Field description: Num_code (Frozen soil attribute code) Combo (Permafrost properties) extent (Extent of frozen ground) content (Ice content) Attributes comparison are as follows: (1) Comparison table of frozen soil properties: 0 (No information) 1 - chf (Continuous permafrost extent with high ground ice content and thick overburden) 2 - dhf (Discontinuous permafrost extent with high ground ice content and thick overburden) 3 - shf (Sporadic permafrost extent with high ground ice content and thick overburden) 4 - ihf (Isolated patches of permafrost extent with high ground ice content and thick overburden) 5 - cmf (Continuous permafrost extent with medium ground ice content and thick overburden) 6 - dmf (Discontinuous permafrost extent with medium ground ice content and thick overburden) 7 - smf (Sporadic permafrost extent with medium ground ice content and thick overburden) 8 - imf (Isolated patches of permafrost extent with medium ground ice content and thick overburden) 9 - clf (Continuous permafrost extent with low ground ice content and thick overburden) 10 - dlf (Discontinuous permafrost extent with low ground ice content and thick overburden) 11 - slf (Sporadic permafrost extent with low ground ice content and thick overburden) 12 - ilf (Isolated patches of permafrost extent with low ground ice content and thick overburden) 13 - chr (Continuous permafrost extent with high ground ice content and thin overburden and exposed bedrock) 14 - dhr (Discontinuous permafrost extent with high ground ice content and thin overburden and exposed bedrock) 15 - shr (Sporadic permafrost extent with high ground ice content and thin overburden and exposed bedrock) 16 - ihr (Isolated patches of permafrost extent with high ground ice content and thin overburden and exposed bedrock) 17 - clr (Continuous permafrost extent with low ground ice content and thin overburden and exposed bedrock) 18 - dlr (Discontinuous permafrost extent with low ground ice content and thin overburden and exposed bedrock) 19 - slr (Sporadic permafrost extent with low ground ice content and thin overburden and exposed bedrock) 20 - ilr (Isolated patches of permafrost extent with low ground ice content and thin overburden and exposed bedrock) 21 - g (Glaciers) 22 - r (Relict permafrost) 23 - l (Inland lakes) 24 - o (Ocean/inland seas) 25 - ld (Land) (2) Comparison table of frozen soil scope c = continuous (90-100%) d = discontinuous (50- 90%) s = sporadic (10- 50%) i = isolated patches (0 - 10%) (3) Ice content comparison table h = high (>20% for "f" landform codes) (>10% for "r" landform codes) m = medium (10-20%) l = low (0-10%)
National Snow and Ice Data Center(NSIDC), WU Lizong
China's land cover data set includes 5 products: 1) glc2000_lucc_1km_China.asc, a Chinese subset of global land cover data based on SPOT4 remote sensing data developed by the GLC2000 project. The data name is GLC2000.GLC2000 China's regional land cover data is directly cropped from global cover data. For data description, please refer to http : //www-gvm.jrc.it/glc2000/defaultGLC2000.htm 2) igbp_lucc_1km_China.asc, a Chinese subset of global land cover data based on AVHRR remote sensing data supported by IGBP-DIS, the data name is IGBPDIS; IGBPDIS data was prepared using the USGS method, using April 1992 to March 1992 The AVHRR data developed global land cover data with a resolution of 1km. The classification system adopts a classification system developed by IGBP, which divides the world into 17 categories. Its development is based on continents. Applying AVHRR for 12 months to maximize synthetic NDVI data, 3) modis_lucc_1km_China_2001.asc, a subset of MODIS land cover data products in China, the data name is MODIS; MODIS China's regional land cover data is directly cropped from global cover data, and its data description please refer to http://edcdaac.usgs.gov/ modis / mod12q1v4.asp. 4. umd_lucc_1km_China.asc, a Chinese subset of global land cover data based on AVHRR data produced by the University of Maryland, the data name is UMd; the five bands of UMd based on AVHRR data and NDVI data are recombined to suggest a data matrix, using Methodology carried out global land cover classification. The goal is to create data that is more accurate than past data. The classification system largely adopts the classification scheme of IGBP. 5) westdc_lucc_1km_China.asc, China ’s 2000: 100,000 land cover data organized and implemented by the Chinese Academy of Sciences, combined with Yazashi conversion (the largest area method), and finally obtained a land use data product of 1km across the country, data name WESTDC. WESTDC China's regional land cover data is based on the results of a 1: 100,000 county-level land resource survey conducted by the Chinese Academy of Sciences. The land use data were merged and converted into a vector (the largest area method). The Chinese Academy of Sciences resource and environment classification system is adopted. 2: Data format: ArcView GIS ASCII 3: Mesh parameters: ncols 4857 nrows 4045 xllcorner -2650000 yllcorner 1876946 cellsize 1000 NODATA_value -9999 4: Projection parameters: Projection ALBERS Units METERS Spheroid Krasovsky Parameters: 25 00 0.000 / * 1st standard parallel 47 00 0.000 / * 2nd standard parallel 105 00 0.000 / * central meridian 0 0 0.000 / * latitude of projection's origin 0.00000 / * false easting (meters) 0.00000 / * false northing (meters)
RAN Youhua
In the ecosystem, soil and vegetation are two interdependent factors. Plants affect soil and soil restricts vegetation. On the one hand, there are a lot of nutrients such as carbon, nitrogen and phosphorus in the soil. On the other hand, the availability of soil nutrients plays a key role in the growth and development of plants, directly affecting the composition and physiological activity of plant communities, and determining the structure, function and productivity level of ecosystems. Soil moisture content (or soil moisture content): In the 9 sections from Daxihaizi to taitema lake in the lower reaches of Tarim River, plant sample plots are set in the direction perpendicular to the river channel according to the arrangement of groundwater level monitoring wells. Dig one soil profile in each sample plot, collect one soil sample from 0-5 cm, 5-15 cm, 15-30 cm, 30-50 cm, 50-80 cm, 80-120 cm and 120-170cm soil layers from bottom to top in each profile layer, each soil sample is formed by multi-point sampling and mixing of corresponding soil layers, each soil layer uses aluminum boxes to collect soil samples, weighs wet weight on site, and measures soil moisture content (or soil moisture content) by drying method. Soil nutrient: the mixed soil sample is used for determining soil nutrient after removing plant root system, gravel and other impurities, air-drying indoors and sieving. Organic matter is heated by potassium dichromate, total nitrogen is treated by semi-micro-Kjeldahl method, total phosphorus is treated by sulfuric acid-perchloric acid-molybdenum antimony anti-colorimetric method, total potassium is treated by hydrofluoric acid-perchloric acid-flame photometer method, effective nitrogen is treated by alkaline hydrolysis diffusion method, effective phosphorus is treated by sodium bicarbonate leaching-molybdenum antimony anti-colorimetric method, effective potassium is treated by ammonium acetate leaching-flame photometer method, PH and conductivity are measured by acidimeter and conductivity meter respectively (water to soil ratio is 5: 1). Soil water-soluble total salt was determined by in-situ salinity meter. Drought stress is the most common form of plant adversity and is also the main factor affecting plant growth and development. Plant organs will undergo membrane lipid peroxidation under adverse circumstances, thus accumulating malondialdehyde (MDA), the final decomposition product of membrane lipid peroxide. MDA content is an important indicator reflecting the strength of membrane lipid peroxidation and the damage degree of plasma membrane, and is also an important parameter reflecting the damage of water stress to plants. At the same time, under adverse conditions, the increased metabolism of reactive oxygen species in plants will lead to the accumulation of reactive oxygen species or other peroxide radicals, thus damaging cell membranes. Superoxide dismutase (SOD) and peroxidase (POD) in plants can remove excess active oxygen in plants under drought and other adversities, maintain the metabolic balance of active oxygen, protect the structure of the membrane, and finally enhance the resistance of plants to adversities. The analysis samples take Populus euphratica, Tamarix chinensis and Phragmites communis as research objects. According to the location of groundwater monitoring wells, six sample plots are set up starting from the riverside, with an interval of 50 m between each sample plot, which are sample plots 1, 2, 3, 4, 5 and 6 in turn. Fresh leaves of plants are collected, stored at low temperature, and pretreated (dried or frozen) on the same day. PROline (Pro), cell membrane system protective enzymes superoxide dismutase (SOD) and peroxidase (POD) were tested indoors. Preparation of enzyme solution: weigh 0.5g of fresh material and add 4.5mL pH7.8 with ph 7.8. The materials were homogenized in a pre-frozen mortar, which was placed in an ice bath. Centrifuge at 10000 r/min for 15 min. The supernatant was used for determination of superoxide dismutase, peroxidase and malondialdehyde (MDA). PRO determination: put 0.03 g of material into a 20 mL large test tube, add 10mL ammonia-free distilled water, seal it, put it in a boiling water bath for 30min, cool it, filter, filtrate 5 mL+ ninhydrin 5 mL, develop color in boiling water for 60min, and extract with toluene. The extract was colorized with Shimadzu UV-265 UV spectrophotometer at 515 nm. SOD activity was measured by NBT photoreduction. The order of sample addition for enzyme reaction system is: pH 7.8 PBS 2.4mL+ riboflavin 0.2 mL+ methionine 0.2 mL+EDTA0.1 mL+ enzyme solution 0.1 mL+NBT0.2 mL. Then the test tube was reacted under 40001ux light for 20 min, and photochemical reduction was carried out. SOD activity was measured at 650 nm wavelength by UV-265 ultraviolet spectrophotometer. POD activity determination: the reaction mixture was 50 ml PBS with pH 6.0+28 μ L guaiacol+19 UL30% H2O2. 2 mL of reaction mixture +1 mL of enzyme solution, immediately start timing, reading every 1 min, reading at 470 nm. Determination of chlorophyll: ethanol acetone mixed solution method. After cutting the leaves, the mixed solution of 0.2 g and acetone: absolute ethanol = 1: 1 was weighed as the extraction solution. After extracting in the dark for 24 h, the leaves turned white and chlorophyll was dissolved in the extraction solution. The OD value of chlorophyll was measured by spectrophotometer at 652nm. Determination method of soluble sugar: phenol sulfate method is adopted. (1) The standard curve is made by taking 11 20 ml graduated test tubes, numbering them from 0 to 10 points, and adding solution and water according to Table 1 respectively. Then add 1 ml of 9% phenol solution to the test tube in sequence, shake it evenly, then add 5 ml of concentrated sulfuric acid from the front of the tube for 5 ~ 20 s, the total volume of the colorimetric solution is 8 ml, and leave it at constant temperature for 30 minutes for color development. Then, with blank as control, colorimetric determination was carried out at 485 nm wavelength. With sugar as abscissa and optical density as ordinate, a standard curve was drawn and the equation of the standard curve was obtained. (2) Extraction of soluble sugar: fresh plant leaves are taken, surface dirt is wiped clean, cut and mixed evenly, 0.1-0.3 g are weighed, 3 portions are respectively put into 3 calibration test tubes, 5-10 ml distilled water is added, plastic film is sealed, extraction is carried out in boiling water for 3O minutes, the extraction solution is filtered into a 25 ml volumetric flask, repeated flushing is carried out, and the volume is fixed to the calibration. (3) Absorb 0.5 g of sample solution into the test tube, add 1.5 ml of distilled water, and work out the content of soluble sugar in the same way as the standard curve. The amount of solution and water in each test tube Pipe number 0 1-2 3-4 5-6 7-8 9-10 1.100μg/L sugar solution 0.20 0.40 0.60 1.0 2. water/ml 2.0 1.8 1.6 1.4 1.2 1.0 3. Soluble sugar content/μ g 0 20 40 60 80 100 Determination of malondialdehyde: thiobarbituric acid method. Fresh leaves were cut to pieces, 0.5 g was weighed, 5% TCA5 ml was added, and the homogenate obtained after grinding was centrifuged at 3 000 r/rain for 10 rain. Take 2 ml supernatant, add 0.67% TBA 2 ml, mix, boil in 100 water bath for 30 rain, cool and centrifuge again. Using 0.67% TBA solution as blank, the OD values at 450, 532 and 600 nm were determined. Methods for analysis and testing of plant hormones (GA3, ABA, CK, IAA): 0.1 0.005 g plant samples were taken and ground in liquid nitrogen. 500μl methanol was extracted overnight at 4℃. Centrifuge the sample and freeze-dry the supernatant. 30μl10%% CH3CN dissolved the sample. 10μl of sample solution was analyzed by HPLC. The external standard method was used to quantify plant hormones. Standard plant hormones were purchased from sigma Company. See (Ruan Xiao, Wang Qiang, et al., 2000, Journal of Plant Physiology.26 (5), 402-406) for analysis methods.
CHEN Yaning, HAO Xingming
This data is from the central station of environmental monitoring in gansu province. The data includes three observation elements, namely sulfur dioxide, nitrogen dioxide and inhalable particles, which are published on the network. The data format is a text file. The first column is the city name, the second column is sulfur dioxide, the third column is nitrogen dioxide, the fourth column is pm10, and the fifth column is the observation date. The data included lanzhou, jiayuguan, jinchang, baiyin, tianshui, qingyang, pingliang, dingxi, longnan, wuwei, zhangye, jiuquan and linxia. This data will be updated automatically and continuously according to the data source.
Gansu environmental monitoring center station
In the lower reaches of Tarim River, groundwater is the only water source to maintain the survival of natural vegetation. The change of groundwater level directly affects the growth and decline of plants and controls the evolution and composition of plant communities. Strengthening the research on chemical characteristics of groundwater is an important content of water resources quality evaluation, which is of great significance to the utilization mode, sustainable development, management and protection and construction of ecological environment of watershed water resources. At fixed points and on a regular basis, 40 groundwater level monitoring wells in the lower reaches of the Tarim River were collected with groundwater samples, sealed and sent to the laboratory for chemical analysis. The analysis content includes 13 indexes including salinity, pH, CO3=, HCO3-, Cl-, SO4=, Ca++, Mg++, Na+, K+, etc. The analysis methods are as follows: (1) Salinity: gravimetric method; (2) Total alkalinity, HCO3- and CO3=: double indicator titration; (3) Cl-: silver nitrate titration; (4) SO4 =: EDTA volumetric method and barium chromate photometric method; (5) Total hardness: EDTA volumetric method; (6) Ca++, Mg++: EDTA volumetric method and atomic absorption spectrophotometry;
CHEN Yaning, HAO Xingming
The dataset of ground truth measurements synchronizing with airborne Polarimetric L-band Multibeam Radiometer (PLMR) mission was obtained in upper reaches of the Heihe River Basin on 1 August, 2012. PLMR is a dual-polarization (H/V) airborne microwave radiometer with a frequency of 1.413 GHz, which can provide multi-angular observations with 6 beams at ±7º, ±21.5º and ±38.5º. The PLMR spatial resolution (beam spot size) is approximately 0.3 times the altitude, and the swath width is about twice the altitude. The measurements were conducted along two transects respectively located at the west and east branches of the Babaohe River and two sampling plots in the A’rou foci experimental area. Along the transects, soil moisture was sampled at every 50 m in the west-east direction. In order to keep the ground measurements following the airborne mission as synchronous as possible in temporal, measurements were made discontinuously. In the A’rou foci experimental area, two sampling plots were identified with areas of 1.5 km × 0.6 km and 0.85 km × 0.6 km. In each plot, soil moisture was sampled at every 50 m in the west-east direction and 100 m in the north-south direction. Steven Hydro probes were used to collect soil moisture and other measurements. Concurrently with soil moisture sampling, vegetation properties were measured at some typical sampling plots. Observation items included: Soil parameters: volumetric soil moisture (inherently converted from measured soil dielectric constant), soil temperature, soil dielectric constant, soil electric conductivity. Vegetation parameters: biomass, vegetation water content, canopy height. Data and data format: This dataset includes two parts of measurements, i.e. soil and vegetation parameters. The former is as shapefile, with measured items stored in its attribute table. The measured vegetation parameters are recorded in an Excel file.
LI Xin, MA Mingguo, WANG Shuguo
This dataset includes one scene acquired on (yy-mm-dd hh:mm, BJT) 2012-07-06 06:30, covering the artificial oasis eco-hydrology experimental area of the Heihe River Basin. This datum was acquired at Stripmap-Quad mode with product level of SLC, and this image includes VV, VH, HH and HV polarization with a spatial resolution of 8 m. Radarsat-2 dataset was acquired from the Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences (Courtesy: Dr. Chen Quan).
the Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences
This dataset includes one scene acquired on (yy-mm-dd) 2012-09-06, covering the natural oasis eco-hydrology experimental area in the lower reaches of the Heihe River Basin. This datum contains panchromatic and multi-spectral bands, with spatial resolution of 2.5 m and 10 m, respectively. The data product level of this image is Level 1. QuickBird dataset was acquired through purchase.
China Centre for Resources Satellite Data and Application
The map is "1:4 Million Ice, Snow and Frozen Soil Map of China" compiled by Mr. Shi Yafeng and Mr. Meadson. The working map compiled by the map is "Chinese Pinyin Edition of the People's Republic of China", which retains the water system and mountain annotation of the map and adds some mountain annotation. The compilation of frozen soil map is based on the actual data of frozen soil survey and exploration, interpretation of remote sensing data, temperature conditions and topographic characteristics that affect the formation and distribution of frozen soil. The height of glacier snow line is expressed by isolines. Seasonal snow accumulation and seasonal icing are based on the data of 1600 meteorological observation stations and the results of many years of investigation in China. They are expressed by isoline notation and symbols. The selection of cold (periglacial) phenomena is a representative and schematic representation observed on the spot. The boundary line between permafrost and non-permafrost is mapped by calculation based on the field data, and its comprehensive degree is relatively high (Tö pfer, 1982) "China Ice and Snow Frozen Soil Map" reflects the scale, types and characteristics of distribution of glaciers, snow cover, frozen soil and periglacial, as well as its value in scientific research and the prospect of utilization and prevention in production practice. It shows our achievements in glacier and frozen soil research in the past 30 years.
SHI Yafeng, MI Desheng
In the lower reaches of Tarim River, groundwater is the only water source to maintain the survival of natural vegetation. The change of groundwater level directly affects the growth and decline of plants and controls the evolution and composition of plant communities. Strengthening the research on chemical characteristics of groundwater is an important content of water resources quality evaluation, which is of great significance to the utilization mode, sustainable development, management and protection and construction of ecological environment of watershed water resources. Groundwater level data: In order to understand the change of groundwater level in the process of water conveyance in the lower reaches of the Tarim River, nine groundwater monitoring sections (Figure 1) have been established along the water conveyance channel of the lower reaches of the Tarim River-Qiwenkuoer River. Each section has a spacing of about 20 km. Below Daxi Haizi Reservoir, there are 9 sections such as Akdun (A), Yahefu Mahan (B), Yingsu (C), Abodah Le (D), Khaldayi (E), Tuguemaile (F) and Arakan (G), Yigan Buma (H) and Kaogan (1). Among them, the spacing of the last three sections is 45 km. In the horizontal direction, one underground water level monitoring well (well depth 8-17 m) is arranged at intervals of 100 m or 200 m in each section, and a total of 40 underground water monitoring wells are arranged to monitor the underground water level, water and salt dynamic changes and the influence range on the underground water level in each section during the water delivery process to the lower reaches of Tarim River. The monitoring frequency is once a month, and the monitoring frequency is increased during the water delivery process. Groundwater level data are monitored by conductivity method. Observation sections include: 1. Akerdun Section in Lower Reaches of Tarim River 2. Yahefu Mahan Section in Lower Reaches of Tarim River 3. Yingsu Section in Lower Reaches of Tarim River 4. Abodah-Le Section in Lower Reaches of Tarim River 5. Karadayi Section in Lower Reaches of Tarim River 6. Tuguemaile Section in Lower Reaches of Tarim River 7. Arakan Section in Lower Reaches of Tarim River 8. The lower reaches of Tarim River are not as good as the Ma section 9. Kaogan Section in Lower Reaches of Tarim River
CHEN Yaning, HAO Xingming
This dataset includes one scene acquired on (yy-mm-dd) 2012-05-12, covering the Pailugou catchment. This datum is of panchromatic bands, with spatial resolution of 0.5 m. The data product level of this image is L2. WorldView dataset was acquired through purchase.
China Centre for Resources Satellite Data and Application
This dataset includes 44 scenes, covering the whole Heihe River Basin, which were acquired on (yy-mm-dd) 2012-08-25, 2012-09-03, 2012-09-08, 2012-09-13, 2012-09-18, 2012-09-23, 2012-09-28, 2012-10-03, 2012-10-13, 2012-10-18, 2012-10-22, 2012-11-01, 2012-11-11, 2012-11-21. The data are of multi-spectral bands with data product of Level 1. The spatial resolution is 1 m. ZY-3 dataset was acquired from purchase.
China Centre for Resources Satellite Data and Application
The data format is word table, and the monitoring indexes include: Na +, K +, Mg2 +, Ca2 +, Sr2 + (ppb), Ba2 + (ppb), F -, Cl -, Br -, NO3 -, hpo42 -, SO42 -, HCO3 -. Sampling points include: zhangshandi well water, Maocun, Shanwan clastic rock CF1, langshiunderground River, Shanwan laolongshui, jilaigushuxia No.1 spring, jilaigushu2 spring, jilaigushu3 spring, jilaigushu, jilaigusho, etc.
WANG Zengyin
This dataset includes one scene acquired on (yy-mm-dd) 2012-07-25, covering the natural oasis eco-hydrology experimental area in the lower reaches of the Heihe River Basin. This datum contains panchromatic and multi-spectral bands, with spatial resolution of 0.6 m and 2.4 m, respectively. The data product level of this image is Level 2A. QuickBird dataset was acquired through purchase.
LI Xin
Photosynthesis of Populus euphratica is mainly affected by atmospheric CO2 concentration, intercellular CO2 concentration, photosynthetic active radiation and leaf temperature when groundwater level is deep and shallow, but with the decrease of groundwater level, atmospheric CO2 concentration and photosynthetic active radiation become the main factors limiting photosynthesis of Populus euphratica. This is because when the groundwater depth is low, the groundwater supply is sufficient, and the leaves are not limited by the water supply. When the photosynthetic effective radiation is strong, the air temperature and leaf temperature are relatively high, and the relative humidity of the air is small. At this time, the photosynthesis and transpiration are both strong. Stomata mainly adapt to strong transpiration by increasing stomatal conductance, i.e. reducing stomatal resistance. At the same time, CO2 in the air continuously enters cells through open stomata, and becomes the raw material for photosynthesis together with intercellular CO2, thus causing the decrease of CO2 concentration in the air and intercellular space, which is the CO2 supply limitation that often causes photosynthesis inhibition in photosynthesis. However, when subjected to water stress, the supply of CO2 is no longer the main reason for limiting photosynthesis. When the photosynthetic effective radiation increases, the net photosynthetic rate, transpiration rate and stomatal conductance all increase. When the supply of CO2 concentration is relatively sufficient, photosynthesis will be slowed down due to the shortage of water, another necessary raw material for photosynthesis. Water use efficiency and water productivity of plants are of great practical significance for measuring and screening species in arid regions. The flow rate was 400μmol/ s and the leaf temperature was kept at 26°C using the L I-6400 portable photosynthesis analyzer, the CO2 concentration in the reference chamber was kept at 360μmol/ mol or 720μmol/ mol using the CO2 injection system, and the photosynthetically active radiation (PAR) was set at 2000,1500,1200,1000,500,300,50,0 μ mol/(m2) using the 6400-02B L ED light source. s) 。 Twelve healthy and mature leaves were selected from the east, south, west and north of each Populus euphratica to the middle and upper parts respectively, from 8 :00 to 20 :00, and photosynthetic apparatus Li 6400 (Li 6400, LiCOR, Lincoln, NE, USA) respectively measured the net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (gs) and other gas exchange parameters of each leaf, simultaneously measured the atmospheric CO2 concentration (Ca), intercellular CO2 concentration (Ci), photosynthetic effective radiation (Pa r), atmospheric temperature (T a), leaf surface temperature (Tl), air relative humidity (RH) and other parameters, and repeated readings for each leaf 3 times. Water use efficiency (WUE) = Pn/ Tr, stomatal limitation (Ls )= 1-Ci/Ca.
CHEN Yaning, HAO Xingming
This dataset includes five scenes, covering the artificial oasis eco-hydrology experimental area of the Heihe River Basin, which were acquired on (yy-mm-dd) 2012-04-05, 2012-04-21, 2012-05-07, 2012-06-24, 2012-07-10. The data were all acquired around 11:50 (BJT) with data product of Level 2. Landsat ETM+ dataset was downloaded from http://glovis.usgs.gov/.
United States Geological Survey (USGS) UitedStateGeologicalSurvey UitedStateGeologicalSurvey
This dataset includes three scenes, covering the artificial oasis eco-hydrology experimental area of the Heihe River Basin, which were acquired on (yy-mm-dd hh:mm, BJT) 2012-07-25 07:12, 2012-07-28 19:55, 2012-08-02 07:12. The data were all acquired at PingPong mode with product level of SLC, and these three images are of VV/VH, HH/HV and VV/VH polarization, respectively. COSMO-SkyMed dataset was acquired from Italian Space Agency (ASI) “COSMO-SkyMed project 1720: HYDROCOSMO” (Courtesy: Prof. Shi Jiancheng from the State Key Laboratory of Remote Sensing Science of China).
Agenzia Spaziale Italiana (ASI)
This dataset includes 12 scenes, covering the artificial oasis eco-hydrology experimental area of the Heihe River Basin, which were acquired on (yy-mm-dd) 2012-05-30, 2012-06-15, 2012-06-24, 2012-07-10, 2012-08-02, 2012-08-11, 2012-08-18, 2012-08-27, 2012-09-03, 2012-09-12, 2012-09-19, 2012-09-28. The data were all acquired around 12:00 (BJT) at Level 1A, i.e., without atmospheric and geometric correction. ASTER dataset was purchased from Japan Aerospace Exploration Agency (JAXA).
Japan Aerospace Exploration Agency (JAXA)
Ⅰ. this data Compilation: Lanzhou Desert Research Institute, Chinese Academy of Sciences Publication: Map Publishing House, Map Printing House Issue: Xinhua Bookstore Beijing Publishing House Ⅱ. The 1: 1.5 million Taklimakan Desert Aeolian Landform Map includes: 1. aeolian _ landform _ taklimakan _ 150 (aeolian landform) 2, height (dune height) 3, lake (lake) 4river1, 2, 3 (river), 5, road1, 2, 3 (road) Ⅲ. aeolian landform attribute fields: Aeolian_c (attribute), Aeolian_ (English control), Code (attribute code) Classification codes of geomorphic data attributes are as follows: (a), sand landform types 111. Ridge-shaped Compound Sand Mountain 112. Compound crescent dunes and dune chains 113. Pyramid dunes 114. Crescent dunes and dune chains 115, lattice sand dune and lattice sand dune chain 116, wind erosion residual hills 117. Compound Sand Ridge 118. Dome dunes 119. Fish Scale Sand Dunes 120, crescent sand ridges and linear sand ridges 121, red willow sandbags 122. Gobi (b) Sand dune height types 211, less than 10 meters 212, 10-25m 213, 25-50m 214, 50-100m 215, more than 100 meters (3) Other types 311, woodland and shrub forest 312. Artificial Oasis 313. Saline-alkali Land and Swamp Iv. projection information: Angular Unit: Degree (0.017453292519943295) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Beijing_1954 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000
WANG Jianhua
The scanned picture of the Map of Snow Ice and Frozen Ground in China (1:4,000,000) (Shi Yafeng, Meidesheng, 1988) is geometrically corrected and then digitized in the data set, and by taking altitude and latitude into account in combination with the continuity of permafrost, the frozen soil is divided into the predominant permafrost of high-latitude permafrost, island talik permafrost and island permafrost; high-altitude permafrost and mountain permafrost (including Altai, Tianshan Mountain, Qilian Mountain, Hengduan, the Himalayas and Taibai Mountain in East China, Huanggangliang and Changbai Mountain), and the plateau permafrost (the Tibetan Plateau), which is divided into predominant permafrost and island permafrost; and seasonal frozen soil, instantaneous frozen soil and nonfrozen areas.
SHI Yafeng, MI Desheng
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn