Glacier is the supply water source of rivers in the western mountainous area, and it is one of the most basic elements for people to survive and develop industry, agriculture and animal husbandry in the western region. Glaciers are not only valuable fresh water resources, but also the source of serious natural disasters in mountainous areas, such as sudden ice lake outburst flood, glacier debris flow and ice avalanche. Glacier hydrological monitoring is the basis for studying the characteristics of glacier melt water, the replenishment of glacier melt water to rivers, the relationship between glacier surface ablation and runoff, the process of ice runoff and confluence, and the calculation and prediction of floods and debris flows induced by glacier and seasonal snow melt water. Glacial hydrology refers to the water and heat conditions of glacial covered basins (i.e. glacial action areas), that is, the water and heat exchange between glaciers and their surrounding environment, the physical process of water accumulation and flow on the surface, inside and bottom of glaciers, the water balance of glaciers, the replenishment of glacial melt water to rivers, and the impact of water bodies in cold regions on climate change. At present, hydrological monitoring stations are mainly established at the outlet of the river basin to carry out field monitoring《 Glacial water resources of China (1991), hydrology of cold regions of China (2000) and glacial Hydrology (2001) summarize the early studies on glacial hydrology. China has carried out glacier hydrological monitoring on more than 20 glaciers in Tianshan, Karakorum, West Kunlun, Qilian, Tanggula, Nianqing Tanggula, gangrigab, Hengduan and Himalayas. This data set is the monthly runoff data of representative glaciers.
YANG Wei, LI Zhongqin, WANG Ninglian, QIN Xiang
Glacier surface micrometeorology is to observe the wind direction, wind speed, temperature, humidity, air pressure, four component radiation, ice temperature and precipitation at a certain height of the glacier surface. Glacier surface micrometeorology monitoring is one of the important contents of glacier monitoring. It is an important basic data for the study of energy mass balance, glacier movement, glacier melt runoff, ice core and other related model simulation, which lays a foundation for exploring the relationship between climate change and glacier change. Automatic monitoring is mainly carried out by setting up Alpine weather stations on the glacier surface, and portable weather stations can also be used for short-term flow monitoring. In recent years, more than 20 glacier surfaces in Tianshan, West Kunlun, Qilian, Qiangtang inland, Tanggula, Nianqing Tanggula, southeastern Tibet, Hengduan and Himalayas have been monitored. The data set is monthly meteorological data of glacier area and glacier end.
YANG Wei
Meteorological forcing dataset for Arctic River Basins includes five elements: daily maximum, minimum and average temperature, daily precipitation and daily average wind speed. The data is in NetCDF format with a horizontal spatial resolution of 0.083°, covering Yenisy, Lena, ob, Yukon and Mackenzie catchments. The data can be used to dirve hydrolodical model (VIC model) for hydrological process simulation of the Arctic River Basins. The further quality control were made for daily observation data from Global Historical Climatology Network Daily database(GHCN-D), Global Summary of the Day (GSPD),The U.S. Historical Climatology Network (USHCN),Adjusted and homogenized Canadian climate data (AHCCD) and USSR / Russia climate data set (USSR / Russia). The thin plate spline interpolating method, which similar to the method used in PNWNAmet datasets (Werner et al., 2019), was employed to interpolate daily station data to 5min spatial resolution daily gridded forcing data using WorldClim and ClimateNA monthly climate normal data as a predictor.
ZHAO Qiudong, WU Yuwei
The data set consists of four sub tables, which are remote sensing monitoring of Lake area from 2000 to 2019, total lake water storage based on underwater 3D simulation model, Lake area volume equation based on underwater 3D simulation model, and key parameters and results of water storage measurement and Simulation of 24 typical lakes in Qinghai Province. The first sub table is the time series Lake area data from 2000 to 2019 from remote sensing image data monitoring. The third sub table stores the area storage capacity equation of the lake based on the underwater three-dimensional simulation model of the lake. The second sub table is the estimation result by combining the time series Lake area data and the area storage capacity equation, Finally, the key parameters and results of water storage measurement and Simulation of 24 typical lakes in Qinghai Province from 2000 to 2019 are obtained, including simulated water depth, maximum water depth, simulated reference water level and corresponding Lake area of each lake, which are stored in the fourth sub table.
FANG Chun, LU Shanlong, JU Jianting, TANG Hailong
The data include raw sequencing result of plant DNA in surface sediments of 33 lakes in the Qinghai-Tibetan Plateau and arid northwestern China. We used PowerMax Soil Kit of Qiagen company in Germany to extract DNA, then used universal plant primer g-h (Taberlet et et al., 2007) to amplify P6 loop of chloroplast trnL (UAA) intron in the sample. The PCR products were then sent to Fasteris company in Switzerland for the next-generation paired-end sequencing. The sequencing instrument is Illumina Nextseq 550. The data quality score (Q30) is 81.97.
LIU Xingqi, JIA Weihan
Lake salinity is an important parameter of lake water environment, an important embodiment of water resources, and an important part of climate change research. This data is based on the measured salinity data of lakes in the Qinghai Tibet Plateau. The salinity is characterized by the practical salinity unit (PSU), which is converted from the specific conductivity (SPC) measured by the conductivity sensor. ArcGIS software was used to convert the measured data into space vector format. SHP format, and the measured salinity spatial distribution data file was obtained. The data can be used as the basic data of lake environment, hydrology, water ecology, water resources and other related research reference.
ZHU Liping
This dataset provides the in-situ lake water parameters of 124 closed lakes with a total lake area of 24,570 km2, occupying 53% of the total lake area of the TP.These in-situ water quality parameters include water temperature, salinity, pH,chlorophyll-a concentration, blue-green algae (BGA) concentration, turbidity, dissolved oxygen (DO), fluorescent dissolved organic matter (fDOM), and water clarity of Secchi Depth (SD).
ZHU Liping
Greenland digital elevation models (DEMs) are indispensable to fieldwork, ice velocity calculations, and mass change estimations. Previous DEMs have provided reasonable estimations for the entire Greenland, but the time span of applied source data may lead to mass change estimation bias. To provide a DEM with a specific time-stamp, we applied approximately 5.8×108 ICESat-2 observations from November 2018 to November 2019 to generate a new DEM, including the ice sheet and glaciers in peripheral Greenland. A spatiotemporal model fit process was performed at 500 m, 1,2, and 5 km grid cells separately, and the final DEM was posted at the modal resolution of 500 m. A total of 98% of the grids were obtained by the model fit, and the remaining DEM gaps were estimated via the ordinary Kriging interpolation method. Compared with IceBridge mission data acquired by the Airborne Topographic Mapper (ATM) Lidar system, the ICESat-2 DEM was estimated to have a maximum median difference of -0.48 m. The performance of the grids obtained by model fit and interpolation was similar, which both agreed well with the IceBridge data. DEM uncertainty rises in regions of low latitude and high slope or roughness. Furthermore, the ICESat-2 DEM showed significant accuracy improvements compared with other altimeter-derived DEMs, and the accuracy was comparable to those derived from stereo-photogrammetry and interferometry. Overall, the ICESat-2 DEM showed excellent accuracy stability under various topographic conditions, which can provide a specific time-stamped DEM with high accuracy that will be useful to study Greenland elevation and mass balance changes.
FAN Yubin, KE Changqing, SHEN Xiaoyi
High resolution pollen records from ice cores can indicate the relationship between seasonal vegetation changes and climate indicators. High resolution sporopollen analysis was carried out on the 32 m ice core sediments of Zuopu ice core in Qinghai Tibet Plateau. 117 SPOROPOLLEN ASSEMBLAGES were obtained. All the data are sporopollen percentage data, which are arranged in order of depth.
LV Houyuan
The data consists of three fields: longitude, latitude and lake depth. Using sonar equipment to measure the depth of water on the lake, GPS synchronous measurement of longitude and latitude. The salinity and temperature data of lake water are used to correct the depth data measured by sonar, and the outliers are eliminated. The underwater topographic map of lake can be formed by interpolation of water depth data. Using the underwater topographic map, the water storage of lakes can be calculated and the total water quantity of lakes in the Qinghai Tibet Plateau can be evaluated. The underwater topographic map combined with remote sensing data can also be used to study the characteristics and influencing factors of lake water quantity variation in the Qinghai Tibet Plateau, which is an important part of the study of water quantity variation in the Asian water tower.
ZHU Liping
1) Data content It includes the observation year, latitude and longitude, altitude, ecosystem type and soil layer (soc0-100 (kgcm-2); 0-100 represents soil layer), underground biomass content. 2) Data sources This part of the data is obtained from the literature, specific literature sources refer to the documentation. 3) Data quality description The data cover a wide range, including comprehensive indicators, showing the content of soil organic carbon under different soil layers, with high integrity and accuracy, which can meet the estimation of soil carbon storage of grassland in Qinghai Tibet Plateau. 4) Data application achievements and Prospects It provides basic data for predicting the carbon source sink effect of soil and realizing the sustainable development of ecosystem carbon in the future.
HU Zhongmin
1) Data content It includes the observation year, longitude and latitude, ecosystem type, annual rainfall, drought index, annual net primary productivity, aboveground biomass, underground biomass and other data. 2) Data sources One part is from literature (1980-1995), the other part is from field sampling (2005-2006). 3) Data quality description The data has a long observation year, a large time span, a wide coverage, and many indicators, which has high integrity and accuracy, and can meet the estimation of grassland carbon storage in the Qinghai Tibet Plateau. 4) Data application achievements and Prospects It provides basic data for predicting the carbon source sink effect and realizing the sustainable development of ecosystem carbon in the future.
HU Zhongmin
Glacier thickness is the vertical distance between the glacier surface and the glacier bottom. The distribution of glacier thickness is not only controlled by glacier scale and subglacial topography, but also varies with different stages of glacier response to climate. The data include longitude and latitude, elevation, single point thickness, total ice reserves and instrument type of glacier survey line. The glacier thickness mainly comes from drilling and ground penetrating radar (GPR). The drilling method is to drill holes on the ice surface to the bedrock under the ice, so as to obtain the thickness of the glacier at a single point; Glacier radar thickness measurement technology can accurately measure the continuous distribution of glacier thickness on the survey line, and obtain the topographic characteristics of subglacial bedrock, so as to provide necessary parameters for the estimation of glacier reserves and the study of glacier dynamics The accuracy of glacier drilling data reaches decimeter level. The accuracy of thickness measurement by GPR radar is between 5% and 15% in theory due to the difference of glacier properties and radar signal strength of bottom interface. Glacier thickness is a prerequisite for obtaining information of subglacial topography and glacier reserves. In the numerical simulation and model study of glacier dynamics, glacier thickness is an important basic input parameter. At the same time, glacier reserve is the most direct parameter to characterize glacier scale and glacier water resources. It is not only very important for accurate assessment, reasonable planning and effective utilization of glacier water resources, but also has important and far-reaching significance for regional socio-economic development and ecological security.
WU Guangjian
The dataset of of potential glacial lakes (PGLs) distribution in the Tibetan Plateau and its surrounding (TPS) are vector data (. SHP). The data set contains the ID, area, perimeter, volume and elevation of each PGL. The TPS region was divided into 17 subregions based on the river basins’ borders, including 8 outflow river basins, i.e., the Yellow, Yangtze, Mekong, Salween, Brahmaputra, Ganges, Indus, and Ob river basins, and 9 exorheic river basins, i.e., the Qiangtang, Hexi, Tarim, Qiadam, Junggar, Yili, Syr Darya, Amu Darya, and Mongolia river basins. This data is processed from theGlacier ice thickness distribution dataset (provided by Farinotti et al. (2019)). The grid difference between the initial DEM and the glacier ice thickness distribution was used to produce the DEM without glaciers. The overdeepenings were detected via two steps. First, we filled the depressions of the DEM without glaciers using a hydrology tool in the ArcGIS software. Second, using the filled DEM to subtract the DEM without glaciers, we ascertained the PGLs’ locations, areas, depths, and volumes. The quality of this data set depends on the quality of the original glacier thickness data, and the quality of the ice thickness dataset is the best of all similar data at present. The dataset of of potential glacial lakes distribution in the Tibetan Plateau and its surroundings can provide a new perspective from which to understand the future formation and evolution of glacial lakes in the TPS. It is anticipated that approximately 16,000 PGLs areas of greater than 0.02 km2 will be formed in the TPS, covering an area of 2253.95 ± 1291.29 km2 and holding a water volume of 60.49 ± 28.94 km3, which would contribute to a 0.16 ± 0.08 mm equivalent sea-level rise.
ZHANG Taigang, WANG Weicai, YAO Tandong, GAO Tanguang, AN Baosheng
We compiled the Seismotectonic Map and Seismic Hazard Zonation Map of Central Asia using the ArcGIS platform through data collecting and digitization. The seismotectonic map of Western Asia covers Kazakhstan, Uzbekistan, Kyrgyzstan, Tajikistan and Turkmenistan. The seismotectonic map is replenished with tremendous amount published data and depicts the location, character and name of the seismogenic faults or active faults and the epicenter of earthquakes with M ≥ 5 from 1960 to 2010. The zonation map shows the mean values of peak ground acceleration (PGA) with 10% probability of being exceeded in 50 years. The two maps can not only be used in the research of active faults and seismic risks in Central Asia, but also will be applied to the seismic safety evaluation for infrastructure construction.
LUO Hao
The data set is the basic data of the Qinghai Tibet Plateau in 2015. The original data comes from the National Basic Geographic Information Center, and the data of the Qinghai Tibet plateau region is formed by splicing and clipping the segmented data. The data content includes 1:1 million provincial administrative divisions, 1:1 million roads and 1:250000 water system. The data attributes of administrative divisions include name, code and Pinyin; Road data attributes include: GB, RN, name, rteg and type (basic geographic information classification code, road code, road name, road grade and road type); Water system data attributes include: GB, hydc, name, period (basic geographic information classification code, water system name code, name, season).
YANG Yaping
The data set is based on the NPP simulated by 16 dynamic global vegetation models (TRENDY v8) under S2 Scenario (CO2+Climate) and represents the net primary productivity of the ecosystem. Data was derived from Le Quéré et al. (2019). The range of source data is global, and the Qinghai Tibet plateau region is selected in this data set. Original data is interpolated into 0.5*0.5 degree by the nearest neighbor method in space, and the original monthly scale is maintained in time. The data set is the standard model output data, which is often used to evaluate the temporal and spatial patterns of gross primary productivity, and compared with other remote sensing observations, flux observations and other data.
STEPHEN Sitch
Based on gipl1.0 permafrost spatial distribution model, combined with the existing basic data, including climate change, soil types, and vegetation data, the permafrost and seasonal permafrost characteristics of Sichuan Tibet railway are simulated. The data result is 500m spatial resolution grid, including the maximum depth of permafrost and the maximum freezing depth of seasonal permafrost. The results are verified by drilling data. The data date is 2001-20192041-20602081-2100 (20-year average), in which the water body and glacier area are excluded from the calculation range through the mask (null value). The climate data is monthly mean, other data remain unchanged in the process of simulation, and the spatial resolution is 500m. Data sources and "woeldc" lim:https :// www.worldclim.org/ , DEM and vegetation soil: https://data.tpdc.ac.cn/zh-hans/ ”According to the characteristics of different data sources, the authenticity and consistency of the original data are checked and standardized; The permafrost model is used to simulate the permafrost and seasonal frozen soil. The output results are ground temperature and active layer (maximum frozen depth). The simulation results are verified with the borehole ground temperature. Finally, the spatial data set is mapped by ArcGIS. Make digital processing operation standard. In the process of processing, the operators are required to strictly abide by the operation specifications, and the special person is responsible for the quality review. The data integrity, logical consistency, position accuracy, attribute accuracy, edge connection accuracy and current situation are all in line with the requirements of relevant technical regulations and standards formulated by the State Bureau of Surveying and mapping. The data can provide necessary data support for the later research on the freezing (thawing) depth of the corridor of Sichuan Tibet project.
YIN Guoan
The data set contains the data set (98 ° 29′16″E, 31 ° Based on hobo temperature, moisture and small meteorological station, the monitoring data of shallow ground temperature, moisture and field meteorological elements of 36 ′ 36 ″ n) freeze-thaw landslide and thaw mud flow are obtained through field monitoring. The observation time is between August 31, 2019 and July 14, 2020. Through on-site monitoring of a complete freeze-thaw cycle, the monitoring data of ground temperature, moisture and meteorological elements automatically obtained by on-site sensors are downloaded. Through certain quality control, the data when the sensors are not fully adapted to the soil environment and the system error caused by sensor failure are eliminated. The observation depth of ground temperature is 10cm, 20cm, 40cm, 60cm, 80cm, 100cm, 150cm and 200cm, with a total of 8 layers. The observation depth of water is 20cm, 50cm, 100cm and 200cm, with a total of 4 layers. Meteorological observation elements mainly include temperature, rainfall, wind speed, wind direction and solar radiation. The observation interval is 30 minutes (Note: the maximum range of solar radiation sensor is 1276.8 w / m2, and the actual solar radiation value is 1276.9 w / m2 when it is greater than the maximum range; The minimum starting wind speed of the wind speed sensor is 0.5m/s. When the actual wind speed is less than the starting wind speed, the display value is 0. Therefore, the data can not reflect the phenomenon of super solar constant and wind speed below 0.5m/s). Quality control includes eliminating the data when the sensor is not fully adapted to the soil environment and the system error caused by sensor failure. The corrected final data is stored in Excel file. The integrity and accuracy of the obtained field data are more than 95% after review by many people. The monitoring data can provide the necessary data support for the research of freeze-thaw landslide and thaw mud flow in Southeast Tibet.
NIU Fujun
Surface solar irradiance (SSI) is one of the products of FY-4A L2 quantitative inversion. It covers a full disk without projection, with a spatial resolution of 4km and a temporal resolution of 15min (there are 40 observation times in the whole day since 20180921, except for the observation of each hour, there is one observation every 3hr before and after the hour), and the spectral range is 0.2µ m~5.0 µ m. The output elements of the product include total irradiance, direct irradiance on horizontal plane and scattered irradiance, the effective measurement ranges between 0-1500 w / m2. The qualitative improvement of FY-4A SSI products in coverage, spatial resolution, time continuity, output elements and other aspects makes it possible to further carry out its fine application in solar energy, agriculture, ecology, transportation and other professional meteorological services. The current research results show that the overall correlation of FY-4A SSI product in China is more than 0.75 compared with ground-based observation, which can be used for solar energy resource assessment in China.
SHEN Yanbo, HU Yueming, HU Xiuqing
The 1km resolution wind energy resource data of Qinghai Tibet Plateau is developed by using the wind energy resource numerical simulation assessment system of China Meteorological Administration (weras / CMA), which includes typical terrain classification module, mesoscale model WRF and Calmet dynamic diagnosis model. Firstly, the typical days are randomly selected from the historical weather types for hourly wind speed simulation, and then the climate average distribution of wind energy resources is obtained according to the statistical analysis of the frequency of weather types. The data set includes wind speed and wind power density over the Qinghai Tibet Plateau. The data accuracy of wind speed is 0.01m/s, the data accuracy of wind power density is 0.01w/m2, and the vertical height of data is 100m. The data have been checked and corrected by the observation data of meteorological stations, and are mainly used for detailed investigation of wind energy resources and macro site selection of wind farms. This data is the output data of the national wind energy resources detailed survey and evaluation project from 2008 to 2012 (the project cost is 290 million yuan), and then becomes the basic data of wind energy resources related research. The Ministry of finance has no plan to invest in extending this data set in the near future.
ZHU Rong, SUN Chaoyang
Radar penetration correction is essential for accurately estimating glacier mass balance when using the geodetic methods based on the radar-derived Digital Elevation Model (DEM). Due to heterogeneous snow distribution and snowpack properties, the radar penetration depth varies by region and is basically dependent on the altitudes. Therefore, this data set gives the result of the penetration depth difference of SRTM C/X-band radar on 1°×1° grid of High Mountain Asia Glaciers. The data set contains 214 1°×1° grids SRTM X-band and C-band penetration depth difference in HMA, and a linear fitting expression for each grid. According to the geodetic method, the 30 m SRTM X-band and C-band DEM are used to obtain the results of the penetration depth difference between the SRTM X-band and C-band of the 1°×1° high grid in HMA, and obtain the relationship between the SRTM X-C-band penetration depth difference and the elevation in the glacier area (for specific methods, please refer to references). The data is stored in excel files. Observational data can provide important basic data for studying the glacier mass balance in HMA, and can be used by scientific researchers studying climate, hydrology and glaciers.
JIANG Liming JIANG Liming JIANG Liming
Mercury is a global pollutant.The Qinghai-Tibet Plateau is adjacent to South Asia, which currently has the highest atmospheric mercury emissions, and could be affected by long-distance transport.The history of atmospheric mercury transport and deposition can be well reconstructed using ice cores and lake cores. The history of atmospheric mercury deposition since the industrial revolution was reconstructed based on 8 lake cores and 1 ice core from the Tibetan Plateau and the southern slope of the Himalayas.This data set contains 8 lake core data from Namtso, Bangongtso, Linggatso, Guanyong Lake, Tanggula Lake, Gosainkunda Lake, Gokyo Lake and Phewa Lake, and 1 ice core data .The resolution of ice core data is 1 year, lake core data is 2~20 years, and the data include mercury concentration and flux.
KANG Shichang
Terrestrial actual evapotranspiration (ETa) is an important component of terrestrial ecosystems because it links the hydrological, energy, and carbon cycles. However, accurately monitoring and understanding the spatial and temporal variability of ETa over the Tibetan Plateau (TP) remains very difficult. Here, the multiyear (2000-2018) monthly ETa on the TP was estimated using the MOD16-STM model supported by datasets of soil properties, meteorological conditions, and remote sensing. The estimated ETa correlates very well with measurements from 9 flux towers, with low root mean square errors (average RMSE = 13.48 mm/month) and mean bias (average MB = 2.85 mm/month), and strong correlation coefficients (R = 0.88) and the index of agreement values (IOA = 0.92). The spatially averaged ETa of the entire TP and the eastern TP (Lon > 90°E) increased significantly, at rates of 1.34 mm/year (p < 0.05) and 2.84 mm/year (p < 0.05) from 2000 to 2018, while no pronounced trend was detected on the western TP (Lon < 90°E). The spatial distribution of ETa and its components were heterogeneous, decreasing from the southeastern to northwestern TP. ETa showed a significantly increasing trend in the eastern TP, and a significant decreasing trend throughout the year in the southwestern TP, particularly in winter and spring. Soil evaporation (Es) accounted for more than 84% of ETa and the spatial distribution of temporal trends was similar to that of ETa over the TP. The amplitudes and rates of variations in ETa were greatest in spring and summer. The multi-year averaged annual terrestrial ETa (over an area of 2444.18×103 km2) was 376.91±13.13 mm/year, equivalent to a volume of 976.52±35.7 km3/year. The average annual evapotranspirated water volume over the whole TP (including all plateau lakes, with an area of 2539.49×103 km2) was about 1028.22±37.8 km3/year. This new estimated ETa dataset is useful for investigating the hydrological impacts of land cover change and will help with better management of watershed water resources across the TP.
MA Yaoming, CHEN Xuelong,
This data set is hyperspectral observation data of typical vegetation along Sichuan Tibet Railway in September 2019, using the airborne spectrometer of Dajiang M600 resonon imaging system. Including the hyperspectral data observed in the grassland area of Lhasa in 2019, with its own latitude and longitude. The hyperspectral survey was mainly sunny. Before flight, whiteboard calibration was carried out; when data were collected, there was a target (that is, the standard reflective cloth suitable for the grass), which was used for spectral calibration; there were ground mark points (that is, letters with foam plates), and the longitude and latitude coordinates of each mark were recorded for geometric precise calibration. The DN value recorded by Hyperspectral camera of UAV can be converted into reflectivity by using Spectron Pro software. Hyperspectral data is used to extract spectral characteristics of different vegetation types, vegetation classification, inversion of vegetation coverage and so on.
ZHOU Guangsheng, JI Yuhe, LV Xiaomin, SONG Xingyang
Qiangyong glacier: 90.23 °E, 28.88° N, 4898 m asl. The surface is bedrock. The record contains data of 1.5 m temperature, 1.5 m humidity, 2 m wind speed, 2 m wind orientation, surface temperature, etc. Data from the automated weather station was collected using USB equipment at 19:10 on August 6, 2019, with a recording interval of 10 minutes, and data was downloaded on December 20, 2020. There is no missing data but a problem with the wind speed data after 9:30 on July 14, 2020 (most likely due to damage to the wind vane). Jiagang glacier: 88.69°E, 30.82°N, 5362 m asl. The surface is rubble and weeds. The records include 1.5 meters of temperature, 1.5 meters of humidity, 2 meters of wind speed, 2 meters of wind direction, surface temperature, etc. The initial recording time is 15:00 on August 9, 2019, and the recording interval is 1 minute. The power supply is mainly maintained by batteries and solar panels. The automatic weather station has no internal storage. The data is uploaded to the Hobo website via GPRS every hour and downloaded regularly. At 23:34 on January 5, 2020, the 1.5 meter temperature and humidity sensor was abnormal, and the temperature and humidity data were lost. The data acquisition instrument will be retrieved on December 19, 2020 and downloaded to 19:43 on June 23, 2020 and 3:36 on September 25, 2020. Then the temperature and humidity sensors were replaced, and the observations resumed at 12:27 on December 21. The current data consists of three segments (2019.8.9-2020.6.30; 2020.6.23-2020.9.25; 2020.12.19-2020.12.29), Some data are missing after inspection. Some data are duplicated in time due to recording battery voltage, which needs to be checked. The meteorological observation data at the front end of Jiagang mountain glacier are collected by the automatic weather station Hobo rx3004-00-01 of onset company. The model of temperature and humidity probe is s-thb-m002, the model of wind speed and direction sensor is s-wset-b, and the model of ground temperature sensor is s-tmb-m006. The meteorological observation data at the front end of Jianyong glacier are collected by the US onset Hobo u21-usb automatic weather station. The temperature and humidity probe model is s-thb-m002, the wind speed and direction sensor model is s-wset-b, and the ground temperature sensor model is s-tmb-m006.
ZHANG Dongqi
This data includes the soil microbial composition data in permafrost of different ages in Barrow area of the Arctic. It can be used to explore the response of soil microorganisms to the thawing in permafrost of different ages. This data is generated by high through-put sequencing using the earth microbiome project primers are 515f – 806r. The region amplified is the V4 hypervariable region, and the sequencing platform is Illumina hiseq PE250; This data is used in the articles published in cryosphere, Permafrost thawing exhibits a greater influence on bacterial richness and community structure than permafrost age in Arctic permafrost soils. The Cryosphere, 2020, 14, 3907–3916, https://doi.org/10.5194/tc-14-3907-2020https://doi.org/10.5194/tc-14-3907-2020 . This data can also be used for the comparative analysis of soil microorganisms across the three poles.
KONG Weidong
Agricultural irrigation consumes a large amount of available freshwater resources and is the most immediate human disturbance to the natural water cycle process, with accelerated regional water cycles accompanied by cooling effects. Therefore, estimating irrigation water use (IWU) is important for exploring the impact of human activities on the natural water cycle, quantifying water resources budget, and optimizing agricultural water management. However, the current irrigation data are mainly based on the survey statistics, which is scattered and lacks uniformity, and cannot meet the demand for estimating the spatial and temporal changes of IWU. The Global Irrigation Water Use Estimation Dataset (2011-2018) is calculated by the satellite soil moisture, precipitation, vegetation index, and meteorological data (such as incoming radiation and temperature) based on the principle of soil water balance. The framework of IWU estimation in this study coupled the remotely sensed evapotranspiration process module and the data-model fusion algorithm based on differential evolution. The IWU estimates provided from this dataset have small bias at different spatial scales (e.g., regional, state/province and national) compared to traditional discrete survey statistics, such as at Chinese provinces for 2015 (bias = −3.10 km^3), at U.S. states for 2013 (bias = −0.42 km^3), and at various FAO countries (bias = −10.84 km^3). Also, the ensemble IWU estimates show lower uncertainty compared to the results derived from individual precipitation and soil moisture satellite products. The dataset is unified using a global geographic latitude and longitude grid, with associated metadata stored in corresponding NetCDF file. The spatial resolution is about 25 km, the time resolution is monthly, and the time span is 2011-2018. This dataset will help to quantitatively assess the spatial and temporal patterns of agricultural irrigation water use during the historical period and support scientific agricultural water management.
ZHANG Kun, LI Xin, ZHENG Donghai, ZHANG Ling, ZHU Gaofeng
The dataset includs borehole core lithology, altitude survey, soil thickness and slop measurement, hydrogeological survey, and hydrogeophysical survey in the Maqu catchment of the Yellow River source region in the Tibetan Plateau. The borehole lithology data is from the 2017 drilled borehole ITC_ Maqu_ 1; altitude survey was carried out using RTK in 2019; Soil thickness and slope data were collected by auger and inclinometer in 2018 and 2019; hydrogeological survey includes groundwater table depth measurements in 2018 and 2019, and aquifer test data obtained in 2019; hydrogeological survey includes Magnetic Resonance Sounding (MRS) , Electrical Resistivity Tomography (ERT) , Transient Electromagnetic (TEM) , and magnetic susceptibility measurements. MRS and ERT surveys were conducted in 2018. TEM and magnetic susceptibility measurements were carried out in 2019.
LI Mengna, ZENG Yijian, Maciek W. LUBCZYNSKI, BOB Su, QIAN Hui
The data in the form of .xlsx store the meteorological varialbes observed on the East Rongbuk glacier from May to July. Two sheets, named "Surface_energy_budget" and "Cycle", respectivley, are included. In the sheet of "surface_energy_budget", the meteorological variables are as follows: Four-component radiations (incident solar radiation, reflected shortwave radiation, incoming longwave radiation, outgoing longwave radiation)、wind speed and direction, air temperature and relative humidity, cloud index, south Asian summer monsoon and albedo. In addition, net shortwave radiation, net longwave radiation, net radiation, sensible heat, latent heat and subsurface heat are also included. Energy fluxes are in unit of W m-2. The sheet of "Cycle" stores the diurnal cycle of the meteorological variables mentioned above. In the first line, the prefixes of "1"、"2" and “3” indicate three observational periods, i.e., "1" represents days from 1 - 28 May, "2" represents the period between 29 May 16 June and "3" indicates time episode from 17 June to 22 July.
LIU Weigang
This data set comes from the book: glaciers in Hengduan Mountain area, which belongs to the series of scientific investigation in Hengduan Mountain Area of Qinghai Tibet Plateau. The chief editor is Li Jijun, the deputy chief editor is Su Zhen, and the guiding unit is Institute of geography, Chinese Academy of Sciences. The research team of the book is the Qinghai Tibet Plateau comprehensive research team of the Chinese Academy of Sciences, and the publishing house is Science Press. Due to abundant rainfall and deep snow cover in some areas of Hengduan Mountain. Avalanche, wind blown snow and abnormal snowfall have become a common natural disaster, which has caused great damage to the work and life of local residents. This book makes a detailed record of the snow disaster in Hengduanshan area. The data includes two workbooks and two pictures, which are the statistical table of snow damage status and damage degree, the regional characteristics of avalanche, the topographic cutting degree map of Western Sichuan, Northern Yunnan and southeastern Tibet, and the damage scope map of Hengduanshan avalanche.
LI Jijun
This data set records the statistical data of per capita GDP and growth rate and ranking (2010-2018) of all regions in China, and the data are divided by year. The data are collected from the statistical yearbook of Qinghai Province issued by the Bureau of statistics of Qinghai Province. The data set contains eight data tables, each of which has the same structure. For example, the data table of 2017-2018 has four fields: Field 1: Region Field 2: quantity Field 3: Rank Field 4: growth rate
Qinghai Provincial Bureau of Statistics
The melting observation of Hengduan Moutain glacier is mainly carried out on Hailuogou Glacier on the east slope of Gongga and the large and small Gongba glacier on the west slope of Gongga. In addition, some ablation observations have been made on Baishui 1 glacier on the east slope of Yulong. According to the melting observation of the four glaciers in the above two mountains, there are some regional representativeness, which makes them reflect the basic situation of melting glaciers in Hengduan Mountain. This data set records the glacier ablation data of different time and different places: from June to August 1982, the Glacier No. 1 in Baishui on the east slope of Yulong mountain was observed at the altitude of 4200m, 4600m and 4800m. From August 27, 1982 to the end of August 1983, the annual measured data of different heights of Hailuogou Glacier tongue on the east slope of Gongga Mountain were collected. From July 12, 1982 to August 6, 1983, the observation data of Gongba glacier melting on the west slope of Gongga Mountain were recorded.
LI Jijun
The data set is a record of glacier distribution in Hoh Xil region, including three tables: the distribution of modern glaciers in various mountain areas in Hoh Xil region, the distribution of modern glaciers in various river basins in Hoh Xil region, and the distribution of modern glaciers in different mountain height segments in Hoh Xil region. Hoh Xil, located in the hinterland of the Qinghai Tibet Plateau, has an average altitude of more than 5000m and a very cold climate. According to the catalogue of China's glaciers and the author's re statistics on the 1 / 100000 topographic map, 437 modern glaciers are developed in the whole region, covering an area of 1552.39 square kilometers, with ice reserves of 162.8349 cubic kilometers, becoming an important source of water supply for many rivers and lakes in the region. Through this data set, we can know more about the distribution of glaciers in this area.
LI Bingyuan
A comprehensive understanding of the permafrost changes in the Qinghai Tibet Plateau, including the changes of annual mean ground temperature (Magt) and active layer thickness (ALT), is of great significance to the implementation of the permafrost change project caused by climate change. Based on the CMFD reanalysis data from 2000 to 2015, meteorological observation data of China Meteorological Administration, 1 km digital elevation model, geo spatial environment prediction factors, glacier and ice lake data, drilling data and so on, this paper uses statistics and machine learning (ML) method to simulate the current changes of permafrost flux and magnetic flux in Qinghai Tibet Plateau The range data of mean ground temperature (Magt) and active layer thickness (ALT) from 2000 to 2015 and 2061 to 2080 under rcp2.6, rcp4.5 and rcp8.5 concentration scenarios were obtained, with the resolution of 0.1 * 0.1 degree. The simulation results show that the combination of statistics and ML method needs less parameters and input variables to simulate the thermal state of frozen soil, which can effectively understand the response of frozen soil on the Qinghai Tibet Plateau to climate change.
Ni Jie, Wu Tonghua
Grassland actual net primary production (NPPa) was calculated by CASA model. CASA model was calculated with the combination of satellite-observed NDVI and climate (e.g. temperature, precipitation and radiation) as the driving factors, and other factors, such as land-use change and human harvest from plant material, were reflected by the changes of NDVI. CASA NPP was determined by two variables, absorbed photosynthetically active radiation’ (APAR) and the light-use efficiency (LUE). Grassland potential net primary production (NPPp) was calculated by TEM model. TEM is one of process-based ecosystem model, which was driven by spatially referenced information on vegetation type, climate, elevation, soils, and water availability to calculate the monthly carbon and nitrogen fluxes and pool sizes of terrestrial ecosystems. TEM can be only applied in mature and undisturbed ecosystem without take the effects of land use into consideration due to it was used to make equilibrium predications. Grassland potential aboveground biomass (AGBp) was estimated by random forest (RF) algorithm, using 345 AGB observation data in fenced grasslands and their corresponding climate data, soil data, and topographical data.
NIU Ben, ZHANG Xianzhou
Nighttime light remote sensing has been an increasingly important proxy for human activities including socioeconomics and energy consumption. Defense Meteorological Satellite Program-Operational Linescan System from 1992 to 2013 and Suomi National Polar-Orbiting Partnership-Visible Infrared Imaging Radiometer Suite since 2012 are the most widely used datasets. Despite urgent needs for long-term products and pilot explorations in synthesizing them, the publicly available long-term products are limited. We propose a Night-Time Light convolutional Long Short-Term Memory (NTLSTM) network, and apply the network to produce annual Prolonged Artificial Nighttime-light DAtaset (PANDA) in China from 1984 to 2020. Model assessments between modelled and original images show that on average the Root Mean Squared-Error (RMSE) reaches 0.73, the coefficient of determination (R2) reaches 0.95, and the linear slope is 0.99 at pixel level, indicating a high confidential level of the data quality of the generated product. In urban areas, the modelled results can well capture temporal trends in newly built-up areas but slightly underestimate the intensity within old urban cores. Socioeconomic indicators (built-up areas, Gross Domestic Product, population) correlates better with the PANDA than with previous products in the literature, indicating its better potential in finding different controls of nighttime-light variances in different phases. Besides, the PANDA delineates different urban expansion types, outperforms other products in representing road networks, and provides potential nighttime-light sceneries in early years. PANDA provides the opportunity to better bridge the cooperation between human activity observations and socioeconomic or environmental fields
ZHANG Lixian, REN Zhehao, CHEN Bin, GONG Peng, FU Haohuan, XU Bing
This daily land surface kernel-driven BRDF model's coeciffients proudct is with a spatl resolution of 0.02 ° x 0.02 ° over the Tibet Plateau in 2016. Multi-sensory data is used to retrieve the the kernel-driven BRDF model and coupled with topographic effects, and prior knowledge is introduced for quality control inversion. The high-precision BRDF of good spatial-temporal continiuty is retrieved by combining MODIS reflectance data (a polar orbiting satellite) and himawari-8 AHI land surface reflectance (a geostationary satellite ). MODIS lans surface reflectance data and AHI TOA reflectance data are downloaded from the official websites. After registration, atmospheric correction and other processing, the daily resolution BRDF is synthesized with a period of 5 days. Compared with similar products, it has more advantages in capturing rapidly changing surface features, and has better temporal and spatial continuity with the shortest composition period. It can effectively support angular effects correction and the BRDF-releated parameters' retrieval.
WEN Jianguang , TANG Yong, TANG Yong, TANG Yong, YOU Dongqin YOU Dongqin
The data set includes annual mass balance of Naimona’nyi glacier (northern branch) from 2008 to 2018, daily meteorological data at two automatic meteorological stations (AWSs) near the glacier from 2011 to 2018 and monthly air temperature and relative humidity on the glacier from 2018 to 2019. In the end of September or early October for each year , the stake heights and snow-pit features (snow layer density and stratigraphy) are manually measured to derive the annual point mass balance. Then the glacier-wide mass balance was then calculated (Please to see the reference). Two automatic weather stations (AWSs, Campbell company) were installed near the Naimona’nyi Glacier. AWS1, at 5543 m a. s.l., recorded meteorological variables from October 2011 at half hourly resolution, including air temperature (℃), relative humidity (%), and downward shortwave radiation (W m-2) . AWS2 was installed at 5950 m a.s.l. in October 2010 at hourly resolution and recorded wind speed (m/s), air pressure (hPa), precipitation (mm). Data quality: the quality of the original data is better, less missing. Firstly, the abnormal data in the original records are removed, and then the daily values of these parameters are calculated. Two probes (Hobo MX2301) which record air temperature and relative humidity was installed on the glacier at half hour resolution since October 2018. The observed meteorological data was calculated as monthly values. The data is stored in Excel file. It can be used by researchers for studying the changes in climate, hydrology, glaciers, etc.
ZHAO Huabiao
Relationship between modern pollen and climate, and its representative to vegetation are the important references in explaining and reconstructing past climate and vegetation qualitatively or quantitatively. To extrct past climate and vegetation signals from fossil pollen spectrum of a lacustrine sediment, a corresponding modern pollen dataset collected from lake-sediment surface is necessary. At present, there are a few modern pollen datasets extracted from lake sediment-surface established on the Tibetan Plateau, however, the geographic gaps (e.g. the central and east Tibetan Plateau) of available sampled lakes influence the correct understanding. To ensure the even distribution of the representative lakes, we collected lake sediment-surface samples (n=117) covering the alpine meadow evenly on the east and central Tibetan Plateau, in July and August 2018. For pollen extraction, approximately 10 g (wet original sediment) per sample were sub-sampled. Pollen sample was processed by the standard acid-alkali-acid procedures followed by 7-μm-mesh sieving. More than 500 terrestrial pollen grains were counted for each sample. Pollen assemblages of the dataset from alpine meadow are dominated by Cyperaceae (mean is 68.4%, maximum is 95.9%), with other herbaceous pollen taxa as commen taxa including Poaceae (mean is 10.3%, maximum is 87.7%), Ranunculaceae (mean is 4.8%, maximum is 33.6%), Artemisia (mean is 3.7%, maximum is 24.5%), Asteraceae (mean is 2.1%, maximum is 33.6%), etc. Salix (mean is 0.4%, maximum is 5.3%) is the major shrub taxon in these pollen assemblages, while arboreal taxa occur with low percentages generally (mean of total arboreal percentages is 0.9% (maximum is 5.8%), including mainly Pinus (mean is 0.3%, maximum is 1.8%), Betula (mean is 0.1%, maximum is 0.9%) and Alnus (mean is 0.1%, maximum is 0.7%). These pollen assemblages represent the plant components well in the alpine meadow communities, although they are influenced slightly by long-distance pollen grain transported by wind or river (such as these arboreal pollen taxa). Together with pollen counts and percentages, we also provided the modern climatic data for the sampled lakes. The China Meteorological Forcing Dataset (CMFD; gridded near-surface meteorological dataset) with a temporal resolution of three hours and a spatial resolution of 0.1° was employed, and the climatic data of the nearest pixel of one sampled lake was defined to represent climatic conditions of the lake. Finally, the mean annual precipitation (Pann), mean annual temperature (Tann) and mean temperature of the coldest month (Mtco) and warmest month (Mtwa) are calculated for each sampled lake.
CAO Xianyong, TIAN Fang, LI Kai, NI Jian
These datasets include mean annual ground temperature (MAGT) at the depth of zero annual amplitude (approximately 3 m to 25 m), active layer thickness (ALT), the probability of the permafrost occurrence, and the new permafrost zonation based on hydrothermal condition for the period of 2000-2016 in the Northern Hemisphere with an 1-km resolution by integrate unprecedentedly large amounts of field data (1,002 boreholes for MAGT and 452 sites for ALT) and multisource geospatial data, especially remote sensing data, using statistical learning modelling with an ensemble strategy, and thus more accurate than previous circumpolar maps.
RAN Youhua, LI Xin, CHENG Guodong, CHE Jinxing, Juha Aalto, Olli Karjalainen, Jan Hjort, Miska Luoto, JIN Huijun, Jaroslav Obu, Masahiro Hori, YU Qihao, CHANG Xiaoli
This dataset includes Fraction Vegetation Coverage (FVC) data for five countries in Central Asia (Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan) during 2010, 2015 and 2020. The data is calculated from the MODIS-NDVI data set (product number MOD13A2.006) based on the empirical relationship between FVC in arid areas and NDVI. The product has a time resolution of 1 year and a spatial resolution of 1 km. The algorithm selects the best available pixel value based on low cloud, low detection angle and highest NDVI value from all the observation data of the year, and performs conversion.
XU Xiaofan, TAN Minghong
The global monthly all-sky land surface temperature (2000-2020) is produced by the method from Chen et al. 2017 JHM.
CHEN Xuelong, BOB Su, MA Yaoming
Kara batkak glacier weather station in Western Tianshan Mountains of Kyrgyzstan (42 ° 9'46 ″ n, 78 ° 16'21 ″ e, 3280m). The observational data include hourly meteorological elements (hourly rainfall (mm), instantaneous wind direction (°), instantaneous wind speed (M / s), 2-minute wind direction (°), 2-minute wind speed (M / s), 10 minute wind direction (°), 10 minute wind speed (M / s), maximum wind direction (°), maximum wind speed (M / s), maximum wind speed time, maximum wind direction (°), maximum wind speed (M / s), maximum wind speed time, maximum instantaneous wind speed within minutes) Direction (°), maximum instantaneous wind speed in minutes (M / s), air pressure (HPA), maximum air pressure (HPA), time of maximum air pressure, time of minimum air pressure (HPA), time of minimum air pressure. Meteorological observation elements, after accumulation and statistics, are processed into climate data to provide important data for planning, design and research of agriculture, forestry, industry, transportation, military, hydrology, medical and health, environmental protection and other departments.
HUO Wen
We comprehensively estimated water volume changes for 1132 lakes larger than 1 km2. Overall, the water mass stored in the lakes increased by 169.7±15.1 Gt (3.9±0.4 Gt yr-1) between 1976 and 2019, mainly in the Inner-TP (157.6±11.6 or 3.7±0.3 Gt yr-1). A substantial increase in mass occurred between 1995 and 2019 (214.9±12.7 Gt or 9.0±0.5 Gt yr-1), following a period of decrease (-45.2±8.2 Gt or -2.4±0.4 Gt yr-1) prior to 1995. A slowdown in the rate of water mass increase occurred between 2010 and 2015 (23.1±6.5 Gt or 4.6±1.3 Gt yr-1), followed again by a high value between 2015 and 2019 (65.7±6.7 Gt or 16.4±1.7 Gt yr-1). The increased lake-water mass occurred predominately in glacier-fed lakes (127.1±14.3 Gt) in contrast to non-glacier-fed lakes (42.6±4.9 Gt), and in endorheic lakes (161.9±14.0 Gt) against exorheic lakes (7.8±5.8 Gt) over 1976−2019.
ZHANG Guoqing
This data is from the hydrological station of kafinigan River, a tributary of the upper Amu Darya River. The station is jointly built by Urumqi Institute of desert meteorology of China Meteorological Administration, Institute of water energy and ecology of Tajik National Academy of Sciences and Tajik hydrometeorological Bureau. The data can be used for scientific research such as water resources assessment and water conservancy projects in Central Asia. Data period: November 3, 2019 to December 3, 2020. Data elements: Hourly velocity (M / s), hourly water level (m) and hourly rainfall (m). Site location: 37 ° 36 ′ 01 ″ n, 68 ° 08 ′ 01 ″ e, 420m 1、 300w-qx River velocity and water level observation instrument (1) Flow rate parameters: 1 power supply voltage 12 (9 ~ 27) V (DC) The working current is 120 (110 ~ 135) MA 3 working temperature (- 40 ~ 85) ℃ 4 measurement range (0.15 ~ 20) m / S The measurement accuracy is ± 0.02m/s The resolution is less than 1 mm The detection range is less than 0.1 ~ 50 m 8 installation height 0.15 ~ 25 m 9 sampling frequency < 20sps (2) Water level parameters: 1 measuring range: 0.5 ~ 20 m The measurement accuracy is ± 3 mm The resolution is less than 1 mm The repeatability was ± 1 mm 2、 SL3-1 tipping bucket rain sensor 1. Water bearing diameter Φ 200mm 2. The measured precipitation intensity is less than 4mm / min 3. Minimum precipitation of 0.1 mm 4. The maximum allowable error is ± 4% mm 3、 Flow velocity, frequency of data acquisition of the observation instrument: the sensor measures the flow velocity and water level data every 5S 4、 Calculation of hourly average velocity: the hourly average velocity and water level data are obtained from the average of all the velocity and water level data measured every 5S within one hour 5、 Description of a large number of values of 0 in water level data: the value of 0 in water level data is caused by power failure and restart of sensor due to insufficient power supply. The first data of initial start-up is 0, resulting in the hourly average value of 0. After the power supply transformation on July 26, 2020, the data returned to normal. At the end of September 2020, the power supply began to be insufficient. After the secondary power supply transformation on December 25, 2020, the data returned to normal 6、 Description of water level monitoring (such as line 7358, 2020 / 11 / 3, 16:00, maximum water level 6.7m, minimum water level 0m, how to explain? In addition, the maximum value of the highest water level is 6.7m, which appears many times in the data. It seems that 6.7m is the limit value of the monitoring data. Is this the case? ): 6.7m is the height from the initial sensor to the bottom of the river bed. The appearance of 6.7m is the abnormal data when the sensor is just started. The sensor is restarted due to the power failure caused by the insufficient power supply of the equipment. This abnormal value appears in the initial start-up. After the power supply transformation on December 25, 2020, the data returns to normal
HUO Wen, SHANG Huaming
Based on the meteorological data of 105 meteorological stations in and around the Qinghai Tibet Plateau from 1980 to 2019 (data from China Meteorological Administration and National Meteorological Science Data Center), the oxygen content was calculated. It was found that there was a significant linear correlation between oxygen content and altitude, y = -0.0263x + 283.8, R2 = 0.9819. Therefore, the oxygen content distribution map can be calculated based on DEM data grid. Due to the limitation of the natural environment in the Qinghai Tibet Plateau, there are few related fixed-point observation institutions. This data can reflect the distribution of oxygen content in the Qinghai Tibet Plateau to a certain extent, and has certain reference significance for the research of human living environment in the Qinghai Tibet Plateau.
Based on a large number of measured aboveground biomass data of grassland, the temperate grassland types were divided according to the vegetation type map of China in 1980s Based on the Landsat remote sensing data of engine platform, the random forest model of grassland aboveground biomass and remote sensing data was constructed for different grassland types. On the basis of reliable verification, the annual aboveground biomass of grassland from 1993 to 2019 was estimated, and the annual spatial data set of aboveground biomass of temperate grassland in Northern China from 1993 to 2019 was formed. Aboveground biomass is defined as the total amount of organic matter of vegetation living above the ground in unit area. The original grid value has been multiplied by a factor of 100, unit: 0.01 g / m2 (g / m2). This data set can provide a scientific basis for the dynamic monitoring and evaluation of temperate grassland resources and ecological environment in northern China.
ZHANG Na
Based on a large number of measured aboveground biomass data of grassland, the temperate grassland types were divided according to the vegetation type map of China in 1980s Based on the Landsat remote sensing data of engine platform, the random forest model of grassland aboveground biomass and remote sensing data was constructed for different grassland types. On the basis of reliable verification, the annual aboveground biomass of grassland from 1993 to 2019 was estimated, and the annual spatial data set of aboveground biomass of temperate grassland in Northern China from 1993 to 2019 was formed. Aboveground biomass is defined as the total amount of organic matter of vegetation living above the ground in unit area. The original grid value has been multiplied by a factor of 100, unit: 0.01 g / m2 (g / m2). This data set can provide a scientific basis for the dynamic monitoring and evaluation of temperate grassland resources and ecological environment in northern China.
ZHANG Na
Temporal aliasing caused by the incomplete reduction of high frequency atmosphere and ocean variability contributes as a major error source in the time-variable gravity field products recovered from the Gravity Recovery and Climate Experiment (GRACE) and GRACE-Follow On (GRACE-FO), and likely future gravity missions. The current state-of-the-art of satellite gravity data processing makes use of de-aliasing products to reduce high-frequency mass anomalies, for example, the most recent official Atmosphere and Ocean De-aliasing products (AOD1B-RL06) are applied to model non-tidal mass changes in the ocean and atmosphere. The products already achieved a temporal resolution of 3 hours that greatly improved the quality of gravity inversion compared to the previous releases. In this study, we explore a refined mass integration approach of the atmosphere that considers geometrical, physical, and numerical modifications of the current AOD1B method. Then, the newly available ERA-5 global climate data of 31 km spatial and 1-hour temporal resolution are used to produce a new set of non-tidal atmosphere de-aliasing product (HUST-ERA5) that is computed in terms of spherical harmonics up to degree/order 100 covering 2002 onwards. Despite of an overall agreement with the AOD1B-RL06 (correlation of low-degree coefficients are all greater than 0.99), discrepancy is still distinguished for spatial-temporal analysis, i.e., a better consistency of HUST-ERA5 from 2007 to 2010. The factors contributing the differences, including the input data, method and temporal resolution, are therefore respectively analyzed and quantified through extensive assessments. We find the difference of HUST-ERA5 and AOD1B-RL06 has led to a mean variation of 7.34 nm/s on the the LRI (Laser Ranging Interferometry) range-rate residual on Jan 2019, which is close to the LRI precision already. This impact is invisible for GRACE(-FO) gravity inversion because of the less accurate onboard KBR(K-band ranging) instrument, however, it will be nonnegligible and should be considered when the LRI completely replaces KBR in the future gravity mission. In addition, HUST-ERA5 can also be widely used in LEO satellite orbit determination and superconducting gravimeter atmospheric correction.
YANG Fan, LUO Zhicai
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn