The high-resolution atmosphere-hydrologic simulation dataset over Tibetan Plateau is prepared by WRFv4.1.1 model with grids of 191 * 355 and spatial resolution of 9 km, and a spatial range covering the entire plateau. The main physics schemes are configured with Thompson microphysics scheme, the rapid radiative transfer model (RRTM), and the Dudhia scheme for longwave and shortwave radiative flux calculations, respectively, the Mellor-Yamada-Janjic (MYJ) TKE scheme for the planetary boundary layer and the Unified Noah Land Surface Model. The time resolution is 3h and the time span is 2000-2010. Variables include: precipitation (Rain), temperature (T2) and water vapor (Q2) at 2m height on the ground, surface skin temperature (TSK), ground pressure (PSFC), zonal component (U10) and meridional component (V10) at 10m heigh on the ground, downward long-wave flux (GLW) and downward short-wave flux (SWDOWN) at surface, ground heat flux (GRDFLX), sensible heat flux (HFX), latent heat flux (LH), surface runoff (SFROFF) and underground runoff (UDROFF). The data can effectively support the study of regional climate characteristics, climate change and its impact over the Tibet Plateau, which will provide scientific basis for the sustainable development of the TP under the background of climate change.
MENG Xianhong, MA Yuanyuan
This data set is the conventional meteorological observation data of the Ngoring Lake Grassland Observation site (GS) in the source region of the Yellow River from 2017 to 2020, obtained by using Kipp&Zonen CNR4, Vaisala HMP155A, PTB110 and other instruments, with a time resolution of half an hour. Mainly include wind speed, wind direction, temperature, relative humidity(specific humidity in 2020), air pressure, downward short-wave radiation, downward long-wave radiation, precipitation.
MENG Xianhong, LI Zhaoguo
The normalized difference vegetation index (NDVI) can accurately reflect the surface vegetation coverage. At present, NDVI time series data based on spot / vegetation and MODIS satellite remote sensing images have been widely used in the research of vegetation dynamic change monitoring, land use / cover change detection, macro vegetation cover classification and net primary productivity estimation at various scales. Evi is similar to the normalized difference vegetation index (NDVI) and can be used to quantify vegetation greenness. However, evi corrects for some atmospheric conditions and canopy background noise and is more sensitive in areas with dense vegetation. It contains an "L" value to adjust the canopy background, a "C" value as the atmospheric drag coefficient, and a value from the blue band (b). These enhancements allow the ratio between R and NIR values to be calculated exponentially while reducing background noise, atmospheric noise and saturation in most cases. This research work mainly focuses on post-processing NDVI and evi data, and gives a more reliable vegetation situation of the Qinghai Tibet Plateau in 2013 and 2018 through transformation of projection coordinate system, data fusion, maximum value synthesis method, elimination of outliers and clipping. The spatial resolution of the data is 0.05 °, and the temporal resolution is month.
YE Aizhong
Fractional Vegetation Cover (FVC) refers to the percentage of the vertical projected area of vegetation to the total area of the study area. It is an important indicator to measure the effectiveness of ecological protection and ecological restoration. It is widely used in the fields of climate, ecology, soil erosion and so on. FVC is not only an ideal parameter to reflect the productivity of vegetation, but also can play a good role in evaluating topographic differences, climate change and regional ecological environment quality. This research work is mainly to post process two sets of glass FVC data, and give a more reliable vegetation coverage of the circumpolar Arctic Circle (north of 66 ° n) and the Qinghai Tibet Plateau (north of 26 ° n to 39.85 °, east longitude 73.45 ° to 104.65 °) in 2013 and 2018 through data fusion, elimination of outliers and clipping.
YE Aizhong
NDVI reflects the background effects of plant canopy, such as soil, wet ground, snow, dead leaves, roughness, etc., and is related to vegetation cover. It is one of the important parameters to reflect the crop growth and nutrient information. According to this parameter, the N demand of crops in different seasons can be known, which is an important guide to the reasonable application of N fertilizer. Correct NDVI (C-NDVI) is the value of NDVI after excluding the influence of climate elements (temperature, precipitation, etc.) on NDVI. Taking precipitation as an example, studies on the lag effect of precipitation on vegetation growth show that the lag time of precipitation effects varies in different regions due to differences in vegetation composition and soil types. In this study, we post-processed the MODIS NDVI data and firstly correlated the NDVI value of the current month with the precipitation of the current month, the average value of the precipitation of the current month with that of the previous month, and the average value of the precipitation of the current month with that of the previous two months to determine the optimal lag time. The NDVI was regressed on precipitation and air temperature to obtain the correlation coefficients, and then the corrected NDVI values were calculated by the difference between the MODIS NDVI and the NDVI regressed on climate factors. We corrected NDVI using climate data to give reliable vegetation correction indices for the circum-Arctic Circle (range north of 66°N) and the Tibetan Plateau (range 26°N to 39.85°N and 73.45°E to 104.65°E) for 2013 and 2018. The spatial resolution of the data is 0.5 degrees and the temporal resolution is monthly values.
YE Aizhong
The vegetation data of the Antarctic Peninsula were obtained from the Antarctic Pioneer vegetation cover classification data of the spatio-temporal three-level environmental big data platform by applying pure image element PPI to extract the end element spectra of mosses, lichens, rocks, sea and snow and applying the linear Mixture Model (LMM) to calculate them. The characteristic vegetation cover of the Fildes Peninsula was obtained based on its correlation with the linear relationship of abundance. The data format is geotiff format. The data content is the vegetation cover of the typical zone of the Antarctic Peninsula in a typical year. In this research work, tif raster format products were generated by post-processing the typical annual vegetation cover of the typical area of the Antarctic Peninsula, and the value of the main body of the raster is the vegetation cover. The vegetation cover of the Antarctic Peninsula typical area obtained in this study is a mosaic of Antarctic pioneer plant abundance data products, including the plant abundance data products in and around the Antarctic Peninsula. The typical area of the Antarctic Peninsula including Adley, north and south were mosaicked by ArcGIS to obtain six vegetation cover maps identified by spectral angle matching method (SAM) and spectral information scatter method (SID) including 2008, 2017 and 2018.
YE Aizhong
The thickness of the active layer of the three pole permafrost combines two sets of data products. The main reference data is the annual value of the active layer thickness from 1990 to 2015 generated by GCM model simulation. The data format of this data set is netcdf4 format, with a spatial resolution of 0.5 ° and a temporal resolution of years. The reference correction data set is the average value of active layer thickness from 2000 to 2015 simulated by statistical and machine learning (ML) methods. The data format is GeoTIFF format, the spatial resolution is 0.1 °, and the data unit is m. Through post-processing operations such as data format conversion, spatial interpolation, data correction, etc., this research work generates the permafrost active layer thickness data in netcdf4 format, with a spatial resolution of 0.1 °, a temporal resolution of years, a time range of 1990-2015, and a data unit of CM.
YE Aizhong
The original data of carbon flux in the three pole permafrost region are generated by GCM model simulation, and the original data are from http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b 。 This data set contains the prediction of future scenarios under different representative concentration paths (RCPs) in the next 2046-2065 years, including rcp2.6 scenario, rcp4.5 scenario and rcp8.5 scenario. The original data include parameters representing carbon flux such as NPP and GPP in the permafrost region of the Qinghai Tibet Plateau. The data format is netcdf4 format, with a spatial resolution of 0.5 ° and a temporal resolution of years. Through data format conversion, spatial interpolation and other post-processing operations, the NPP and GPP data in permafrost region in netcdf4 format are generated. The spatial resolution is 0.1 °, the time resolution is years, the time range is 2046-2065, and the data unit is gc/m2yr.
YE Aizhong
The original thickness data of the active layer of the three pole permafrost are generated by GCM model simulation, and the original data are from http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b 。 This data set contains the prediction of future scenarios under different representative concentration paths (RCPs) in the next 2046-2065 years, including rcp2.6 scenario, rcp4.5 scenario and rcp8.5 scenario. The content of the original data is the thickness of the active layer in the permafrost area of the Qinghai Tibet Plateau. The data format is netcdf4, with a spatial resolution of 0.5 ° and a temporal resolution of years. Through data format conversion, spatial interpolation and other post-processing operations, the active layer thickness in permafrost area in netcdf4 format is generated, with a spatial resolution of 0.1 °, a time resolution of years, a time range of 2046-2065, and the unit is cm.
YE Aizhong
The original data of the three pole permafrost range are generated by GCM model simulation, and the original data are from http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b 。 This data set contains the prediction of future scenarios under different representative concentration paths (RCPs) in the next 2046-2065 years, including rcp2.6 scenario, rcp4.5 scenario and rcp8.5 scenario. The original data content is the spatial range of permafrost and seasonal frozen soil in the Qinghai Tibet Plateau. The data format is netcdf4 format, with a spatial resolution of 0.5 ° and a temporal resolution of years. Through data format conversion, spatial interpolation and other post-processing operations, this research work generates the permafrost range data in netcdf4 format, with a spatial resolution of 0.1 °, a time resolution of years, and a time range of 2046-2065. Permafrost is represented by 1, and seasonal permafrost is represented by 0.
YE Aizhong
The Qinghai Tibet Plateau is known as the "Asian water tower", and its runoff, as an important and easily accessible water resource, supports the production and life of billions of people around, and supports the diversity of ecosystems. Accurately estimating the runoff of the Qinghai Tibet Plateau and revealing the variation law of runoff are conducive to water resources management and disaster risk avoidance in the plateau and its surrounding areas. The glacier runoff segmentation data set covers the five river source areas of the Qinghai Tibet Plateau from 1971 to 2015, with a time resolution of year by year, covering the five river source areas of the Qinghai Tibet Plateau (the source of the Yellow River, the source of the Yangtze River, the source of the Lancang River, the source of the Nujiang River, and the source of the Yarlung Zangbo River), and the spatial resolution is the watershed. Based on multi-source remote sensing and measured data, it is simulated using the distributed hydrological model vic-cas coupled with the glacier module, The simulation results are verified with the measured data of the station, and all the data are subject to quality control.
WANG Shijin
As an important part of the global carbon pool, Arctic permafrost is one of the most sensitive regions to global climate change. The rate of warming in the Arctic is twice the global average, causing rapid changes in Arctic permafrost. The NDVI change data set of different types of permafrost regions in the Northern Hemisphere from 1982 to 2015 has a temporal resolution of every five years, covers the entire Arctic Rim countries, and a spatial resolution of 8km. Based on multi-source remote sensing, simulation, statistics and measured data, GIS method and ecological method are used to quantify the regulation and service function of permafrost in the northern hemisphere to the ecosystem, and all the data are subject to quality control.
WANG Shijin
Known as the "Asian water tower", the Qinghai Tibet Plateau is the source of many rivers in Southeast Asia. As an important and easily accessible water resource, the runoff provided by it supports the production and life of billions of people around it and the diversity of the ecosystem. The glacier runoff data set in the five river source areas of the Qinghai Tibet Plateau covers the period from 2005 to 2010, with a time resolution of every five years. It covers the source areas of the five major rivers in the Qinghai Tibet Plateau (the source of the Yellow River, the source of the Yangtze River, the source of the Lancang River, the source of the Nujiang River, and the source of the Yarlung Zangbo River). The spatial resolution is 1km. Based on multi-source remote sensing, simulation, statistics, and measured data, GIS methods and ecological economics methods are used, The value of water resources service in the cryosphere in the source area of the river and river is quantified, and all its data are subject to quality control.
WANG Shijin
This product provides the monthly runoff, evapotranspiration and soil water of major Arctic river basins in 2018-2065 based on the land surface model Vic. The spatial accuracy is 10km. Major Arctic river basins include Lena, Yenisey, ob, Kolyma, Yukon and Mackenzie basins. According to the rcp2.6 (low emission intensity) and rcp8.5 (high emission intensity) scenario results provided by the ipsl-cm5a-lr model in cmip5 in the fifth assessment report of IPCC, the future climate scenario driving data applicable to the Arctic region of 0.1 ° is obtained through statistical downscaling. Using the calibrated land surface hydrological model Vic on a global scale, based on the future climate scenario driven data of 0.1 °, the monthly time series of runoff, soil water and evapotranspiration of the Arctic River Basin in the middle of this century under future climate change are estimated.
TANG Yin , TANG Qiuhong , WANG Ninglian, WU Yuwei
Different forms of precipitation (snow, sleet, and rain) have divergent effects on the Earth’s surface water and energy fluxes. Therefore, discriminating between these forms is of significant importance, especially under a changing climate. We applied a state-of-the-art parameterization scheme with wet-bulb temperature, relative humidity, surface air pressure, and elevation as inputs, as well as observational gridded datasets with a maximum spatial resolution of 0.25◦, to generate a gridded dataset of different forms of daily precipitation (snow, sleet, and rain) and their temperature threshold across mainland China from 1961-2016. The annual snow, sleet, and rain amount were further calculated. The dataset may benefit various research communities, such as cryosphere science, hydrology, ecology, and climate change.
SU Bo , ZHAO Hongyu
Mountain glaciers are important freshwater resources in Western China and its surrounding areas. It is at the drainage basin scale that mountain glaciers provide meltwater that humans exploit and utilize. Therefore, the determination of glacierized river basins is the basis for the research on glacier meltwater provisioning functions and their services. Based on the Randolph glacier inventory 6.0, Chinese Glacier Inventories, China's river basin classifications (collected from the Data Centre for Resources and Environmental Sciences, Chinese Academy of Sciences), and global-scale HydroBASINS (www.hydrosheds.org), the following dataset was generated by the intersection between river basins and glacier inventory: (1) Chinese glacierized macroscale and microscale river basins; (2) International glacierized macroscale river basin fed by China’s glaciers; (3) Glacierized macroscale river basin data across High Mountain Asia. This data takes the common river basin boundaries in China and the globe into account, which is poised to provide basic data for the study of historical and future glacier water resources in China and its surrounding areas.
SU Bo
Soil freezing depth (SFD) is necessary to evaluate the balance of water resources, surface energy exchange and biogeochemical cycle change in frozen soil area. It is an important indicator of climate change in the cryosphere and is very important to seasonal frozen soil and permafrost. This data is based on Stefan equation, using the daily temperature prediction data and E-factor data of canems2 (rcp45 and rcp85), gfdl-esm2m (rcp26, rcp45, rcp60 and rcp85), hadgem2-es (rcp26, rcp45 and rcp85), ipsl-cm5a-lr (rcp26, rcp45, rcp60 and rcp85), miroc5 (rcp26, rcp45, rcp60 and rcp85) and noresm1-m (rcp26, rcp45, rcp60 and rcp85), The data set of annual average soil freezing depth in the Qinghai Tibet Plateau with a spatial resolution of 0.25 degrees from 2007 to 2065 was obtained.
PAN Xiaoduo, LI Hu
1) Data content: spatial and temporal dataset of near-surface monthly air temperature of Antarctic ice sheet from 2001 to 2018。 2) Data source and processing method: MODIS (MODerate resolution Imaging Spectroradiometer) Land Surface Temperature measurements in combination with in-situ air temperature records from 119 meteorological stations are used to reconstruct a monthly near-surface air temperature product over the Antarctic Ice Sheet (AIS) by means of a neural network model. The product is generated on a regular grid of 0.05°×0.05°, spanning from 2001 to 2018. 3) Data quality description: the accuracy is better than that of ERA5 reanalysis data. 4) Data application achievements and prospects: the database can be used to study the temporal and spatial distribution characteristics of near-surface air temperature of Antarctic ice sheet, and the impact of SAM and ENSO on the interannual variation of Antarctic temperature. In addition, the dataset has the potential application for climate model validation and data assimilation due to the independence of the input of a numerical weather prediction model.
ZHANG Xueying
The data set is the monthly average temperature data of China's multi scenario and multi-mode, with a spatial resolution of 0.0083333 ° (about 1km) from January 2021 to December 2100. The data is in NetCDF format. The data is generated in China through the delta spatial downscaling scheme according to the global > 100 km climate model data set released in the sixth phase of the IPCC coupled model comparison program (cmip6) and the global high-resolution climate data set released by worldclim. The data adopts the latest SSP scenarios (ssp119, ssp245, ssp585) released by IPCC. Each scenario contains three GCMS (ec-earth3, gfdl-esm4, mri-esm2-0) climate data. The geospatial range contained in the dataset is China's main land, excluding islands and reefs in the South China Sea. The unit is 0.1 ℃. The file name is GCM_ SSP_ Tmp-30s-serial number NC, 30s, i.e. 0.0083333 °, serial number from 1-40, serial number 1 represents 2021.1-2022.12, and represents the year in turn; Based on ec-earth3_ ssp119_ tmp-30s-1. NC file, for example, represents the monthly average temperature data of ec-earth3 climate model with 1km resolution from 2021.1 to 2022.12 under ssp119 scenario, including 24 layers. For a deeper understanding of the data, please refer to the data cited in the literature and the published papers of the authors.
PENG Shouzhang
This dataset consists of four files including (1) Lake ice thickness of 16 large lakes measured by satellite altimeters for 1992-2019 (Altimetric LIT for 16 large lakes.xlsx); (2) Daily lake ice thickness and lake surface snow depth of 1,313 lakes with an area > 50 km2 in the Northern Hemisphere modeled by a one-dimensional remote sensing lake ice model for 2003-2018 (in NetCDF format); (3) Future lake ice thickness and surface snow depth for 2071-2099 modeled by the lake ice model with a modified ice growth module (table S1.xlsx); (4) A lookup table containing lake IDs, names, locations, and areas. This daily lake ice and snow thickness dataset could provide a benchmark for the estimation of global lake ice and snow mass, thereby improving our understanding of the ecological and economical significance of freshwater ice as well as its response to climate change.
LI Xingdong, LONG Di, HUANG Qi, ZHAO Fanyu
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn