1) Data content: the main ecological environment data retrieved from remote sensing in Pan third polar region, including PM2.5 concentration, forest coverage, Evi, land cover, and CO2; 2) data source and processing method: PM2.5 is from the atmospheric composition analysis group web site at Dalhousie University, and the forest coverage data is from MODIS Vegetation continuum Fields (VCF), CO2 data from ODIAC fossil fuel emission dataset, EVI data from MODIS vehicle index products, and land cover data from ESA CCI land cover. 65 pan third pole countries and regions are extracted, and others are not processed; 3) data quality description: the data time series from 2000 to 2015 is good; 4) data application achievements and prospects: it can be used for the analysis of ecological environment change.
LI Guangdong
This dataset is based on the long sequence (1981-2013)normalized difference vegetation index product(Version 3) of the latest NOAA Global Inventory Monitoring and Modeling System (GIMMS). First, the NDVI data products were re-sampled from the spatial resolution of 1/12 degree to 0.5 degree, then the time series of every year was smoothed by the double-logistic method, and the smoothed curvature was calculated. The maximum curvature of spring was selected as the returning green stage of the vegetation in Spring. This data can be used to analyze the temporal and spatial characteristics of the Holarctic vegetation phenology in Spring.
XU Xiyan
This dataset is based on the sixth edition of the MODIS normalized difference vegetation index product (2001-2014) jointly released by NASA EOSDIS LP DAAC and the US Geological Survey USGS EROS. The NDVI has a time resolution of 16 days and a spatial resolution of 0.05 degree. First,the NDVI data products were re-sampled from the spatial resolution of 0.05 degree to 0.5 degree, then the time series of every year was smoothed by the double-logistic method, and the smoothed curvature was calculated. The maximum curvature of spring was selected as the returning green stage of the vegetation in Spring. This data can be used to analyze the temporal and spatial characteristics of the Holarctic vegetation phenology in Spring.
NASA EOSDIS LP DAAC, XU Xiyan
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Sidalong Station from October 24 to December 31, 2018. The site (38.430°E, 99.931°N) was located on a forest in the Kangle Sunan, which is near Zhangye city, Gansu Province. The elevation is 3059 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (0.5, 3, 13, 24, and 48 m), wind speed and direction profile (windsonic; 0.5, 3, 13, 24, and 48 m), air pressure (1.5 m), rain gauge (24 m), infrared temperature sensors (4 m and 24m, vertically downward), photosynthetically active radiation (4 m and 24m), soil heat flux (-0.05 m and -0.1m), soil temperature/ moisture/ electrical conductivity profile -0.05, -0.1m, -0.2m, -0.4m and -0.6mr), four-component radiometer (24 m, towards south), sunshine duration sensor(24 m, towards south). The observations included the following: air temperature and humidity (Ta_0.5 m, Ta_3 m, Ta_13 m, Ta_24 m, and Ta_48 m; RH_0.5 m, RH_3 m, RH_13 m, RH_24 m, and RH_48 m) (℃ and %, respectively), wind speed (Ws_0.5 m, Ws_3 m, Ws_13 m, Ws_24 m, and Ws_48 m) (m/s), wind direction (WD_0.5 m, WD_3 m, WD_13 m, WD_24 m, and WD_48 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_A, IRT_B) (℃), photosynthetically active radiation (PAR_A, PAR_B) (μmol/ (s m^2)), soil heat flux (Gs_0.05m, Gs_0.1m) (W/m^2), soil temperature (Ts_5 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, and Ts_60 cm) (℃), soil moisture (Ms_5 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, and Ms_60 cm) (%, volumetric water content),soil water potential (SWP_5cm, SWP_10cm, SWP_20cm, SWP_40cm, and SWP_60cm)(kpa), soil conductivity (Ec_5cm, Ec_10cm, Ec_20cm, Ec_40cm, and Ec_60cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The soil water potential in the area is so low that it has exceeded the sensor measurements. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Xiyinghe Station from January 1 to December 31, 2018. The site (101.853E, 37.561N) was located on a alpine meadow in the Menyuan,Qinghai Province. The elevation is 3639 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (2, 4, and 8 m, towards north), wind speed and direction profile (windsonic; 2, 4, and 8 m, towards north), air pressure (1.5 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (-0.05 m and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile (-0.2 and -0.4 m in south of tower), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_2 m, Ta_4 m, and Ta_8 m; RH_2 m, RH_4 m, and RH_8 m) (℃ and %, respectively), wind speed (Ws_2 m, Ws_4 m, and Ws_8 m) (m/s), wind direction (WD_2 m, WD_4 m, and WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s/m^2)), soil heat flux (Gs_5 cm, Gs_10cm) (W/m^2), soil temperature (Ts_20 cm, Ts_40 cm) (℃), soil moisture (Ms_20 cm, Ms_40 cm) (%, volumetric water content), soil water potential (SWP_20cm , SWP_40cm)(kpa) , soil conductivity (Ec_20cm, Ec_40cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The meteorological data were missing during Aug. 29 to Oct.18 because of unstable power supply due to battery box flooding; The wind speed and direction profile data were rejected because of sensor failure; The precipitation data were rejected because of program error; The air humidity data before Mar. 2 were rejected due to program error; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Liancheng Station from January 1 to December 31, 2018. The site (102.833E, 36.681N) was located on a forest in the Tulugou national forest park, which is near Liancheng city, Gansu Province. The elevation is 2912 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4 and 8 m, towards north), wind speed and direction profile (windsonic; 4 and 8 m, towards north), air pressure (1.5 m), rain gauge (2 m), four-component radiometer (4 m, towards south),infrared temperature sensors (2 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (2 duplicates below the vegetation;-0.05 and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile (below the vegetation;-0.05 and -0.1m in south of tower), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m and Ta_8 m; RH_4 m and RH_8 m) (℃ and %, respectively), wind speed (Ws_2 m, Ws_4 m, and Ws_8 m) (m/s), wind direction (WD_2 m, WD_4 m, and WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), soil heat flux (Gs_5 cm, Gs_10 cm) (W/m^2), soil temperature (Ts_5 cm, Ts_10 cm) (℃), soil moisture (Ms_5 cm, Ms_10 cm) (%, volumetric water content), soil water potential (SWP_5cm,SWP_10cm)(kpa), soil conductivity (EC_5cm,EC_10cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The soil heat flux data were wrong during Jan.1 to May 30 because of rodent damage; The data during May. 30 to July 6 were missing because the power supply failure; The air humidity data were rejected due to program error. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Linze Station from January 1 to December 31, 2018. The site (100.060° E, 39.237° N) was located on a cropland (maize surface) in the Guzhai Xinghua, which is near Zhangye city, Gansu Province. The elevation is 1400 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4 and 8 m, towards north), wind speed and direction profile (windsonic; 4 and 8 m, towards north), air pressure (1 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (2 duplicates below the vegetation; -0.05 and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile (-0.2 and -0.4m), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m, Ta_8 m; RH_3 m, RH_4 m, RH_8 m) (℃ and %, respectively), wind speed (Ws_4 m, Ws_8 m) (m/s), wind direction (WD_4 m, WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing long wave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), soil heat flux (Gs_5cm, Gs_10cm) (W/m^2), soil temperature (Ts_5 cm, Ts_10 cm) (℃), soil moisture (Ms_5 cm, Ms_10 cm) (%, volumetric water content), soil water potential(SWP_5cm, SWP_10cm), soil conductivity (Ec_5cm,Ec_10cm) (μs/cm), sun time(h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day.The precipitation and the air humidity data were rejected due to program error. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30.
ZHAO Changming, ZHANG Renyi
By applying Supply-demand Balance Analysis, the water resource supply and demand of the whole river basin and each county or district were calculated, based on which the vulnerability of the water resources system of the basin was evaluated. The IPAT equation was used to set a future water resource demand scenario, setting variables such as future population growth rate, economic growth rate, and unit GDP water consumption to establish the scenario. By taking 2005 as the base year and using assorted forecasting data of population size and economic scale, the future water demand scenarios of various counties and cities from 2010 to 2050 were forecast. By applying the basic structure of the HBV conceptual hydrological model of the Swedish Hydrometeorological Institute, a model of the variation tendency of the basin under climate change was designed. The glacial melting scenario was used as the model input to construct the runoff scenario under climate change. According to the national regulations of the water resources allocation of the basin, a water distribution plan was set up to calculate the water supply comprehensively. Considering of the supply and demand situation, the water resource system vulnerability was evaluated by the water shortage rate. By calculating the (grain production) land pressure index of the major counties and cities in the basin, the balance of supply and demand of land resources under the climate change, glacial melt and population growth scenarios was analyzed, and the vulnerability of the agricultural system was evaluated. The Miami formula and HANPP model were used to calculate the human appropriation of net primary biomass and primary biomass in the major counties and cities for the future, and the vulnerability of ecosystems from the perspective of supply and demand balance was assessed.
YANG Linsheng, ZHONG Fanglei
The data set collected long-term monitoring projects from multiple stations for atmosphere, hydrology and soil in the North Tibetan Plateau. The data set consisted of monitoring data obtained from the automatic weather station (AWS) and the atmospheric boundary layer tower (PBL) in the field. The sensors for temperature, humidity and pressure were provided by Vaisala of Finland; the sensors for wind speed and direction were provided by Met One of America, the radiation sensors were provided by APPLEY of America and EKO of Japan; the gas analyzers were provided by Licor of America; the soil water content instrument, ultrasonic anemometers and data collectors were provided by CAMPBELL of America. The observation system was maintained by professionals regularly (2-3 times a year), the sensors were calibrated and replaced, and the collected data were downloaded and reorganized. The data set was processed by forming a time continuous sequence after the raw data were quality-controlled. It met the accuracy level of the original meteorological observation data of the National Weather Service and the World Meteorological Organization (WMO). The quality control included the elimination of the missing data and the systematic error caused by the failure of the sensor.
HU Zeyong
By applying Supply-demand Balance Analysis, the water resource supply and demand of the whole river basin and each county or district were calculated, on which basis the vulnerability of the water resources system of the basin was evaluated. The IPAT equation was used to set a future water resource demand scenario, setting variables such as future population growth rate, economic growth rate, and unit GDP water consumption to establish the scenario. By taking 2005 as the base year and using assorted forecasting data of population size and economic scale, the future water demand scenarios of various counties and cities from 2010 to 2050 were predicted. By applying the basic structure of the HBV conceptual hydrological model of the Swedish Hydrometeorological Institute, a model of the variation tendency of the basin under climate change was designed. The glacial melting scenario was used as the model input to construct the runoff scenario under climate change. According to the national regulations for the water resources allocation of the basin, a water distribution plan was set up to calculate the water supply comprehensively. Considering the supply and demand situation, the water resource system vulnerability was evaluated by the water shortage rate. By calculating the (grain production) land pressure index of the major counties and cities in the basin, the balance of supply and demand of land resources under the climate change, glacial melt and population growth scenarios was analyzed, and the vulnerability of the agricultural system was evaluated. The Miami formula and HANPP model were used to calculate the human appropriation of net primary biomass and primary biomass in the major counties and cities for the future, and the vulnerability of ecosystems from the perspective of supply and demand balance was assessed.
YANG Linsheng, ZHONG Fanglei
By applying supply-demand balance analysis, the water resource supply and demand of the whole river basin and each county or district were calculated, and the results were used to assess the vulnerability of the water resources system in the basin. The IPAT equation was used to establish a future water resource demand scenario, which involved setting various variables, such as the future population growth rate, economic growth rate, and water consumption per unit GDP. By taking 2005 as the base year and using assorted forecasting data of population size and economic scale, the future water demand scenarios of various counties and cities from 2010 to 2050 were predicted. By applying the basic structure of the HBV conceptual hydrological model of the Swedish Hydro-meteorological Institute, a model of the variation trends of the basin under a changing climate was designed. The glacial melting scenario was used as the model input to construct the runoff scenario in response to climate change. According to the national regulations of the water resource allocation in the basin, a water distribution plan was set up to calculate the water supply comprehensively. Considering the supply and demand situation, the water resource system vulnerability was evaluated by the water shortage rate. By calculating the grain production-related land pressure index of the major counties and cities in the basin, the balance of supply and demand of land resources in scenarios of climate change, glacial melting and population growth was analysed, and the vulnerability of the agricultural system was evaluated. The Miami formula and HANPP model were used to calculate the human appropriation of net primary biomass and primary biomass in the major counties and cities in the future, and the vulnerability of ecosystems from the perspective of supply and demand balance was assessed.
YANG Linsheng, ZHONG Fanglei
一. Data overview This data interchange is the second data interchange of "genomics research on drought tolerance mechanism of typical desert plants in heihe basin", a key project of the major research program of "integrated research on eco-hydrological processes in heihe basin".The main research goal of this project is a typical desert sand Holly plants as materials, using the current international advanced a new generation of gene sequencing technology to the whole genome sequence and gene transcription of Holly group sequence decoding, so as to explore related to drought resistance gene and gene groups, and transgenic technology in model plants such as arabidopsis and rice) verify its drought resistance. 二, data content 1.Sequencing of the genome and transcriptome of lycophylla SPP. The genome size of Mongolian Holly was about 926 Mb, GC content 36.88%, repeat sequence proportion 66%, genome heterozygosity rate 0.56%, which indicated that the genome has many repeat sequences, high heterozygosity and belongs to a complex genome.Based on the predicted sequence results, we subsequently carried out in-depth sequencing of the genome of lysiopsis SPP. The obtained data were assembled to obtain a 937 Mb genome sequence (table 1), which was basically the same as the predicted genome size.Through to the sand Holly transcriptome sequencing and sequence assembly (table 2), received more than 77000 genes coding sequence (Unigene), these sequences are comments found that most of the gene sequence and legumes and soybean, garbanzo beans and bean has a higher similarity (figure 1), consistent with the fact of sand ilex leguminous plants. 一), and the sand Holly is a leguminous plants consistent with the fact. 2.Discovery of simple repeat sequence (SSR) molecular markers of sand Holly: There is a transcriptome data set of sand Holly in the network public database, and the sample collection site is zhongwei city, ningxia.But this is the location of the project team samples in minqin county, gansu province, in order to study whether this sand in different areas of the Holly sequence has sequence polymorphism, we first identify the minqin county plant samples in the genomes of simple sequence repeat (SSR) markers (table 3), and then, compares the transcriptome sequences of plant sample, found in part of SSR molecular marker polymorphism (table 4), these molecular markers could be used for the species of plant genetic map construction, QTL mapping and genetic diversity analysis in the study. 三, data processing instructions Sample collection place: minqin county, gansu province, latitude and longitude: N38 ° 34 '25.93 "E103 ° 08' 36.77".Genome sequencing: a total of 8 genomic DNA libraries of different sizes were constructed and determined by Illumina HiSeq 2500 instrument.Transcriptome sequencing: a library of 24 transcriptome mrnas was constructed and determined by Illumina HiSeq 4000. 四, the use of data and meaning We selected a typical desert plant as the research object, from the Angle of genomics, parse the desert plant genome and transcriptome sequences, excavated its precious drought-resistant gene resources, and to study their drought resistance mechanism of favorable sand Holly this ancient and important to the utilization of plant resources, as well as the heihe river basin of drought-resistant plant genetic breeding, ecological restoration and sustainable development.
HE Junxian, FENG Lei
In the previous project, three different types of desert investigation and observation sites in the lower reaches of Heihe River were set up. Different kinds of desert plants with the same average growth and size as the observation site were selected for the above ground biomass and underground biomass total root survey. The dry weight was the dry weight at 80 ℃, and the root shoot ratio was the dry weight ratio of the underground biomass to the aboveground biomass. Species: Elaeagnus angustifolia, red sand, black fruit wolfberry, bubble thorn, bitter beans, Peganum, Tamarix and so on.
SU Peixi
Shule River Basin is one of the three inland river basins in Hexi corridor. In recent years, with the obvious change of climate and the aggravation of human activities, the shortage of water resources and the problem of ecological environment in Shule River Basin have become increasingly prominent. It is of great significance to study the runoff change of Shule River Basin in the future climate situation for making rational water resources planning and ecological environment protection. The Shule River basin boundary is cut from "China's 1:100000 desert sand data set". Taking the 2000 TM image as the data source, it interprets, extracts, revises, and uses remote sensing and geographic information system technology to combine with the 1:100000 scale mapping requirements to carry out thematic mapping of desert, sand and gravel gobi. Data attribute table: Area (area), perimeter (perimeter), ash_ (sequence code), class (desert code), ash_id (desert code). The desert code is as follows: mobile sand 2341010, semi mobile sand 2341020, semi fixed sand 2341030, Gobi 2342000, salt alkali land 2343000. Collect and sort out the basic, meteorological, topographical and geomorphic data of Shule River Basin, and provide data support for the management of Shule River Basin.
"Hydrological ecological economic process coupling and evolution of Heihe River Basin Management under the framework of water rights" (91125018) project data collection 2 - Dunhuang comprehensive plan for rational utilization of water resources and ecological protection (2011-2020) Planning documents mainly include: 1. Current situation and existing problems of regional water resources utilization; 2. Guiding ideology, basic principles and planning objectives; 3. Analysis of economic, social and ecological water demand; 4. Plan for water resources allocation; 5. Construction of water right system; 6. Main engineering measures; 7. Environmental impact arrangement.
The data is the distribution map of 100,000 deserts in the Tarim River Basin. This data uses 2000 TM images as the data source to interpret, extract and revise, and uses remote sensing and geographic information system technology in combination with the mapping requirements of 1: 100,000 scale to carry out thematic mapping of deserts, sands and gravelly Gobi. Data attribute table: area (area), perimeter (perimeter), ashm_ (sequence code), class (desert code), ashm_id (desert code), of which desert code is as follows: flowing sand 2341010, semi-flowing sand 2341020, semi-fixed sand 2341030, Gobi desert 2342000, saline-alkali land 2343000
WANG Jianhua
The data set is the physiological and ecological parameters of the dominant species of each ecosystem in Heihe River Basin. According to the requirements of tesim model, the data set divides Heihe River basin into seven ecosystems: deciduous broad-leaved forest ecosystem (BRD), evergreen coniferous forest ecosystem (CNF), agricultural field ecosystem (CRP), desert ecosystem (DST), meadow grassland ecosystem (MDS) Shrubbery ecosystem (SHB) and grassland ecosystem (STP). Some of the data in this data set are based on the measured data, some are obtained by reference documents, but after verification, they are applied to the Heihe River Basin. For the data in this data, each parameter of each ecosystem has three values, which are the value in the model, the minimum value and the maximum value of this parameter. The data can provide input parameters for the ecological process model, and the data set is still in further optimization.
PENG Hongchun
The data is the distribution map of 100,000 deserts in Qinghai Lake Basin. This data uses 2000 TM image as the data source for interpretation, extraction and revision. Remote sensing and geographic information system technology are combined with the mapping requirements of a scale of 1: 100,000 to carry out thematic mapping of deserts, sands and gravelly Gobi. Data attribute table: area (area), perimeter (perimeter), ashm_ (sequence code), class (desert code) and ashm_id (desert code), of which the desert code is as follows: mobile sand 2341010, semi-mobile sand 2341020, semi-fixed sand 2341030, Gobi desert 2342000 and saline-alkali land 2343000.
WANG Jianhua, YAN Changzhen
The vegetation regulation mechanism project of soil water cycle in arid desert areas belongs to the national natural science foundation "environment and ecological science in western China" major research plan, led by li xinrong, a researcher of the institute of environment and engineering in dry and cold areas, Chinese academy of sciences, with the running time of 2003.1-2005.12. Remittance data of the project: 1. Dataset of observation field of shapotou railway vegetation sand fixation protection system (excel) Plant and soil information in the vegetation-sand fixation zone established in 1956, 1964, 1981 and 1987.Since the establishment of the observation field, long-term soil moisture and vegetation surveys have been conducted. This database records the soil moisture data after the neutron tube installation in August 2002, the vegetation data from 2003 to 2005 (vegetation structure, herb structure, shrub structure, etc.), and the soil physical and chemical properties data (particle size, total N,P2O5,K2O, hydrolyzed N) of the irregular surveys. 2. Physiological data set of desert plant stress (excel) From 2003 to 2005, the physiological and biochemical characteristics of typical plant communities and their dominant species in steppe desert under natural and simulated environmental conditions were analyzed.(including photosynthetic transpiration, fluorescence, biochemistry and other indicators) 3. Soil infiltration and evapotranspiration data set (excel) Precipitation infiltration process, soil water dynamics and evapotranspiration of fixed sand dunes monitored by desert artificial vegetation using TDR and Lysimeters from 2002 to 2005. 4. Data set of comprehensive survey on soil and vegetation in the southeastern margin of tengger desert (excel) In 2003-2004, silver (sichuan), yan (latour) highway, silver (sichuan) (state) highway through the tengger desert area, set up along the road of eight samples, 449 samples of soil conductivity, Ph, organic matter, total nitrogen (content) and vegetation (plants, coverage, average height, biomass, strains, coverage, high average, biomass).
LI Xinrong
Background: this data interchange is the first data interchange of the key project of "integrated study of eco-hydrological processes in heihe basin", "genomics research on drought tolerance mechanism of typical desert plants in heihe basin".The main research targets of the key projects is a typical sand desert plants are Holly, using the current international advanced a new generation of gene sequencing technology to the whole genome sequence and gene transcription of Holly group sequence decoding, so as to explore related to drought resistance gene and gene groups, and transgenic technology in model to verify their drought resistance in plants. Process and content: as genome sequencing requires special sequencing equipment, the project is huge and the process is complex (mainly including genome library construction, sequencing, data analysis and genome assembly), so it needs to be completed by a professional sequencing company.After contacting with sequencing companies, we learned that before sequencing an unknown genome, the size and complexity of the genome should be predicted, which is a necessary prerequisite for designing sequencing schemes and strategies.Therefore, in 2013, we mainly predicted the chromosome composition, genome size and complexity of sand Holly, and successfully established the extraction and purification method of its genomic DNA.The results showed that the plant was diploid, the genome was composed of 9 staining lines (18 lines of diploid), and the genome size was 1.07G.The quality test results of the genomic DNA indicated that the requirements of the obtained DNA complex sequencing have been sent to the sequencing company for library construction and sequencing, which is now in progress.In addition, in order to obtain a large number of uniform plant materials, we have discussed the induction of callus, which has been successful.Due to these reasons, we were unable to complete the genome sequencing and submit the relevant data of sand Holly in accordance with the original plan of the project this year, mainly because we did not count the predicted contents of the genome before. Data usage: the data obtained in this year on ploidy, karyotype composition and genome size of lycopodium SPP.The success of the callus induction provides a high-quality material guarantee for the subsequent transcriptome sequencing and drought-resistance mechanism research experiments, and it is also a new contribution to the cytological and physiological research of the plant.
HE Junxian, GU Lifei
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn