The SZIsnow dataset was calculated based on systematic physical fields from the Global Land Data Assimilation System version 2 (GLDAS-2) with the Noah land surface model. This SZIsnow dataset considers different physical water-energy processes, especially snow processes. The evaluation shows the dataset is capable of investigating different types of droughts across different timescales. The assessment also indicates that the dataset has an adequate performance to capture droughts across different spatial scales. The consideration of snow processes improved the capability of SZIsnow, and the improvement is evident over snow-covered areas (e.g., Arctic region) and high-altitude areas (e.g., Tibet Plateau). Moreover, the analysis also implies that SZIsnow dataset is able to well capture the large-scale drought events across the world. This drought dataset has high application potential for monitoring, assessing, and supplying information of drought, and also can serve as a valuable resource for drought studies.
WU Pute, TIAN Lei, ZHANG Baoqing
The mass loss of the Greenland ice sheet has been the main contributor to global sea level rise in recent decades. Under the trend of global warming, the Greenland ice sheet is melting faster. It is of great scientific significance to explore the causes of mass loss and its response to climate change. Based on the MEaSUREs Greenland groundingline and the basin boundaries, we discretize the groundingline, combine the MEaSUREs annual ice velocity data from 1985 to 2015 with the BedMachine v3 ice thickness data, and vectorially calculate the ice discharge at each flux gate of the groundingline. We use the surface mass balance data of RACMO2.3p2 model to spatially calculate the surface mass balance of each basin, and combined it with the ice discharge results to obtain the Greenland ice sheet mass balance data set (1985-2015). The data set includes the mass balance results of each basin of the Greenland ice sheet in the year 1985, 2000 and 2015, and the annual ice velocity data, ice thickness and annual ice discharge corresponding to the location of each flux gate. The data set realizes the fine evaluation of ice flux at the groundingline, and reflect the changes and spatial distribution characteristics of the mass balance of each basin of the Greenland ice sheet in recent 30 years. It provides basic data for the subsequent fine change evaluation and prediction of the mass balance of the Greenland ice sheet and the exploration of the mechanism of ice sheet loss.
LIN Yijing, CHENG Xiao
The Antarctic ice sheet is one of the largest potential sources of global sea level rise. Accurately determining the mass budget of the ice sheet is the key to understand the dynamic changes of the Antarctic ice sheet. It is very important to understand the evolution process of the ice sheet and accurately predict the future global sea level rise. Based on the MEaSUREs Antarctic groundingline and the basin boundaries, we discretize the groundingline, combine the MEaSUREs and RAMP annual ice velocity data from 1985 to 2015 with the BedMachine ice thickness data, and vectorially calculate the ice discharge at each flux gate of the groundingline. We use the surface mass balance data of RACMO2.3p2 model to spatially calculate the surface mass balance of each basin, and combined it with the ice discharge results to obtain the Antarctic ice sheet mass balance data set (1985-2015). The data set includes the mass balance results of each basin of the Antarctic ice sheet in the year 1985, 2000 and 2015, and the annual ice velocity data, ice thickness and annual ice discharge corresponding to the location of each flux gate. The data set realizes the fine evaluation of ice flux at the groundingline, and reflect the changes and spatial distribution characteristics of the mass balance of each basin of the Antarctic ice sheet in recent 30 years. It provides basic data for the subsequent fine change evaluation and prediction of the mass balance of the Antarctic ice sheet and the exploration of the mechanism of ice sheet loss.
LIN Yijing, CHENG Xiao
Snow, ice, and glaciers have the highest albedo of any part of Earth's surface. The increase in melting of the polar ice sheet results in a rapid and sequential decrease in albedo and subsequently influences the global energy balance. The hydrological system derived from surface melt and basal meltwater will affect the dynamic stability of ice sheet and therefore mass balance. The dataset combined microwave radiometer product and optical albedo product, the daily, winter (June-August) averages and July averages of the former are used for layer-stacking, then Gram-Schmidt Spectral Sharpening was adapted to fuse the layer-stacking results with MODIS GLASS albedo product. The spatial resolution of fusion-results has been downscaled from 25 km to 0.05˚. By employing a threshold-based melt detection approach for each fusion-results pixel, Antarctic ice sheet surface melt daily product for 1985-1986, 2000-2001, 2015-2016 (DSSMIS) was generated. The spatial resolution of DSSMIS is higher than that of published data sets at home and abroad. Combined with the advantages of radiometer and albedo data, the spatial details characteristics are enhanced and consistent with the extraction range of the original radiometer products, effectively reducing the noise of the radiometer. It better reflects the melting gradient of mountainous area, groundline area and ice shelf over time, DSSMIS has a higher accuracy. DSSMIS’s data type is integer, where 1 is melted, 0 is not melted, 255 is masked area besides Antarctic ice sheet, and the data set is stored as *.nc.
WEI Siyi,
The maximum freezing depth is an important index of the thermal state of seasonal frozen ground. Due to global warming, the maximum freezing depth of seasonal frozen ground continues to decline. The maximum freezing depth data set of five provinces in Northwest China, Tibet and surrounding areas from 1961 to 2020 was released, with a spatial resolution of 1 km. The data set is a support vector regression (SVR) model based on the measured data of maximum freezing depth from 2001 to 2010 and spatial environmental variables, which simulates the maximum freezing depth in Northwest China, Tibet and surrounding areas from 1961 to 2020. The validation results show that the SVR model has good spatial generalization ability, and there is a high consistency between the predicted value and the observed value of the maximum soil freezing depth. The determination coefficients of the simulation results in the four periods of 1980s, 1990s, 2000s and 2010s are 0.77, 0.83, 0.73 and 0.71 respectively. The percentile range of the prediction results shows that the simulation results have good stability. Based on this data set, it is found that the maximum soil freezing depth in Northwest China continues to decline, among which Qinghai has the fastest decline rate, with an average decline of 0.53 cm every decade. The data set provides data support for the study of seasonal frozen soil in Northwest China, High Mountain Asia and the Third Pole.
WANG Bingquan, RAN Youhua
Based on 11 well-acknowledged global-scale microwave remote sensing-based surface soil moisture products, and with 9 main quality impact factors of microwave-based soil moisture retrieval incorporated, we developed the Remote Sensing-based global Surface Soil Moisture dataset (RSSSM, 2003~2020) through a complicated neural network approach. The spatial resolution of RSSSM is 0.1°, while the temporal resolution is approximately 10 days. The original dataset covered 2003~2018, but now it has been updated to 2020. RSSSM dataset is outstanding in terms of temporal continuity, and has full spatial coverage except for snow, ice and water bodies. The comparison against the global-scale in-situ soil moisture measurements indicates that RSSSM has a higher spatial and temporal accuracy than most of the frequently-used global/regional long-term surface soil moisture datasets. In addition, although RSSSM is remote sensing based, without the incorporation of any precipitation data or records, its interannual variation generally conforms with that of precipitation (e.g., the GPM IMERG precipitation data) and Standardized Precipitation Evapotranspiration Index (SPEI). Moreover, RSSSM can also reflect the impact of human activities, e.g., urbanization, cropland irrigation and afforestation on soil moisture changes to some degree. The data is in ‘Tiff’ format, and the size after compression is 2.48 GB. The relevant data describing paper has been published in the Journal ‘Earth System Science Data’ in 2021.
CHEN Yongzhe, FENG Xiaoming, FU Bojie
This dataset is derived from the paper: Xiaodan Wu, Kathrin Naegeli, Valentina Premier, Carlo Marin, Dujuan Ma, Jingping Wang, Stefan Wunderle. (2021). Evaluation of snow extent time series derived from AVHRR GAC data (1982-2018) in the Himalaya-Hindukush. The Cryosphere, 15,4261-4279. ln this paper, the performance of the AVHRR GAC snowpack product in the Hindu Kush Himalayas is comprehensively evaluated for the first time on a long time scale (1982-2018) based on ground station data, Landsat data, and MODIS snowpack product, respectively, including the consistency of the accuracy/precision of the product over a long time series, and the consistency of the product with Landsat and MODIS snowpack data in terms of spatial distribution. The main factors affecting the accuracy of the AVHRR GAC snowpack product are also revealed.
WU Xiaodan
The observation data are from Tajikistan Pamir Plateau glacier observation station built by Urumqi desert Meteorological Institute of China Meteorological Administration in 2019, including air temperature and humidity, atmospheric pressure, wind speed and direction, precipitation, snow depth and other data. The data period is from November 1, 2019 to November 30, 2020. The *. Xlsx format processed by MS office has good data quality. This data can provide a reference for the study of glacier ablation and its potential impact on hydrological characteristics, water resources and ecological environment. Meteorological observation elements are accumulated and processed into climate data to provide precious data support for weather forecast and economic activities. It is widely used in agriculture, forestry, industry, transportation, military, hydrology, medical and health, environmental protection and other departments.
HUO Wen
Central Asia (referred to as CA) is among the most vulnerable regions to climate change due to the fragile ecosystems, frequent natural hazards, strained water resources, and accelerated glacier melting, which underscores the need of high-resolution climate projection datasets for application to vulnerability, impacts, and adaption assessments. We applied three bias-corrected global climate models (GCMs) to conduct 9-km resolution dynamical downscaling in CA. A high-resolution climate projection dataset over CA (the HCPD-CA dataset) is derived from the downscaled results, which contains four static variables and ten meteorological elements that are widely used to drive ecological and hydrological models. The static variables are terrain height (HGT, m), land use category (LU_INDEX, 21 categories), land mask (LANDMASK, 1 for land and 0 for water), and soil category (ISLTYP, 16 categories). The meteorological elements are daily precipitation (PREC, mm/day), daily mean/maximum/minimum temperature at 2m (T2MEAN/T2MAX/T2MIN, K), daily mean relative humidity at 2m (RH2MEAN, %), daily mean eastward and northward wind at 10m (U10MEAN/V10MEAN, m/s), daily mean downward shortwave/longwave flux at surface (SWD/LWD, W/m2), and daily mean surface pressure (PSFC, Pa). The reference and future periods are 1986-2005 and 2031-2050, respectively. The carbon emission scenario is RCP4.5. The results show the data product has good quality in describing the climatology of all the elements in CA, which ensures the suitability of the dataset for future research. The main feature of projected climate changes in CA in the near-term future is strong warming (annual mean temperature increasing by 1.62-2.02℃) and significant increase in downward shortwave and longwave flux at surface, with minor changes in other elements. The HCPD-CA dataset presented here serves as a scientific basis for assessing the impacts of climate change over CA on many sectors, especially on ecological and hydrological systems.
QIU Yuan QIU Yuan
The observation data are from the Khunjerab gradient meteorological observation and test station on Pamir Plateau built by Urumqi desert Meteorological Institute of China Meteorological Administration in 2017, including the gradient data of various meteorological elements. The data period is from November 18, 2019 to October 8, 2021. The *. Xlsx format obtained by using toa5 merging tool and MS office has good data quality. This data can provide support for the research on the law of surface radiation and energy budget in Pamir Plateau and China Pakistan Economic Corridor, and provide reference basis for land surface process. Khunjerab meteorological station is located in the Pamir Plateau of China, with an altitude of 4600m, close to the border between China and Pakistan, and the data is extremely precious.
HUO Wen
Surface soil moisture (SSM) is a crucial parameter for understanding the hydrological process of our earth surface. Passive microwave (PM) technique has long been the primary choice for estimating SSM at satellite remote sensing scales, while on the other hand, the coarse resolution (usually >~10 km) of PM observations hampers its applications at finer scales. Although quantitative studies have been proposed for downscaling satellite PM-based SSM, very few products have been available to public that meet the qualification of 1-km resolution and daily revisit cycles under all-weather conditions. In this study, therefore, we have developed one such SSM product in China with all these characteristics. The product was generated through downscaling of AMSR-E and AMSR-2 based SSM at 36-km, covering all on-orbit time of the two radiometers during 2003-2019. MODIS optical reflectance data and daily thermal infrared land surface temperature (LST) that have been gap-filled for cloudy conditions were the primary data inputs of the downscaling model, in order to achieve the “all-weather” quality for the SSM downscaling outcome. Daily images from this developed SSM product have achieved quasi-complete coverage over the country during April-September. For other months, the national coverage percentage of the developed product is also greatly improved against the original daily PM observations. We evaluated the product against in situ soil moisture measurements from over 2000 professional meteorological and soil moisture observation stations, and found the accuracy of the product is stable for all weathers from clear sky to cloudy conditions, with station averages of the unbiased RMSE ranging from 0.053 vol to 0.056 vol. Moreover, the evaluation results also show that the developed product distinctly outperforms the widely known SMAP-Sentinel (Active-Passive microwave) combined SSM product at 1-km resolution. This indicates potential important benefits that can be brought by our developed product, on improvement of futural investigations related to hydrological processes, agricultural industry, water resource and environment management.
SONG Peilin, ZHANG Yongqiang
Kara batkak glacier meteorological station in West Tianshan, Kyrgyzstan (42 ° 9'46 ″ n, 78 ° 16'21 ″ e, 3280m). The observation data include hourly meteorological elements (hourly rainfall (mm), instantaneous wind direction (°), instantaneous wind speed (M / s), 2-minute wind direction (°), 2-minute wind speed (M / s), 10 minute wind direction (°), 10 minute wind speed (M / s), wind direction at maximum wind speed (°), maximum wind speed (M / s), maximum wind speed time, wind direction at maximum wind speed (°), and maximum wind speed (M / s) , maximum wind speed time, maximum instantaneous wind speed and wind direction in minutes (°), maximum instantaneous wind speed in minutes (M / s), air pressure (HPA), maximum air pressure (HPA), maximum air pressure occurrence time, minimum air pressure (HPA), minimum air pressure occurrence time). Meteorological observation elements, after accumulation and statistics, are processed into climate data to provide important data for planning, design and research of agriculture, forestry, industry, transportation, military, hydrology, medical and health, environmental protection and other departments.
HUO Wen
The temperature humidity index (THI) was proposed by J.E. Oliver in 1973. Its physical meaning is the temperature after humidity correction. It considers the comprehensive impact of temperature and relative humidity on human comfort. It is an important index to measure regional climate comfort. On the basis of referring to the existing classification standards of physiological and climatic evaluation indexes, combined with the natural and geographical characteristics of the Qinghai Tibet Plateau and facing the needs of human settlements suitability evaluation in the Qinghai Tibet Plateau, the temperature and humidity index and its suitability zoning results of the Qinghai Tibet Plateau (more than 3000 meters) are developed (including unsuitable, critical suitable, general suitable, relatively suitable and highly suitable).
LI Peng, LIN Yumei
The data set mainly includes the ice observation frequency (ICO) of north temperate lakes in four periods from 1985 to 2020, as well as the location, area and elevation of the lakes. Among them, the four time periods are 1985-1998 (P1), 1999-2006 (P2), 2007-2014 (P3) and 2015-2020 (P4) respectively, in order to improve the "valid observation" times in the calculation period and improve the accuracy. The ICO of the four periods is calculated by the ratio of "icing" times and "valid observation" times counted by all Landsat images in each period. Other lake information corresponds to the HydroLAKEs data set through the "hylak_id" column in the table. In addition, the data only retains about 30000 lakes with an area of more than 1 square kilometer, which are valid for P1-P4 observation. The data set can reflect the response of Lake icing to climate change in recent decades.
WANG Xinchi
Under the funding of the first project (Development of Multi-scale Observation and Data Products of Key Cryosphere Parameters) of the National Key Research and Development Program of China-"The Observation and Inversion of Key Parameters of Cryosphere and Polar Environmental Changes", the research group of Zhang, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, developed the snow depth downscaling product in the Qinghai-Tibet Plateau. The snow depth downscaling data set for the Tibetan Plateau is derived from the fusion of snow cover probability dataset and Long-term snow depth dataset in China. The sub-pixel spatio-temporal downscaling algorithm is developed to downscale the original 0.25° snow depth dataset, and the 0.05° daily snow depth product is obtained. By comparing the accuracy evaluation of the snow depth product before and after downscaling, it is found that the root mean square error of the snow depth downscaling product is 0.61 cm less than the original product. The details of the product information of the Downscaling of Snow Depth Dataset for the Tibetan Plateau (2000-2018) are as follows. The projection is longitude and latitude, the spatial resolution is 0.05° (about 5km), and the time is from September 1, 2000 to September 1, 2018. It is a TIF format file. The naming rule is SD_yyyyddd.tif, where yyyy represents year and DDD represents Julian day (001-365). Snow depth (SD), unit: centimeter (cm). The spatial resolution is 0.05°. The time resolution is day by day.
YAN Dajiang, MA Ning, MA Ning, ZHANG Yinsheng
The data set records the statistical data of grassland type area and livestock carrying capacity in Haidong area of Qinghai Province in 1988 and 2012. The data are classified and counted according to the grassland group code, such as: I represents Alpine dry grassland, II represents mountain dry grassland, III represents Alpine desert, B represents medium grass group, J represents shrub group, etc, For specific grassland group type codes and their corresponding meanings, see "description of grassland group type codes in Qinghai Province. PDF" in the data set. The data are compiled from the grassland station of Qinghai Province and the grassland resources statistics of Qinghai Province issued in 1988 and 2012. The data set contains three data tables, which are: statistical data of grassland area and livestock carrying capacity of various types in Haidong area (1988), statistical data of grassland area and livestock carrying capacity in Haidong area (2012) and description of grassland group code in Qinghai Province. The data table structure is similar. For example, there are 8 fields in the statistical data (2012) of grassland type, area and livestock carrying capacity in Haidong area: Field 1: type code Field 2: grassland type name Field 3: grassland area Field 4: available area of grassland Field 5: average unit yield of fresh grass Field 6: average unit yield of edible fresh grass Field 7: stocking capacity Field 8: grassland type, etc
AGRICULTURAL AND RURAL Department of Qinghai Province
This data set is the global high accuracy global elevation control point dataset, including the geographic positioning, elevation, acquisition time and other information of each elevation control point. The accuracy of laser footprint elevation extracted from satellite laser altimetry data is affected by many factors, such as atmosphere, payload instrument noise, terrain fluctuation in laser footprint and so on. The dataset extracted from the altimetry observation data of ICESat satellite from 2003 to 2009 through the screening criteria constructed by the evaluation label and ranging error model, in order to provide global high accuracy elevation control points for topographic map or other scientific fields relying on good elevation information. It has been verified that the elevation accuracy of flat (slope<2°), hilly (2°≤slope<6°), and mountain (6°≤slope<25°) areas meet the accuracy requirements of 0.5m, 1.5m, and 3m respectively.
XIE Huan, LI Binbin, TONG Xionghua, TANG Hong, LIU Shijie, JIN Yanmin, WANG Chao, YE Zhen, CHEN Peng, XU Xiong, LIU Sicong, FENG Yongjiu
Supported by the Strategic Priority Research Program of the Chinese Academy of Science (XDA19070100). Tao Che, the director of this program, who comes from Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources, CAS. They used machine learning methods combined with multi-source gridded snow depth product data to derive a long-time series over the Northern Hemisphere. Firstly, the applicability of artificial neural network (ANN), support vector machine (SVM) and random forest (RF) method in snow depth fusion are compared. It is found that random forest method shows strong advantages in snow depth data fusion. Secondly, using the random forest method, combined with remote sensing snow depth products such as AMSR-E, AMSR-2, NHSD and GlobSnow and reanalysis data such as ERA-Interim and MERRA-2. These gridded snow depth products and environmental factor variables are used as the input independent variables of the model. In situ observations of China Meteorological Station (945), Russia Meteorological Station (620), Russian snow survey data (514), and global historical meteorological network (41261) are used as reference truth to train and verify the model. The daily gridded snow depth dataset of the snow hydrological year from 1980 to 2019 (September 1 of the previous year to May 31 of the current year) is prepared on the cloud platform provided by the CASEarth. Since the passive microwave brightness temperature data from 1980 to 1987 is the data of every other day, there will be a small number of missing trips in the data during this period. Using the ESM-SnowMIP and independent ground observation data for verification, the quality of the fusion data set has been improved. According to the comparison between the ground observation data and the snow depth products before fusion, the determination coefficient (R2) of the fusion data is increased from 0.23 (GlobSnow snow depth product) to 0.81, and the corresponding root mean square error (RMSE) and mean absolute error (MAE) are also reduced to 7.7 cm and 2.7 cm.
CHE Tao, HU Yanxing, DAI Liyun, XIAO Lin
This data set consists of tree ring carbon and oxygen data in East Asian monsoon region and Qilian Mountain region of China. Tree rings in Qilian mountain area include 4 tree cores, the tree species is Sabina przewalskii, and the measured isotopic data is 921. Cellulose was extracted from tree ring logs by chemical treatment, and the obtained cellulose samples were wrapped in a silver cup. The isotopic ratio was measured by Delta V advantage stable isotope mass spectrometer, and the analysis error was less than 0.21 ‰. The experimental analysis was completed in the laboratory of soil structure and minerals, Institute of Geology and Geophysics, Chinese Academy of Sciences. This data has certain significance for the study of paleoclimate in East Asian monsoon region.
XU Chenxi
This data set is composed of tree ring width data of Qilian Mountain region of China in East Asian monsoon region . The tree rings in Qilian mountain contain 52 tree cores, which have 17081 values, the measurement accuracy is 0.01mm, and the tree species is Qilian juniper. The tree ring width was measured by lintab 6 tree ring analyzer, and the cross dating is checked by coffcha program to guarantee that the accuracy of the dating. The experiment analysis was performed in the laboratory of soil structure and minerals, Institute of Geology and Geophysics, Chinese Academy of Sciences. This data has certain significance for the study of paleoclimate in the edge of East Asian monsoon region .
XU Chenxi
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn