibet engineering corridor. The spatial distribution of freezing and thawing disasters within 40km along the Xidatan-Anduo section of Qinghai Tibet highway is self-made based on the domestic GF-2 image data. Firstly, the deep learning method is used to extract the mud flow terrace block from GF-2 data; Then, ArcGIS is used for manual editing.
NIU Fujun, LUO Jing LUO Jing
The ground-based observation dataset of aerosol optical properties over the Tibetan Plateau was obtained by continuous observation with a Cimel 318 sunphotometer, involving two stations: Qomolangma Station and Nam Co Station. These products have taken the process of cloud detection. The data cover the period from January 1, 2021 to December 31, 2021, and the time resolution is daily. The sunphotometer has eight observation channels from visible light to near infrared, and the central wavelengths are 340, 380, 440, 500, 670, 870, 940 and 1120 nm, respectively. The field of view angle of the instrument is 1.2°, and the sun tracking accuracy is 0.1°. Six bands of aerosol optical thickness can be obtained from direct solar radiation, and the accuracy is estimated to be 0.01-0.02. Finally, AERONET unified inversion algorithm was used to obtain the aerosol optical thickness, Ångström index, aerosol particle size distribution, single scattering albedo, phase function, complex refraction index and asymmetry factor.
CONG Zhiyuan
CMIP6 is the sixth climate model comparison plan organized by the World Climate Research Program (WCRP). Original data from https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6 。 This dataset contains four SSP scenarios of Scenario MIP in CMIP6. (1) SSP126: Upgrade of RCP2.6 scenario based on SSP1 (low forcing scenario) (radiation forcing will reach 2.6W/m2 in 2100). (2) SSP245: Upgrade of RCP4.5 scenario based on SSP2 (moderate forcing scenario) (radiation forcing will reach 4.5 W/m2 in 2100). (3) SSP370: New RCP7.0 emission path based on SSP3 (medium forcing scenario) (radiation forcing will reach 7.0 W/m2 in 2100). (4) SSP585: Upgrade the RCP8.5 scenario based on SSP5 (high forcing scenario) (SSP585 is the only SSP scenario that can make the radiation forcing reach 8.5 W/m2 in 2100). Using GRU data to correct the post-processing deviation of the original CMIP data, the post-processing data set of monthly precipitation (pr) and temperature (tas) estimates from 2046-2065 was obtained, with a reference period of 1985-2014.
YE Aizhong
The triple pole aerosol type data product is an aerosol type result obtained through a series of data pre-processing, quality control, statistical analysis and comparative analysis processes by comprehensively using MEERA 2 assimilation data and active satellite CALIPSO products. The key of the aerosol type fusion algorithm is to judge the aerosol type of CALIPSO. During the data fusion of aerosol type, the final aerosol type data (12 types in total) and quality control results in the three polar regions are obtained according to the types and quality control of CALIPSO aerosol types and referring to MERRA 2 aerosol types. The data product fully considers the vertical and spatial distribution of aerosols, and has a high spatial resolution (0.625 ° × 0.5 °) and time resolution (month).
ZHAO Chuanfeng
The Qinghai-Tibet Engineering Corridor runs from Golmud to Lhasa. It passes through the core region of the Qinghai-Tibet Plateau and is an important passage connecting the interior and Tibet. The active layer thickness (ALT) is not only an important index to study the thermal state of ground in permafrost region, but also a key factor to be considered in the construction of permafrost engineering. The core of GIPL1.0 is kudryavtesv method, which takes into account the thermophysical properties of snow cover, vegetation and different soil layers. However, Yin Guoan et al. found that compared with kudryavtesv method, the accuracy of TTOP model is higher, so they improved the model in combination with freezing / thawing index. Through verification of field monitoring data, it was found that the simulation error of ALT is less than 50cm. Therefore, the ALT in the Qinghai Tibet project corridor is simulated by using the improved GIPL1.0 model, and the future ALT under the ssp2-4.5 climate change scenario is predicted.
NIU Fujun
Firstly, the freeze thaw index is calculated by using the resampled crunep data, and then the permafrost area of circum-Arctic is predicted by the frozen number model after snow depth correction. The simulated pan Arctic permafrost area from 2000 to 2015 is 19.96 × 106 km2。 Places inconsistent with the distribution of Pan Arctic permafrost provided by the existing international snow and Ice Data Center are mainly located in island permafrost areas.
NIU Fujun
We propose an algorithm for ice fissure identification and detection using u-net network, which can realize the automatic detection of ice fissures of Typical Glaciers in Greenland ice sheet. Based on the data of sentinel-1 IW from July and August every year, in order to suppress the speckle noise of SAR image, the probabilistic patch based weights (ppb) algorithm is selected for filtering, and then the representative samples are selected and input into the u-net network for model training, and the ice cracks are predicted according to the trained model. Taking two typical glaciers in Greenland (Jakobshavn and Kangerdlussuaq) as examples, the average accuracy of classification results can reach 94.5%, of which the local accuracy of fissure area can reach 78.6%, and the recall rate is 89.4%.
LI Xinwu , LIANG Shuang , YANG Bojin , ZHAO Jingjing
We propose an algorithm for ice crack identification and detection using u-net network, which can realize the automatic detection of Antarctic ice cracks. Based on the data of sentinel-1 EW from January to February every year, in order to suppress the speckle noise of SAR image, the probabilistic patch based weights (ppb) algorithm is selected for filtering, and then representative samples are selected and input into the u-net network for model training, and the ice cracks are predicted according to the trained model. Taking five typical ice shelves(Amery、Fimbul、Nickerson、Shackleton、Thwaiters) in Antarctica as an example, the average accuracy of classification results can reach 94.5%, of which the local accuracy of fissure area can reach 78.6%, and the recall rate is 89.4%.
LI Xinwu , LIANG Shuang , YANG Bojin , ZHAO Jingjing
Fractional Vegetation Cover (FVC) refers to the percentage of the vertical projected area of vegetation to the total area of the study area. It is an important indicator to measure the effectiveness of ecological protection and ecological restoration. It is widely used in the fields of climate, ecology, soil erosion and so on. FVC is not only an ideal parameter to reflect the productivity of vegetation, but also can play a good role in evaluating topographic differences, climate change and regional ecological environment quality. This research work is mainly to post process two sets of glass FVC data, and give a more reliable vegetation coverage of the circumpolar Arctic Circle (north of 66 ° n) and the Qinghai Tibet Plateau (north of 26 ° n to 39.85 °, east longitude 73.45 ° to 104.65 °) in 2013 and 2018 through data fusion, elimination of outliers and clipping.
YE Aizhong
NDVI reflects the background effects of plant canopy, such as soil, wet ground, snow, dead leaves, roughness, etc., and is related to vegetation cover. It is one of the important parameters to reflect the crop growth and nutrient information. According to this parameter, the N demand of crops in different seasons can be known, which is an important guide to the reasonable application of N fertilizer. Correct NDVI (C-NDVI) is the value of NDVI after excluding the influence of climate elements (temperature, precipitation, etc.) on NDVI. Taking precipitation as an example, studies on the lag effect of precipitation on vegetation growth show that the lag time of precipitation effects varies in different regions due to differences in vegetation composition and soil types. In this study, we post-processed the MODIS NDVI data and firstly correlated the NDVI value of the current month with the precipitation of the current month, the average value of the precipitation of the current month with that of the previous month, and the average value of the precipitation of the current month with that of the previous two months to determine the optimal lag time. The NDVI was regressed on precipitation and air temperature to obtain the correlation coefficients, and then the corrected NDVI values were calculated by the difference between the MODIS NDVI and the NDVI regressed on climate factors. We corrected NDVI using climate data to give reliable vegetation correction indices for the circum-Arctic Circle (range north of 66°N) and the Tibetan Plateau (range 26°N to 39.85°N and 73.45°E to 104.65°E) for 2013 and 2018. The spatial resolution of the data is 0.5 degrees and the temporal resolution is monthly values.
YE Aizhong
The Qinghai Tibet Plateau is known as the "Asian water tower", and its runoff, as an important and easily accessible water resource, supports the production and life of billions of people around, and supports the diversity of ecosystems. Accurately estimating the runoff of the Qinghai Tibet Plateau and revealing the variation law of runoff are conducive to water resources management and disaster risk avoidance in the plateau and its surrounding areas. The glacier runoff segmentation data set covers the five river source areas of the Qinghai Tibet Plateau from 1971 to 2015, with a time resolution of year by year, covering the five river source areas of the Qinghai Tibet Plateau (the source of the Yellow River, the source of the Yangtze River, the source of the Lancang River, the source of the Nujiang River, and the source of the Yarlung Zangbo River), and the spatial resolution is the watershed. Based on multi-source remote sensing and measured data, it is simulated using the distributed hydrological model vic-cas coupled with the glacier module, The simulation results are verified with the measured data of the station, and all the data are subject to quality control.
WANG Shijin
Known as the "Asian water tower", the Qinghai Tibet Plateau is the source of many rivers in Southeast Asia. As an important and easily accessible water resource, the runoff provided by it supports the production and life of billions of people around it and the diversity of the ecosystem. The glacier runoff data set in the five river source areas of the Qinghai Tibet Plateau covers the period from 2005 to 2010, with a time resolution of every five years. It covers the source areas of the five major rivers in the Qinghai Tibet Plateau (the source of the Yellow River, the source of the Yangtze River, the source of the Lancang River, the source of the Nujiang River, and the source of the Yarlung Zangbo River). The spatial resolution is 1km. Based on multi-source remote sensing, simulation, statistics, and measured data, GIS methods and ecological economics methods are used, The value of water resources service in the cryosphere in the source area of the river and river is quantified, and all its data are subject to quality control.
WANG Shijin
This product provides the monthly runoff, evapotranspiration and soil water of major Arctic river basins in 2018-2065 based on the land surface model Vic. The spatial accuracy is 10km. Major Arctic river basins include Lena, Yenisey, ob, Kolyma, Yukon and Mackenzie basins. According to the rcp2.6 (low emission intensity) and rcp8.5 (high emission intensity) scenario results provided by the ipsl-cm5a-lr model in cmip5 in the fifth assessment report of IPCC, the future climate scenario driving data applicable to the Arctic region of 0.1 ° is obtained through statistical downscaling. Using the calibrated land surface hydrological model Vic on a global scale, based on the future climate scenario driven data of 0.1 °, the monthly time series of runoff, soil water and evapotranspiration of the Arctic River Basin in the middle of this century under future climate change are estimated.
TANG Yin , TANG Qiuhong , WANG Ninglian, WU Yuwei
This dataset consists of four files including (1) Lake ice thickness of 16 large lakes measured by satellite altimeters for 1992-2019 (Altimetric LIT for 16 large lakes.xlsx); (2) Daily lake ice thickness and lake surface snow depth of 1,313 lakes with an area > 50 km2 in the Northern Hemisphere modeled by a one-dimensional remote sensing lake ice model for 2003-2018 (in NetCDF format); (3) Future lake ice thickness and surface snow depth for 2071-2099 modeled by the lake ice model with a modified ice growth module (table S1.xlsx); (4) A lookup table containing lake IDs, names, locations, and areas. This daily lake ice and snow thickness dataset could provide a benchmark for the estimation of global lake ice and snow mass, thereby improving our understanding of the ecological and economical significance of freshwater ice as well as its response to climate change.
LI Xingdong, LONG Di, HUANG Qi, ZHAO Fanyu
Precipitation over the Tibetan Plateau (TP) known as Asia's water tower plays a critical role in regional water and energy cycles, largely affecting water availability for downstream countries. Rain gauges are indispensable in precipitation measurement, but are quite limited in the TP that features complex terrain and the harsh environment. Satellite and reanalysis precipitation products can provide complementary information for ground-based measurements, particularly over large poorly gauged areas. Here we optimally merged gauge, satellite, and reanalysis data by determining weights of various data sources using artificial neural networks (ANNs) and environmental variables including elevation, surface pressure, and wind speed. A Multi-Source Precipitation (MSP) data set was generated at a daily timescale and a spatial resolution of 0.1° across the TP for the 1998‒2017 period. The correlation coefficient (CC) of daily precipitation between the MSP and gauge observations was highest (0.74) and the root mean squared error was the second lowest compared with four other satellite products, indicating the quality of the MSP and the effectiveness of the data merging approach. We further evaluated the hydrological utility of different precipitation products using a distributed hydrological model for the poorly gauged headwaters of the Yangtze and Yellow rivers in the TP. The MSP achieved the best Nash-Sutcliffe efficiency coefficient (over 0.8) and CC (over 0.9) for daily streamflow simulations during 2004‒2014. In addition, the MSP performed best over the ungauged western TP based on multiple collocation evaluation. The merging method could be applicable to other data-scarce regions globally to provide high quality precipitation data for hydrological research. The latitude and longitude of the left bottom corner across the TP, the number of rows and columns, and grid cells information are all included in each ASCII file.
HONG Zhongkun , LONG Di
Aiming at the 179000 km2 area of the pan three rivers parallel flow area of the Qinghai Tibet Plateau, InSAR deformation observation is carried out through three kinds of SAR data: sentinel-1 lifting orbit and palsar-1 lifting orbit. According to the obtained InSAR deformation image, it is comprehensively interpreted in combination with geomorphic and optical image features. A total of 949 active landslides below 4000m above sea level were identified. It should be noted that due to the difference of observation angle, sensitivity and observation phase of different SAR data, there are some differences in the interpretation of the same landslide with different data. The scope and boundary of the landslide need to be corrected with the help of ground and optical images. The concept of landslide InSAR recognition scale is different from the traditional spatial resolution and mainly depends on the deformation intensity. Therefore, some landslides with small scale but prominent deformation characteristics and strong integrity compared with the background can also be interpreted (with SAR intensity map, topographic shadow map and optical remote sensing image as ground object reference). The minimum interpretation area can reach several pixels. For example, a highway slope landslide with only 4 pixels is interpreted with reference to the highway along the Nujiang River.
YAO Xin
The fluctuation of a single lake level is a comprehensive reflection of water balance within the basin, while the regional consistent fluctuations of lake level can indicate the change of regional effective moisture. Previous researches were mainly focused on reconstructing effective moisture by multiproxy analyses of lake sediments, but lacked the quantitative studies on regional effective moisture variation. This dataset exhibits the Holocene effective moisture change in typical lake regions of the Tibetan Plateau and East and Central Asia, including Qinghai Lake, Chen Co, Bangong Co, etc., by constructing a virtual lake system, based on a lake energy balance model, a lake water balance model and a transient climate evolution model. The simulation results provide a new perspective for exploring the evolution of lakes on the millennial scale.
LI Yu
This data set is a code file set of TCA (triple collision analysis) algorithm, which is used to generate the global daily-scale soil moisture fusion dataset from 2011 to 2018.
XIE Qiuxia, XIE Qiuxia, XIE Qiuxia, XIE Qiuxia, XIE Qiuxia, XIE Qiuxia, XIE Qiuxia, XIE Qiuxia, XIE Qiuxia, JIA Li , HU Guangcheng
This data is the land cover data at 30m resolution of Southeast Asia in 2015. The data format of the data is NetCDF, and the variable name is "land cover type". The data was obtained by mosaicing and extracting the From-GLC data. Several land cover types, such as snow and ice that do not exist in Southeast Asia were eliminated.The legend were reintegrated to match the new data. The data provide information of 8 land cover types: cropland, forest, grassland, shrub, wetland, water, city and bare land. The overall accuracy of the data is 71% (Gong et al., 2019). The data can provide the land cover information of Southeast Asia for hydrological models and regional climate models.
LIU Junguo
Photosynthetically active radiation (PAR) is fundamental physiological variable driving the process of material and energy exchange, and is indispensable for researches in ecological and agricultural fields. In this study, we produced a 35-year (1984-2018) high-resolution (3 h, 10 km) global grided PAR dataset with an effective physical-based PAR model. The main inputs were cloud optical depth from the latest International Satellite Cloud Climatology Project (ISCCP) H-series cloud products, the routine variables (water vapor, surface pressure and ozone) from the ERA5 reanalysis data, aerosol from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) products and albedo from Moderate Resolution Imaging Spectroradiometer (MODIS) product after 2000 and CLARRA-2 product before 2000. The grided PAR products were evaluated against surface observations measured at seven experimental stations of the SURFace RADiation budget network (SURFRAD), 42 experimental stations of the National Ecological Observatory Network (NEON), and 38 experimental stations of the Chinese Ecosystem Research Network (CERN). The instantaneous PAR was validated at the SURFRAD and NEON, and the mean bias errors (MBEs) and root mean square errors (RMSEs) are 5.6 W m-2 and 44.3 W m-2, and 5.9 W m-2 and 45.5 W m-2, respectively, and correlation coefficients (R) are both 0.94 at 10 km scale. When averaged to 30 km, the errors were obviously reduced with RMSEs decreasing to 36.3 W m-2 and 36.3 W m-2 and R both increasing to 0.96. The daily PAR was validated at the SURFRAD, NEON and CERN, and the RMSEs were 13.2 W m-2, 13.1 W m-2 and 19.6 W m-2, respectively at 10 km scale. The RMSEs were slightly reduced to 11.2 W m-2, 11.6 W m-2, and 18.6 W m-2 when upscaled to 30 km. Comparison with the other well-known global satellite-based PAR product of the Earth's Radiant Energy System (CERES) reveals that our PAR product was a more accurate dataset with higher resolution than the CRERS. Our grided PAR dataset would contribute to the ecological simulation and food yield assessment in the future.
TANG Wenjun
Lake surface water temperature (LSWT) at Xiashe station from 1967 to 2020; Lake ice depth and lake ice duration at Xiashe station from 1994 to 2020; Runoff at Buha station from 1956 to 2020; Lake level at Xiashe station from 1956 to 2020; Lake area from 1956 to 2020 estimated from the correlation constructed between lake area derived from Landsat images and lake level from gauge measurements in 2001−2020; Air temperature (T) at Gangcha station from 1958 to 2019; Precipitation (P) at Gangcha station from 1958 to 2019
ZHANG Guoqing
This data includes the land cover data of Central Asia, South Asia and Indochina Peninsula in the from 1992 to 2020 with a spatial resolution of 300mLand cover data includes 10 primary categories, which are combined from the secondary categories of the original data. The data source is the surface coverage product CCI-LC of ESA, where the spatial distribution of cropland, built-up land, and water for the land cover data from 1992 to 2020. Combined with the Tsinghua university global land cover data (FROM GLC, 30 m grid), NASA MODIS global land cover data (MCD12Q1, 500 m grid), the United States Geological Survey (USGS global land data (GFSAD30, 30 m), Japanese global forest data (PALSAR/PALSAR - 2, 25 m), the training sample dataset of land cover interpretation were built from the consistent areas of multiple products. The Google Earth Engine and random forest algorithm were used to correct the cropland, built-up land, and water of temporal CCI-LC data. Using the high resolution images in Google Earth at 2019 and 2020, the accuracy of change areas of cropland, built-up land, and water was validated by the stratified random sampling. A total of 3,600 land parcels were selected from 1,200 land parcels of the three land cover types, indicating that the accuracy of our corrected product increased in the range of 11% to 26% for the change areas compared to the CCI-LC product.
XU Erqi
Land surface temperature (LST) is a key parameter in the study of surface energy balance. It is widely used in the fields of meteorology, climate, hydrology, agriculture and ecology. As an important means to obtain global and regional scale LST information, satellite (thermal infrared) remote sensing is vulnerable to the influence of cloud cover and other atmospheric conditions, resulting in temporal and spatial discontinuity of LST remote sensing products, which greatly limits the application of LST remote sensing products in related research fields. The preparation of this data set is based on the empirical orthogonal function interpolation method, using Terra / Aqua MODIS surface temperature products to reconstruct the lst under ideal clear sky conditions, and then using the cumulative distribution function matching method to fuse era5 land reanalysis data to obtain the lst under all-weather conditions. This method makes full use of the spatio-temporal information of the original MODIS remote sensing products and the cloud impact information in the reanalysis data, alleviates the impact of cloud cover on LST estimation, and finally reconstructs the high-quality global 0.05 ° spatio-temporal continuous ideal clear sky and all-weather LST data set. This data set not only realizes the seamless coverage of space-time, but also has good verification accuracy. The reconstructed ideal clear sky LST data in the experimental areas of 17 land cover types in the world, the average correlation coefficient (R) is 0.971, the bias (bias) is -0.001 K to 0.049 K, and the root mean square error (RMSE) is 1.436 K to 2.688 K. The verification results of the reconstructed all-weather LST data and the measured data of ground stations: the average R is 0.895, the bias is 0.025 K to 2.599 K, and the RMSE is 4.503 K to 7.299 K. The time resolution of this data set is 4 times a day, the spatial resolution is 0.05 °, the time span is 2002-2020, and the spatial range covers the world.
ZHAO Tianjie, YU Pei
Based on gipl1.0 permafrost spatial distribution model, combined with the existing basic data, including climate change, soil types, and vegetation data, the permafrost and seasonal permafrost characteristics of Sichuan Tibet railway are simulated. The data result is 500m spatial resolution grid, including the maximum depth of permafrost and the maximum freezing depth of seasonal permafrost. The results are verified by drilling data. The data date is 2001-20192041-20602081-2100 (20-year average), in which the water body and glacier area are excluded from the calculation range through the mask (null value). The climate data is monthly mean, other data remain unchanged in the process of simulation, and the spatial resolution is 500m. Data sources and "woeldc" lim:https :// www.worldclim.org/ , DEM and vegetation soil: https://data.tpdc.ac.cn/zh-hans/ ”According to the characteristics of different data sources, the authenticity and consistency of the original data are checked and standardized; The permafrost model is used to simulate the permafrost and seasonal frozen soil. The output results are ground temperature and active layer (maximum frozen depth). The simulation results are verified with the borehole ground temperature. Finally, the spatial data set is mapped by ArcGIS. Make digital processing operation standard. In the process of processing, the operators are required to strictly abide by the operation specifications, and the special person is responsible for the quality review. The data integrity, logical consistency, position accuracy, attribute accuracy, edge connection accuracy and current situation are all in line with the requirements of relevant technical regulations and standards formulated by the State Bureau of Surveying and mapping. The data can provide necessary data support for the later research on the freezing (thawing) depth of the corridor of Sichuan Tibet project.
YIN Guoan
In 1970, land use was visually interpreted from MSS images, with an overall interpretation accuracy of more than 90%. Land classification was carried out in accordance with the land use classification system of the Chinese Academy of Sciences. For detailed classification rules, please read the data description document. The 2005 and 2015 data sets were collected from the European Space Agency (ESA) Data acquisition of global land cover types includes five Central Asian countries (Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan) and Xinjiang, China. There are 22 land use types in the data set. The IPCC land use classification system is adopted. Please refer to the documentation for specific classification details.
LUO Geping
Based on the medium resolution long time series remote sensing image Landsat, the data set obtained six periods of ecosystem type distribution maps of the Qinghai Tibet Plateau in 1990 / 1995 / 2002 / 2005 / 2010 / 2015 through image fusion, remote sensing interpretation and data inversion, and made the original ecological base map of the Qinghai Tibet Plateau in 25 years (1990-2015). According to the area statistics of various ecosystems in the Qinghai Tibet Plateau, the area of woodland and grassland decreased slightly, the area of urban land, rural residential areas and other construction land increased, the area of rivers, lakes and other water bodies increased, and the area of permanent glacier snow decreased from 1990 to 2015. The atlas can be used for the planning, design and management of ecological projects in the Qinghai Tibet Plateau, and can be used as a benchmark for the current situation of the ecosystem, to clarify the temporal and spatial pattern of major ecological projects in the Qinghai Tibet Plateau, and to reveal the change rules and regional differences of the pattern and function of the ecosystem in the Qinghai Tibet Plateau.
ZHAO Hui, WANG Xiaodan
This dataset includes the Antarctica ice sheet mass balance estimated from satellite gravimetry data, April 2002 to December 2019. The satellite measured gravity data mainly come from the joint NASA/DLR mission, Gravity Recovery And Climate Exepriment (GRACE, April 2002 to June 2017), and its successor, GRACE-FO (June 2018 till present). Considering the ~1-year data gap between GRACE and GRACE-FO, we extra include gravity data estimated from GPS tracking data of ESA's Swarm 3-satellite constellation. The GRACE data used in this study are weighted mean of CSR, GFZ, JPL and OSU produced solutions. The post-processing includes: replacing GRACE degree-1, C20 and C30 spherical harmonic coefficients with SLR estimates, destriping filtering, 300-km Gaussian smoothing, GIA correction using ICE6-G_D (VM5a) model, leakage reduction using forward modeling method and ellipsoidal correction.
C.K. Shum
This dataset is blended by two other sets of data, snow cover dataset based on optical instrument remote sensing with 1km spatial resolution on the Qinghai-Tibet Plateau (1989-2018) produced by National Satellite Meteorological Center, and near-real-time SSM/I-SSMIS 25km EASE-grid daily global ice concentration and snow extent (NISE, 1995-2018) provided by National Snow and Ice Data Center (NSIDC, U.S.A). It covers the time from 1995 to 2018 (two periods, from January to April and from October to December) and the region of Qinghai-Tibet Plateau (17°N-41°N, 65°E-106°E) with daily product, which takes equal latitude and longitude projection with 0.01°×0.01° spatial resolution, and characterizes whether the ground is covered by snow. The input data sources include daily snow cover products generated by NOAA/AVHRR, MetOp/AVHRR, and alternative to AVHRR taken from TERRA/MODIS corresponding observation, and snow extent information of NISE derived from observation by SSM/I or SSMIS of DMSP satellites. The processing method of data collection is as following: first, taking 1km snow cover product from optical instruments as initial value, and fully trusting its snow and clear sky without snow information; then, under the aid of sea-land template with relatively high resolution, replacing the pixels or grids where is cloud coverage, no decision, or lack of satellite observation, by NISE's effective terrestrial identification results. For some water and land boundaries, there still may be a small amount of cloud coverage or no observation data area that can’t be replaced due to the low spatial resolution of NISE product. Blended daily snow cover product achieves about 91% average coincidence rate of snow and non-snow identification compared to ground-based snow depth observation in years. The dataset is stored in the standard HDF4 files each having two SDSs of snow cover and quality code with the dimensions of 4100-column and 2400-line. Complete attribute descriptions is written in them.
ZHENG Zhaojun, CAO Guangzhen
Snow cover dataset is produced by snow and cloud identification method based on optical instrument observation data, covering the time from 1989 to 2018 (two periods, from January to April and from October to December) and the region of Qinghai-Tibet Plateau (17°N-41°N, 65°E-106°E) with daily product, which takes equal latitude and longitude projection with 0.01°×0.01° spatial resolution, and characterizes whether the ground under clear sky or transparent thin cloud is covered by snow. The input data sources include AVHRR L1 data of NOAA and MetOp serials of satellites, and L1 data corresponding to AVHRR channels taken from TERRA/MODIS. Decision Tree algorithm (DT) with dynamic thresholds is employed independent of cloud mask and its cloud detection emphasizes on reserving snow, particularly under transparency cirrus. It considers a variety of methods for different situations, such as ice-cloud over the water-cloud, snow in forest and sand, thin snow or melting snow, etc. Besides those, setting dynamic threshold based on land-surface type, DEM and season variation, deleting false snow in low latitude forest covered by heavy aerosol or soot, referring to maximum monthly snowlines and minimum snow surface brightness temperature, and optimizing discrimination program, these techniques all contribute to DT. DT discriminates most snow and cloud under normal circumstances, but underestimates snow on the Qinghai-Tibet Plateau in October. Daily product achieves about 95% average coincidence rate of snow and non-snow identification compared to ground-based snow depth observation in years. The dataset is stored in the standard HDF4 files each having two SDSs of snow cover and quality code with the dimensions of 4100-column and 2400-line. Complete attribute descriptions is written in them.
ZHENG Zhaojun, CHU Duo
"Coupling and Evolution of Hydrological-Ecological-Economic Processes in Heihe River Basin Governance under the Framework of Water Rights" (91125018) Project Data Convergence-MODIS Products-Land Use Data in Northwest China (2000-2010) 1. Data summary: Land Use Data in Northwest China (2000-2010) 2. Data content: Land use data of Shiyanghe River Basin, Heihe River Basin and Shulehe River Basin in Northwest China from 2000 to 2010 obtained by MODIS
WANG Zhongjing
1. Overview of data Based on the Google earth image data in 2012, the land use types of wetland parks were vectorized by visual interpretation method, which provided the data basis for wetland ecosystem service assessment. 2. Data content Land use types include wetland, farmland (corn, vegetables, wheat), water area, forest land, construction land, bare land, etc. Scale: 1: 50,000; Coordinate system: WGS84; Data type: vector polygon; Storage format: Dbf/Shp/Jpeg 3. Space-time range Coverage: Zhangye National Wetland Park; Total area: 46.02 square kilometers.
XU Zhongmin
1. Overview of data This data is based on the latest googleearth remote sensing image data to establish the spatial distribution database of crops in Ganzhou District of Zhangye City. 2. Data content Based on the spatial distribution of maize seed production focused by the project, the land use types in the study area are divided into 14 types (maize seed production land, spring wheat land, vegetable land, greenhouse land, intercropping land, rice land, water area, wetland, forest land, urban and rural industrial and mining residential land, roads, railways and unused land). 3. Space-time range The data range includes 19 villages and towns including Pingshanhu, Shajing, Wujiang River, Jingan, Mingyong, Sanzha, Ganjun, Xindun, Shangqin, Jiantan, Chengguan Town, Liangjiadun, Chang 'an, Dangzhai, Xiaoman, Longqu, Daman, Huazhai and Anyang. The data type is vector polygon and stored in Shape format. The data range covers Ganzhou District.
XU Zhongmin
The distribution map of irrigation area and main and branch canals in Heihe River basin includes the main irrigation area and the distribution of all main and branch canals in Heihe River Basin. The irrigation area mainly includes Luocheng irrigation area, Youlian irrigation area, Liuba irrigation area, Pingchuan irrigation area, liaoquan irrigation area, Liyuan River irrigation area, yannuan irrigation area, Banqiao irrigation area, Shahe irrigation area, Xijun irrigation area, Yingke irrigation area, Daman irrigation area, Maying River irrigation area, shangsan irrigation area, Xinba irrigation area and Hongyazi irrigation area. The distribution map of main and branch canals includes all the main canals and branch canals of these 16 irrigation areas.
XU Maosen, XU Zongxue, HU Litang
The dataset is the distribution map of lakes in Qinghai Lake Basin. The projection is latitude and longitude. The data includes the spatial distribution data and attribute data of the lake. The attribute fields of the lake are: NAME (lake name), CODE (lake code).
WU Lizong
The data is the reservoir distribution dataset of the north slope of Tianshan River Basin, which is comprehensively prepared by using topographic map and remote sensing image. The scale is 250000, and the projection is latitude and longitude. The data includes spatial data and attribute data, and the attribute field is Name (reservoir name), reflecting the reservoir distribution status of River Basin in the northern foot of Tianshan Mountain around 2000.
National Basic Geographic Information Center
The data is the river dataset of the north slope of Tianshan River Basin. It is revised according to the topographic map and TM remote sensing image. The scale is 250,000, and the projection is latitude and longitude. The data includes spatial data and attribute data, attribute data fields: HYD_CODE (river code), Name (river name), SHAPE_ leng (river length).The data includes spatial data and attribute data. , SHAPE_leng (river length).
National Basic Geographic Information Center
The dataset is a lake distribution map of the north slope of Tianshan Mountain Basin, with a scale of 250,000. The projection is latitude and longitude. The data includes spatial data and attribute data. The attribute fields of the lake are NAME (name of the lake) and CODE (lake code).
National Basic Geographic Information Center
China's administrative regions are basically divided into three levels: provinces (autonomous regions, municipalities directly under the central government), counties (autonomous counties, cities), townships (nationality townships, towns). In order to meet the needs of user statistics and cartography, we have published 1:1 million national administrative division data sets according to the national basic geographic information center. The administrative division data of Heihe River Basin were prepared. This data reflects the current situation of administrative divisions in Heihe River basin around 2008, including the information of provincial, regional and county-level administrative divisions. Its main attributes (such as area, code of administrative divisions, province (autonomous region), city (region, autonomous prefecture)) come from China's administrative divisions published in 2008.
WU Lizong
This data includes the basic terrain data, soil data, meteorological data, land use / land cover data, etc. needed for SWAT model operation. All maps and relevant point coordinates (meteorological station, hydrological station) adopt the coordinate system of Gauss Kruger projection which is consistent with the basic topographic map of our country. Data content includes: a) The basic topographic data include DEM and river network. The size of DEM grid is 50 * 50m, and the drainage network is manually digitized from 1:100000 topographic map. b) Soil data: including soil physics, soil chemistry and spatial distribution of soil types. The scale of digital soil map is 1:1 million, which is converted into grid format of ESRI, with grid size of 50 * 50m. Each soil profile can be divided into up to 10 layers. The sampling index of soil texture required by the model adopts the American Standard. The parameters are from the second National Soil Census data and related literature. c) Meteorological data: (1) Temperature: the data of daily maximum temperature, daily minimum temperature, wind speed and relative humidity are from the daily observation data of Qilian, Shandan, tole, yeniugou and Zhangye meteorological stations in and around the basin, with the period from 1999 to 2001. (2) Precipitation: the rainfall data comes from five hydrological stations in and around the basin, i.e. OBO (1990-1996), Sunan (1990-2000), Qilian (1990-2000), Yingluoxia (1990-2000), zamashk (1990-2000), Shandan (1999-2001), tole (1999-2001), yeniugou (1999-2001), Zhangye (1999-2001) and Qilian County (1999-2001) Observation data. (3) Wind speed and relative humidity: wind speed and relative humidity come from the daily observation data of 5 meteorological stations in Shandan, tole, yeniugou, Zhangye and Qilian county. The period is from 1999 to 2001. (4) Solar radiation: solar radiation has no corresponding observation data and is generated by model simulation. d) Land use / land cover: 1995 land use data, scale 1:100000. Convert it to grid format of ESRI, with grid size of 50 * 50m. e) Meteorological data simulation tool (weather generator) database: the weather data simulation tool of SWAT model can simulate and calculate the daily meteorological input data required by the model operation according to the monthly statistical data for many years without the actual daily observation data, and can also carry out the interpolation of incomplete observation data. The meteorological data are from the surrounding meteorological stations.
NAN Zhuotong
1. Data overview: this data is the blue and green water data of Heihe River Basin simulated by SWAT model; 2. Data content: data mainly includes blue-green water and green water coefficient of the whole basin and each sub Basin; 3. Spatial and temporal scope: the data time is from 1975 to 2004, and the spatial scope includes 34 sub basins and the whole Heihe River Basin; 4. Data file: the relevant data is placed in the Swat folder, including the sub_basin folder (sub basin distribution map), "blue and green water of the whole Heihe River Basin" folder and "blue and green water of each hydrological response unit of the Heihe River Basin" folder.
LIU Junguo
Data Overview: Zhangye's channels are divided into five levels: dry, branch, bucket, agricultural and Mao channels, of which the agricultural channels are generally unlined. Mao channels are field projects, so the three levels of dry, branch and bucket channels and a small part of agricultural channels are mainly collected. The irrigation canal system data includes 2 main canals (involving multiple irrigation districts), 157 main canals (within a single irrigation district), 782 branch canals and 5315 dou canals, with a total length of 8, 745.0km. Data acquisition process: remote sensing interpretation and GPS field measurement are adopted for data acquisition of irrigation canal system. Direct GPS acquisition channel is the most effective method, but the workload of GPS acquisition channel is too large, and we only verify the measurement in some irrigation areas. The main method is to first collect the manual maps of irrigation districts drawn by each water pipe. Most of these maps have no location, only some irrigation districts such as Daman and Shangsan have been located based on topographic maps, and some irrigation districts in Gaotai County have used GPS to locate some channels. Referring to the schematic diagram of the irrigation district, channel spatial positioning is carried out based on Quikbird, ASTER, TM remote sensing images and 1: 50000 topographic maps. For the main canal and branch canal, due to the obvious linear features on remote sensing images and the general signs on topographic maps, it can be located more accurately. For Douqu, areas with high-resolution images can be located more accurately, while other areas can only be roughly located according to fuzzy linear features of images and prompt information of irrigation district staff, with low positioning accuracy. Each water management office simultaneously provides channel attribute data, which is one-to-one corresponding to spatial data. After the first draft of the channel distribution map is completed, it is submitted twice to the personnel familiar with the channel distribution of each water pipe for correction. The first time is mainly to eliminate duplication and leak, and the second time is mainly to correct the position and perfect the attribute data. Description of data content: The fields in the attribute table include code, district and county name, irrigation area name, channel whole process, channel name, channel type, location, total length, lined, design flow, design farmland, design forest and grass, real irrigation farmland, real irrigation forest and grass, water right area, and remarks. Code example: G06G02Z15D01, where the first letter represents the county name, the 2nd and 3rd numbers represent the county (district) number, the 4th to 6th characters represent the trunk canal code, the 7th to 9th characters represent the branch canal code, and the 10th to 12th characters represent the dou canal code.
MA Mingguo
The research project on land surface data assimilation system in western China belongs to the major research plan of "environment and ecological science in western China" of the national natural science foundation. the person in charge is Li Xin, researcher of the institute of environment and engineering in cold and arid regions of the Chinese academy of sciences. the project runs from January 2003 to December 2005. One of the data collected in this project is the reanalysis data of surface climate factors in western China in 2002. This data set is generated based on the daily 1 × 1 provided by the National Environmental Prediction Center (NCEP). However, the re-analysis of the data has the following problems: (1) the temporal and spatial resolution is not high enough (the horizontal resolution is 1 degree and the time is 6 hours); (2) The low-level errors in plateau areas are large; (3) The data are standard isosurface data and need interpolation. The 2002 reanalysis data set of surface climate elements in western China was generated by combining NCEP reanalysis data and MM5 model by Dr. Longxiao and Professor Qiu Chongjian of Lanzhou University using Newton relaxation data assimilation method (Nudging), including 10m horizontal and vertical wind speed (m/s), 2m air temperature (k), 2m mixing ratio, surface pressure (Pa), upstream and downstream short wave and long wave radiation (w/m2), convective precipitation and large scale precipitation (mm/s) at 0.25 degree per hour throughout 2002. I. preparation background The quality of the driving data seriously affects the ability of the land surface model to simulate the land surface state, so a very important component of the land surface modeling research is the driving data used to drive the land surface model. No matter how realistic these models are in describing the surface process, no matter how accurate the boundary and initial conditions they input, if the driving data are not accurate, they cannot get the results close to reality. Land surface models are so dependent on the quality of externally provided data that any error in these externally provided data will seriously affect the ability of land surface models to simulate soil moisture, runoff, snow cover and latent heat flux. These externally provided data include: precipitation, radiation, temperature, wind field, humidity and pressure. The 2002 reanalysis data set of surface climate elements in western China uses Newton relaxation data assimilation method (Nudging) to combine NCEP reanalysis data and MM5 model to generate driving data with higher spatial and temporal resolution suitable for complex terrain in western China. Second, the basic parameters of the operation mode 1. Using the US PSU/NCAR mesoscale model MM5 as a simulation model; The selection of simulation grid domain: center (32°N, 90°E), grid distance of 36km, number of horizontal grid points of 131*151, vertical resolution of 25 layers, and mode top of 100hPa;; 2. The data used for initialization are 1 * 1 GRIB grid data of NCEP in the United States. 3. The time step is 120s. Third, the physical process 1. physical process treatment of cloud and precipitation: Grell cumulus cloud parameterization scheme is adopted for sub-grid scale precipitation, and Reisner mixed phase microphysical explicit scheme is adopted for distinguishable scale precipitation; 2. MRF parameterization scheme is adopted for planetary boundary layer process. 3. the radiation process adopts CCM2 radiation scheme. IV. File Format and Naming It is stored in a monthly folder and contains 24 hours of data every day. The naming rules are as follows: 2002***&.forc, where * * * is Julian day and 2002***& is time (in hours), where. forc is the file extension. V. data format Stored in binary floating point type, each data takes up 4 bytes.
LONG Xiao, QIU Chongjian
The experimental project of vegetation degradation mechanism and reconstruction in Yuanjiang dry-hot valley in Yunnan belongs to the major research program of "Environmental and Ecological Science in Western China" of the National Natural Science Foundation. The principal is researcher Cao Kunfang of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences. The project runs from January 2004 to December 2007. Data collected for this project include: 1. Excel table of multi-year average temperature and rainfall in Yuanjiang dry-hot valley (1961-2004), with attribute fields including monthly average temperature and monthly average rainfall. 2. excel table of annual average temperature (1750-2006) in the middle of Hengduan Mountain in China based on tree ring, with attribute fields including year and reconstructed average temperature. 3. excel table of summer temperatures (1750-2006) in the central Hengduan Mountains in southern China based on tree rings. The attribute fields include the year and the reconstructed average temperature in summer (April-September). 4. excel table of drought index (1655-2005) in central Hengduan Mountains of China based on tree rotation, with attribute fields including year and reconstruction of drought index in spring (March-May). 5. pdf file of growth dynamic graph of leaves and branches. it records the growth dynamic trend line and leaf dynamic trend graph of plants with s-type, f-type, intermediate-type and S+SD-type branches from March 22, 2004 to April 8, 2005. 6.32 Phenological Summary Tables of Woody Plants (word Document: Specific Name, Number of Observed Plants/Branches, Type of Branch Extension, Leaf Phenology, Length of Current Year Branches (cm), Total Leaves on Branches, Leaf Area (cm2), Non-leaf Period (Months), Flowering Period, Fruit Ripening Period and Fruit Type) 7. Seasonal Changes of Relative Water Content of Plant Leaves in Yuanjiang Dry-hot Valley (March 2003-February 2004) Excel Table 8. Seasonal Changes of Photosynthesis of 6 Representative Plants in Yuanjiang Dry-hot Valley (Maximum Photosynthetic Rate, Stomatal Conductance, Water Use Efficiency, Maximum Subefficiency of photosystem II) excle Table (2003-2005) 9. excle Table of Long-term Water Use Efficiency (Isotope) Data of Representative Plants in Yuanjiang Dry-hot Valley (Water Use Efficiency in Dry and Wet Seasons of Shrimp Flower, Red-skin Water Brocade Tree, Three-leaf Lacquer, Phyllanthus emblica, Pearl Tree, Dried Sky Fruit, Cyclobalanopsis glauca, West China Small Stone Accumulation, Geranium, Tiger thorn, Willow and Pigexcrement Bean) 10. word Document of List of Plants in Mandan Qianshan, Yuanjiang
CAO Kunfang
The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.
ZHANG Shuqing
This data is 2002.07.04-2010.12.31 MODIS daily cloudless snow products in the Tibetan Plateau. Due to the snow and cloud reflection characteristics, the use of optical remote sensing to monitor snow is severely disturbed by the weather. This product is based on the most commonly used cloud removal algorithm, using the MODIS daily snow product and passive microwave data AMSR-E snow water equivalent product, and the daily cloudless snow product in the Tibetan Plateau is developed. The accuracy is relatively high. This product has important value for real-time monitoring of snow cover dynamic changes on the Tibetan Plateau. Projection method: Albers Conical Equal Area Datum: D_Krasovsky_1940 Spatial resolution: 500 m Data format: tif Naming rules: maYYMMDD.tif, where ma represents the data name; YY represents the year (01 represents 2001, 02 represents 2002 ...); MM represents the month (01 represents January, 02 represents February ...); DD represents the day (01 Means 1st, 02 means 2nd ...).
HUANG Xiaodong
I. Overview The long-term sequence China Vegetation Index dataset is mainly for the normalized vegetation index (NDVI), based on four bands synthesized every 10 days from 1 April 1998 to 31 December 2011 with a spatial resolution of 1 km. Spectral reflectance and 10-day maximized NDVI dataset. Ⅱ. Data processing description The VEGETATION sensor was launched by SPOT-4 in March 1998, and has received SP0T VGT data for global vegetation coverage observation since April 1998. It has a very complete and efficient image ground processing mechanism system. The VEGETATION data is mainly received by the Kiruna ground station in Sweden. The image quality monitoring center in Toulouse, France is responsible for image quality and provides related parameters (such as calibration coefficients). Finally, the image processing and archiving center of VITO Institute in Belgium Global VEGETATION data archiving and user orders. Among them, VGT-P (prototype) data products mainly provide scientific researchers with high-quality physical quantity prototype data in order to facilitate their research and development of algorithms and application models. The data undergoes strict systematic error correction and resampling into a longitude and latitude network projection, the pixel resolution is lkm, and the pixel brightness value is the reflectivity of the ground features on the top layer of the atmosphere. In addition to providing four bands of raw data, relevant auxiliary parameters such as atmospheric conditions, system information (solar zenith angle, azimuth, field of view, and reception time) and terrain data are also provided according to user needs. VGT-S (synthesis) products provide atmospheric-corrected surface reflectance data, and use multi-band synthesis techniques to obtain a normalized vegetation index (w) data set with lkm resolution. VGI-S products include the spectral reflectance and NDVI data set (s1) of four bands synthesized daily, the spectral reflectance of four bands synthesized every 10 days, and the maximum NDVI data set (S10) every 10 days to reduce cloud and The impact of BRDF, while S10 was also resampled into 4km resolution (S10.4) and 8km resolution (S10.8) datasets. VGT-S products are widely used for their high time resolution. This data set contains the spectral reflectance of four bands synthesized every 10 days and the 10-day maximized NDVI data set (S10). The pre-processing of SPOT source data includes atmospheric correction, radiation correction, and geometric correction. NDVI data with a maximum of 10 days of synthesis is generated, and the values of -1 to -0.1 are set to -0.1, and then formula YDN = (JNDVI +0.1) /0.004 Convert to a YDN value from 0 to 250. Ⅲ. Data content description The long-term sequence China Vegetation Index dataset is mainly for the normalized vegetation index (NDVI), based on four bands synthesized every 10 days from 1 April 1998 to 31 December 2011 with a spatial resolution of 1 km. Spectral reflectance and 10-day maximized NDVI dataset. The SPOT-VEGETATION-NDVI data set contains .zip compressed files with time resolution from April 1, 1998 to December 31, 2011. After decompression, it is an ESRI-GRID file with a scene every 10 days. The SPO-VEGETATION-NDVI data set naming rules are: v-yymmdd, where v is the abbreviation of vegetation, yymmdd represents the date of the file, and is the main identifier that distinguishes other files. Ⅳ. Data usage description An important feature of the Vegetation Index product is that it can be converted into leaf crown biophysical parameters. Vegetation index (VI) also plays an "intermediate variable" in the acquisition of vegetation biophysical parameters (such as foliar index LAI, green shade, fAPAR, etc.). The relationship between vegetation indices and vegetation biophysical parameters is currently being studied using globally representative ground, aircraft and satellite observation datasets. These data can be used to evaluate the performance of the VI algorithm before satellite launch, and also provide the conversion coefficient between the vegetation index product and the biophysical characteristics of the leaf crown. The use of biophysical data is part of the Vegetation Index Verification Program. Vegetation index products will play a major role in several Earth Observation System (EOS) studies and are also part of global and regional biosphere model products in recent years.
XUE Xian, DU Heqiang
The glacial change trend in the Tarim River Basin and its impact on water resources change belong to the National Natural Science Foundation of China's Western Environment and Ecological Science major research project. The time is 2003.1-2005.12. The project submitted data: Kochikarbachi Glacier Observation Data (excel): Including precipitation, wind direction, wind speed and temperature data 1.3300a_climate (2003.6.29-2004.6.22): 4 hours data during the day, including field date, time, wind speed, wind up, temperature. 2.4200b_climate (2004.1.29-2004.5.12): 6:00, 8:00, 9:00, 10:00, 12:00, 14:00, 16:00, 18:00, 20:00, 22: 00, 23:00 observation data, including field date, time, wind speed, wind up, temperature. 3.3700_Precipitation: 13 days daily precipitation from 2003.7 to 2005.9 4.4200_Precipitation: 18-day daily precipitation between 2003.7 and 2006. 6
LIU Shiyin
This dataset includes passive microwave remote sensing brightness temperatures data for longitude and latitude projections and 0.25 degree resolution from 2002 to 2008 in China. 1. Data processing process: NSIDC produces AMSR-E gridded brightness temperature data by interpolating AMSR-E data (6.9 GHz, 10.7 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz, and 89.0 GHz) to the output grids from swath space using an Inverse Distance Squared (ID2) method. 2. Data format: Brightness temperature files: two-byte unsigned integers, little-endian byte order Time files: two-byte signed integers, little-endian byte order 3. Data naming: ID2rx-AMSRE-aayyyydddp.vnn.ccc (China-ID2r1-AMSRE-D.252002170A.v03.06V) ID2 Inverse Distance Squared r1 Resolution 1 swath input data AMSRE Identifies this an AMSR-E file D.25 Identifies this as a quarter degree file yyyy Four-digit year ddd Three-digit day of year p Pass direction (A = ascending, D = descending) vnn Gridded data version number (for example, v01, v02, v03) ccc AMSR-E channel indicator: numeric frequency (06, 10, 18, 23, 36, or 89) followed by polarization (H or V) 4. Cutting range: Corner Coordinates: Upper Left (60.0000000, 55.0000000) (60d 0'0.00 "E, 55d 0'0.00" N) Lower Left (60.0000000, 15.0000000) (60d 0'0.00 "E, 15d 0'0.00" N) Upper Right (140.0000000, 55.0000000) (140d 0'0.00 "E, 55d 0'0.00" N) Lower Right (140.0000000, 15.0000000) (140d 0'0.00 "E, 15d 0'0.00" N) Center (100.0000000, 35.0000000) (100d 0'0.00 "E, 35d 0'0.00" N) Origin = (60.000000000000000, 55.000000000000000) 5. Data projection: GEOGCS ["WGS 84", DATUM ["WGS_1984", SPHEROID ["WGS 84", 6378137,298.257223563, AUTHORITY ["EPSG", "7030"]], TOWGS84 [0,0,0,0,0,0,0], AUTHORITY ["EPSG", "6326"]], PRIMEM ["Greenwich", 0, AUTHORITY ["EPSG", "8901"]], UNIT ["degree", 0.0174532925199433, AUTHORITY ["EPSG", "9108"]], AUTHORITY ["EPSG", "4326"]]
Mary Jo Brodzik, Matthew Savoie, Richard Armstrong, Ken Knowles
China long-sequence surface freeze-thaw dataset——decision tree algorithm (1987-2009), is derived from the decision tree classification using passive microwave remote sensing SSM / I brightness temperature data. This data set uses the EASE-Grid projection method (equal cut cylindrical projection, standard latitude is ± 30 °), with a spatial resolution of 25.067525km, and provides daily classification results of the surface freeze-thaw state of the main part of mainland China. The data set is stored by year and consists of 23 folders, from 1987 to 2009. Each folder contains the day-to-day surface freeze-thaw classification results for the current year. It is an ASCII file with the naming rule: SSMI-frozenYYYY ***. Txt, where YYYY represents the year and *** represents the Julian date (001 ~ 365 / 366). The freeze-thaw classification result txt file can be opened and viewed directly with a text program, and can also be opened with ArcView + Spatial Analyst extension module or Arcinfo's Asciigrid command. The original frozen and thawed surface data was derived from daily passive microwave data processed by the National Snow and Ice Data Center (NSIDC) since 1987. This data set uses EASE-Grid (equivalent area expandable earth grid) as a standard format . China's surface freeze-thaw long-term sequence data set-The decision tree algorithm (1987-2009) attributes consist of the spatial-temporal resolution, projection information, and data format of the data set. Spatio-temporal resolution: the time resolution is day by day, the spatial resolution is 25.067525km, the longitude range is 60 ° ~ 140 ° E, and the latitude is 15 ° ~ 55 ° N. Projection information: Global equal-area cylindrical EASE-Grid projection. For more information about EASE-Grid projection, see the description of this projection in data preparation. Data format: The data set consists of 23 folders from 1987 to 2009. Each folder contains the results of the day-to-day surface freeze-thaw classification of the year, and is stored as a txt file on a daily basis. File naming rules: For example, SMI-frozen1994001.txt represents the surface freeze-thaw classification results on the first day of 1994. The ASCII file of the data set is composed of a header file and a body content. The header file consists of 6 lines of description information such as the number of rows, the number of columns, the coordinates of the lower left point of the x-axis, the coordinates of the lower left point of the y-axis, the grid size, and the value of the data-less area. Array, with columns as the priority. The values are integers, from 1 to 4, 1 for frozen, 2 for melting, 3 for desert, and 4 for precipitation. Because the space described by all ASCII files in this data set is nationwide, the header files of these files are unchanged. The header files are extracted as follows (where xllcenter, yllcenter and cellsize are in m): ncols 308 nrows 166 xllcorner 5778060 yllcorner 1880060 cellsize 25067.525 nodata_value 0 All ASCII files in this data set can be opened directly with a text program such as Notepad. Except for the header file, the main content is a numerical representation of the surface freeze-thaw state: 1 for frozen, 2 for melting, 3 for desert, and 4 for precipitation. If you want to display it with an icon, we recommend using ArcView + 3D or Spatial Analyst extension module to read it. During the reading process, a grid format file will be generated. The displayed grid file is the graphic representation of the ASCII code file. Reading method: [1] Add 3D or Spatial Analyst extension module in ArcView software, and then create a new View; [2] Activate View, click the File menu, select the Import Data Source option, the Import Data Source selection box pops up, select ASCII Raster in Select import file type: in this box, and a dialog box for selecting the source ASCII file automatically pops up Find any ASCII file in the data set and press OK; [3] Type the name of the Grid file in the Output Grid dialog box (a meaningful file name is recommended for later viewing), and click the path where the Grid file is stored, press Ok again, and then press Yes (to select an integer) Data), Yes (call the generated grid file into the current view). The generated file can be edited according to the Grid file standard. This completes the process of displaying the ASCII file as a Grid file. [4] During batch processing, you can use ARCINFO's ASCIIGRID command to write an AML file, and then use the Run command to complete in the Grid module: Usage: ASCIIGRID <in_ascii_file> <out_grid> {INT | FLOAT}
LI Xin
This data is digitized from the "Zhangye Land Use Status Map" of the drawing. This map is a key scientific and technological research project of the "Seventh Five-Year Plan" of the country: "Three North" Shelter Forest Remote Sensing Comprehensive Survey, and one of the series maps of Ganqingning Type Area. The information is as follows: * Chief Editor: Wang Yimou * Deputy Editors: Feng Yushun, You Xianxiang, Shen Yuancun * Editors: Wang Xian, Wang Jingquan, Qiu Mingxin, Quan Zhijie, Mou Xindai, Qu Chunning, Yao Fafen, Qian Tianjiu, Huang Autonomy, Mei Chengrui, Han Xichun, Li Yujiu, Hu Shuangxi * Responsible Editor: Huang Meihua * Manuscript: Mou Xin-shi, Cui Sai-hua, Wang Xian. He Shouhua * Compiling: He Shouhua, Wang Xian, Quan Zhijie, Cui Saihua, Long Yaping, Mu Xinshi, He Shouhua, Mao Xiaoli, Cui Saihua, Wang Changhan * Editors: Feng Yushun and Wang Yimou * Qing Hua: Feng Yushun, Zhang Jingqiu, Yang Ping * Cartography: Feng Yushun, Yao Fafen, Wang Jianhua, Zhao Yanhua, Li Weimin * Cartographic unit: compiled by Desert Research Office of Chinese Academy of Sciences * Publishing House: Xi 'an Map Publishing House * Scale: 1: 500000 * Publication time: not yet available 1. File Format and Naming Data is stored in ESRI Shapefile format, including the following layers: Zhang Ye's landuse Map, River, Road, 2. Data Fields and Attributes Type number type face desert Paddy field 12 Irrigated field 13 dryland Non-irrigated field 131 Plain non-irrigated field Valley non-irrigated field Slope non-irrigated field, 133 slope dryland 134 dryland Terrace non-irrigated field ................. Please refer to the data document for details. 3. Projection information: Angular Unit: Degree (0.017453292519943295) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Beijing_1954 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000
WANG Yimou, YOU Xianxiang, SHEN Yuancun, FENG Yusun, WANG Xian, YAO Fafen, SHEN Yuancun, FENG Yusun, WANG Jianhua
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn