Simulation results of four cmip6 models in 2015-2100 under the scenario of shared socio-economic path (SSP) 5-8.5. The selection standard is that the resolution of the four modes is less than 1 °, and there are daily data. Eight variables representing extreme climate are extracted from the original simulation results, which are the extremely high value of daily maximum temperature (TXX), the extremely high value of daily minimum temperature (TNX), the extremely low value of daily maximum temperature (TxN), the extremely low value of daily minimum temperature (TNN), the number of continuous dry days (CDD), the number of continuous wet days (CWD), precipitation intensity (SDII) and the number of heavy precipitation days (r20mm). The time resolution of the data is years, the spatial range is the Qinghai Tibet Plateau, and the time range is 2015-2100.
ZHANG Ran ZHANG Ran
Based on the data of Gaogao No. 1 and No. 2 in China from 2019 to 2020, the freeze-thaw disaster distribution data of Qinghai Tibet project corridor is produced by using the deep learning classification method and manual visual interpretation and correction. The geographical range of the data is 40km along the Xidatan Anduo section of Qinghai Tibet highway. The data include the distribution data of thermal melting lakes and ponds and the distribution data of thermal melting landslides. The data set can provide data basis for the research of freeze-thaw disaster and engineering disaster prevention and reduction in Qinghai Tibet engineering corridor. The spatial distribution of freezing and thawing disasters within 40km along the Xidatan Anduo section of Qinghai Tibet highway is self-made based on the domestic gaogao-2 image data. Firstly, the deep learning method is used to extract the mud flow terrace block from Gaogao No. 2 data; Then, ArcGIS is used for manual editing. During the production process, the operators are required to strictly abide by the operation specifications, and a special person is responsible for the quality review.
NIU Fujun, LUO Jing LUO Jing
The data set mainly includes the investigation data set of geological disasters, pavement diseases and bridge and culvert diseases along Qinghai Tibet highway g109, Qinghai Tibet railway and Xinzang highway G219. The investigation time is August 12, 2020 - August 19, 2020, and July 26, 2021 - August 15, 2021. The survey objects are South Asia channel and Himalayan Mountain project. The types of diseases investigated mainly include geological disasters induced by freeze-thaw (rockfall, dangerous rock mass, debris flow gully and debris slope), pavement crack diseases, loose diseases, pit diseases, subgrade deformation diseases, bridge and culvert diseases, etc. The method of manual investigation shall be adopted to observe the damage of various diseases, and the quantity (range), damage degree and location of various damage types of pavement, bridge and culvert and geological disasters shall be recorded in detail as required. The data set can provide a basis for a comprehensive understanding of the freeze-thaw diseases of South Asia channel and Himalayan mountain projects and related research.
LI Guoyu
Lake surface water temperature (LSWT) at Xiashe station from 1967 to 2020; Lake ice depth and lake ice duration at Xiashe station from 1994 to 2020; Runoff at Buha station from 1956 to 2020; Lake level at Xiashe station from 1956 to 2020; Lake area from 1956 to 2020 estimated from the correlation constructed between lake area derived from Landsat images and lake level from gauge measurements in 2001−2020; Air temperature (T) at Gangcha station from 1958 to 2019; Precipitation (P) at Gangcha station from 1958 to 2019
ZHANG Guoqing
Surface melting is the primary reason that affects the mass balance of Greenland ice sheet. At the same time, ice and snow have high albedo, and ice sheet surface melting will cause the difference of radiation energy budget, and then affects the energy exchange between sea-land-air. The high-resolution ice sheet surface melting product provides important information support for the study of Greenland ice sheet surface melting and its response to global climate change. This dataset combined microwave radiometer product and optical albedo product, the daily, winter (June-August) averages and July averages of the former are used for layer-stacking, then Gram-Schmidt Spectral Sharpening was adapted to fuse the layer-stacking results with MODIS GLASS albedo product. The spatial resolution of fusion-results has been downscaled from 25 km to 0.05˚. By employing a threshold-based melt detection approach for each fusion-results pixel, Greenland ice sheet surface melt daily product for 1985, 2000, 2015 (DSSMIS) was generated. The spatial resolution of DSSMIS is higher than that of published data sets at home and abroad. Combined with the advantages of radiometer and albedo data, the spatial details characteristics are enhanced and consistent with the extraction range of the original radiometer products, effectively reducing the noise of the radiometer. DSSMIS’s data type is integer, where 1 is melted, 0 is not melted, 255 is masked area besides Greenland ice sheet, and the data set is stored as *.nc.
WEI Siyi,
This data includes the land cover data of Central Asia, South Asia and Indochina Peninsula in the from 1992 to 2020 with a spatial resolution of 300mLand cover data includes 10 primary categories, which are combined from the secondary categories of the original data. The data source is the surface coverage product CCI-LC of ESA, where the spatial distribution of cropland, built-up land, and water for the land cover data from 1992 to 2020. Combined with the Tsinghua university global land cover data (FROM GLC, 30 m grid), NASA MODIS global land cover data (MCD12Q1, 500 m grid), the United States Geological Survey (USGS global land data (GFSAD30, 30 m), Japanese global forest data (PALSAR/PALSAR - 2, 25 m), the training sample dataset of land cover interpretation were built from the consistent areas of multiple products. The Google Earth Engine and random forest algorithm were used to correct the cropland, built-up land, and water of temporal CCI-LC data. Using the high resolution images in Google Earth at 2019 and 2020, the accuracy of change areas of cropland, built-up land, and water was validated by the stratified random sampling. A total of 3,600 land parcels were selected from 1,200 land parcels of the three land cover types, indicating that the accuracy of our corrected product increased in the range of 11% to 26% for the change areas compared to the CCI-LC product.
XU Erqi
This is a comprehensive dataset on microbial abundance, dissolved organic carbon (DOC), and total nitrogen (TN) for glaciers on the TP based on extensive field sampling from 2010. The dataset comprises 5,409 microbial abundance records of ice cores and snow pits from 12 glaciers and 2,532 DOC and TN records of five habitats, including ice core, snow pit, surface ice, surface snow, and proglacial runoff, from 38 glaciers. These glaciers covered broad areas and diverse climate conditions with a multiyear average temperature ranging from -13.4 ℃ (the Guliya glacier) to 2.9 ℃ (the Zhuxigou glacier) and multiyear average precipitation ranging from 76.9 mm (the No.15 glacier) to 927.8 mm (the 24K glacier), which makes this dataset suitable for studies across the entire TP. To the best of our knowledge, this is the first dataset of microbial abundance and TN in glaciers on the TP, and also the first dataset of DOC in ice cores on the TP. These new data could provide valuable information for researches on the glacier carbon and nitrogen cycle and assessing the potential impacts of glacier retreat due to global warming on downstream ecosystems.
LIU Yongqin
1) The Qinghai Tibet plateau surface meteorological driving data set (2019-2020) includes four meteorological elements: land surface temperature, mean total precipitation rate, mean surface downward long wave radiation flux and mean surface downward short wave radiation flux. 2) The data set is based on era5 reanalysis data, supplemented by MODIS NDVI, MODIS DEM and fy3d mwri DEM data products. The era5 reanalysis data were downscaled by multiple linear regression method, and finally generated by resampling. 3) All data elements of the Qinghai Tibet plateau surface meteorological driving data set (2019-2020) are stored in TIFF format. The time resolution includes (daily, monthly and annual), and the spatial resolution is unified as 0.1 ° × 0.1°。 4) This data is convenient for researchers and students who will not use such assimilated data in. NC format. Based on the long-term observation data of field stations of the alpine network and overseas stations in the pan third pole region, a series of data sets of meteorological, hydrological and ecological elements in the pan third pole region are established; Complete the inversion of meteorological elements, lake water quantity and quality, aboveground vegetation biomass, glacier and frozen soil change and other data products through intensive observation in key areas and verification of sample plots and sample points; Based on the Internet of things technology, a multi station networked meteorological, hydrological and ecological data management platform is developed to realize real-time acquisition, remote control and sharing of networked data.
ZHU Liping, DU Baolong
This data set contains the high-resolution tropospheric nitrogen dioxide vertical column concentration pomino v2.1 data in East Asia from 2012 to 2020. It is a new version of the data after bug fix of v2.0.1, which provides an important data basis for studying the spatial distribution characteristics and temporal change trend of tropospheric nitrogen dioxide in China. Based on the tropospheric nitrogen dioxide slant column concentration provided by KNMI, the pomino tropospheric nitrogen dioxide vertical column concentration is calculated through the tropospheric AMF retrieval algorithm developed by ourselves. The comparison with the ground-based observation data shows that the tropospheric nitrogen dioxide column concentration of pomino can better capture the day-to-day variation trend, and has better correlation with the ground-based observation data. At present, the data has been used for scientific research by many universities and scientific research institutions at home and abroad. In the future, the data set will provide more comprehensive data support for scientific research projects on the Qinghai Tibet Plateau.
LIN Jintai
Rainfall erosivity is one of the important basic data to quantify soil erosion in the Tibet Plateau. High precision rainfall erosivity data is the key to understand the current situation of soil and water loss in theTibet Plateau and formulate soil and water conservation measures. Meanwhile, it can provide a powerful reference for the prevention and control of geological disasters in the Tibet Plateau. Based on the 1-min dense precipitation observations and the grid precipitation product, a new annual rainfall erosivity dataset in Tibet Plateau from 1950 to 2020 is constructed through the steps of correction, reconstruction and validation. This dataset is the rainfall erosivity data set with the highest accuracy and the longest time series in the Tibet Plateau.
CHEN Yueli
The SZIsnow dataset was calculated based on systematic physical fields from the Global Land Data Assimilation System version 2 (GLDAS-2) with the Noah land surface model. This SZIsnow dataset considers different physical water-energy processes, especially snow processes. The evaluation shows the dataset is capable of investigating different types of droughts across different timescales. The assessment also indicates that the dataset has an adequate performance to capture droughts across different spatial scales. The consideration of snow processes improved the capability of SZIsnow, and the improvement is evident over snow-covered areas (e.g., Arctic region) and high-altitude areas (e.g., Tibet Plateau). Moreover, the analysis also implies that SZIsnow dataset is able to well capture the large-scale drought events across the world. This drought dataset has high application potential for monitoring, assessing, and supplying information of drought, and also can serve as a valuable resource for drought studies.
WU Pute, TIAN Lei, ZHANG Baoqing
The mass loss of the Greenland ice sheet has been the main contributor to global sea level rise in recent decades. Under the trend of global warming, the Greenland ice sheet is melting faster. It is of great scientific significance to explore the causes of mass loss and its response to climate change. Based on the MEaSUREs Greenland groundingline and the basin boundaries, we discretize the groundingline, combine the MEaSUREs annual ice velocity data from 1985 to 2015 with the BedMachine v3 ice thickness data, and vectorially calculate the ice discharge at each flux gate of the groundingline. We use the surface mass balance data of RACMO2.3p2 model to spatially calculate the surface mass balance of each basin, and combined it with the ice discharge results to obtain the Greenland ice sheet mass balance data set (1985-2015). The data set includes the mass balance results of each basin of the Greenland ice sheet in the year 1985, 2000 and 2015, and the annual ice velocity data, ice thickness and annual ice discharge corresponding to the location of each flux gate. The data set realizes the fine evaluation of ice flux at the groundingline, and reflect the changes and spatial distribution characteristics of the mass balance of each basin of the Greenland ice sheet in recent 30 years. It provides basic data for the subsequent fine change evaluation and prediction of the mass balance of the Greenland ice sheet and the exploration of the mechanism of ice sheet loss.
LIN Yijing, CHENG Xiao
The Antarctic ice sheet is one of the largest potential sources of global sea level rise. Accurately determining the mass budget of the ice sheet is the key to understand the dynamic changes of the Antarctic ice sheet. It is very important to understand the evolution process of the ice sheet and accurately predict the future global sea level rise. Based on the MEaSUREs Antarctic groundingline and the basin boundaries, we discretize the groundingline, combine the MEaSUREs and RAMP annual ice velocity data from 1985 to 2015 with the BedMachine ice thickness data, and vectorially calculate the ice discharge at each flux gate of the groundingline. We use the surface mass balance data of RACMO2.3p2 model to spatially calculate the surface mass balance of each basin, and combined it with the ice discharge results to obtain the Antarctic ice sheet mass balance data set (1985-2015). The data set includes the mass balance results of each basin of the Antarctic ice sheet in the year 1985, 2000 and 2015, and the annual ice velocity data, ice thickness and annual ice discharge corresponding to the location of each flux gate. The data set realizes the fine evaluation of ice flux at the groundingline, and reflect the changes and spatial distribution characteristics of the mass balance of each basin of the Antarctic ice sheet in recent 30 years. It provides basic data for the subsequent fine change evaluation and prediction of the mass balance of the Antarctic ice sheet and the exploration of the mechanism of ice sheet loss.
LIN Yijing, CHENG Xiao
Snow, ice, and glaciers have the highest albedo of any part of Earth's surface. The increase in melting of the polar ice sheet results in a rapid and sequential decrease in albedo and subsequently influences the global energy balance. The hydrological system derived from surface melt and basal meltwater will affect the dynamic stability of ice sheet and therefore mass balance. The dataset combined microwave radiometer product and optical albedo product, the daily, winter (June-August) averages and July averages of the former are used for layer-stacking, then Gram-Schmidt Spectral Sharpening was adapted to fuse the layer-stacking results with MODIS GLASS albedo product. The spatial resolution of fusion-results has been downscaled from 25 km to 0.05˚. By employing a threshold-based melt detection approach for each fusion-results pixel, Antarctic ice sheet surface melt daily product for 1985-1986, 2000-2001, 2015-2016 (DSSMIS) was generated. The spatial resolution of DSSMIS is higher than that of published data sets at home and abroad. Combined with the advantages of radiometer and albedo data, the spatial details characteristics are enhanced and consistent with the extraction range of the original radiometer products, effectively reducing the noise of the radiometer. It better reflects the melting gradient of mountainous area, groundline area and ice shelf over time, DSSMIS has a higher accuracy. DSSMIS’s data type is integer, where 1 is melted, 0 is not melted, 255 is masked area besides Antarctic ice sheet, and the data set is stored as *.nc.
WEI Siyi,
The maximum freezing depth is an important index of the thermal state of seasonal frozen ground. Due to global warming, the maximum freezing depth of seasonal frozen ground continues to decline. The maximum freezing depth data set of five provinces in Northwest China, Tibet and surrounding areas from 1961 to 2020 was released, with a spatial resolution of 1 km. The data set is a support vector regression (SVR) model based on the measured data of maximum freezing depth from 2001 to 2010 and spatial environmental variables, which simulates the maximum freezing depth in Northwest China, Tibet and surrounding areas from 1961 to 2020. The validation results show that the SVR model has good spatial generalization ability, and there is a high consistency between the predicted value and the observed value of the maximum soil freezing depth. The determination coefficients of the simulation results in the four periods of 1980s, 1990s, 2000s and 2010s are 0.77, 0.83, 0.73 and 0.71 respectively. The percentile range of the prediction results shows that the simulation results have good stability. Based on this data set, it is found that the maximum soil freezing depth in Northwest China continues to decline, among which Qinghai has the fastest decline rate, with an average decline of 0.53 cm every decade. The data set provides data support for the study of seasonal frozen soil in Northwest China, High Mountain Asia and the Third Pole.
WANG Bingquan, RAN Youhua
Based on 11 well-acknowledged global-scale microwave remote sensing-based surface soil moisture products, and with 9 main quality impact factors of microwave-based soil moisture retrieval incorporated, we developed the Remote Sensing-based global Surface Soil Moisture dataset (RSSSM, 2003~2020) through a complicated neural network approach. The spatial resolution of RSSSM is 0.1°, while the temporal resolution is approximately 10 days. The original dataset covered 2003~2018, but now it has been updated to 2020. RSSSM dataset is outstanding in terms of temporal continuity, and has full spatial coverage except for snow, ice and water bodies. The comparison against the global-scale in-situ soil moisture measurements indicates that RSSSM has a higher spatial and temporal accuracy than most of the frequently-used global/regional long-term surface soil moisture datasets. In addition, although RSSSM is remote sensing based, without the incorporation of any precipitation data or records, its interannual variation generally conforms with that of precipitation (e.g., the GPM IMERG precipitation data) and Standardized Precipitation Evapotranspiration Index (SPEI). Moreover, RSSSM can also reflect the impact of human activities, e.g., urbanization, cropland irrigation and afforestation on soil moisture changes to some degree. The data is in ‘Tiff’ format, and the size after compression is 2.48 GB. The relevant data describing paper has been published in the Journal ‘Earth System Science Data’ in 2021.
CHEN Yongzhe, FENG Xiaoming, FU Bojie
This dataset is derived from the paper: Xiaodan Wu, Kathrin Naegeli, Valentina Premier, Carlo Marin, Dujuan Ma, Jingping Wang, Stefan Wunderle. (2021). Evaluation of snow extent time series derived from AVHRR GAC data (1982-2018) in the Himalaya-Hindukush. The Cryosphere, 15,4261-4279. ln this paper, the performance of the AVHRR GAC snowpack product in the Hindu Kush Himalayas is comprehensively evaluated for the first time on a long time scale (1982-2018) based on ground station data, Landsat data, and MODIS snowpack product, respectively, including the consistency of the accuracy/precision of the product over a long time series, and the consistency of the product with Landsat and MODIS snowpack data in terms of spatial distribution. The main factors affecting the accuracy of the AVHRR GAC snowpack product are also revealed.
WU Xiaodan
The observation data are from Tajikistan Pamir Plateau glacier observation station built by Urumqi desert Meteorological Institute of China Meteorological Administration in 2019, including air temperature and humidity, atmospheric pressure, wind speed and direction, precipitation, snow depth and other data. The data period is from November 1, 2019 to November 30, 2020. The *. Xlsx format processed by MS office has good data quality. This data can provide a reference for the study of glacier ablation and its potential impact on hydrological characteristics, water resources and ecological environment. Meteorological observation elements are accumulated and processed into climate data to provide precious data support for weather forecast and economic activities. It is widely used in agriculture, forestry, industry, transportation, military, hydrology, medical and health, environmental protection and other departments.
HUO Wen
Central Asia (referred to as CA) is among the most vulnerable regions to climate change due to the fragile ecosystems, frequent natural hazards, strained water resources, and accelerated glacier melting, which underscores the need of high-resolution climate projection datasets for application to vulnerability, impacts, and adaption assessments. We applied three bias-corrected global climate models (GCMs) to conduct 9-km resolution dynamical downscaling in CA. A high-resolution climate projection dataset over CA (the HCPD-CA dataset) is derived from the downscaled results, which contains four static variables and ten meteorological elements that are widely used to drive ecological and hydrological models. The static variables are terrain height (HGT, m), land use category (LU_INDEX, 21 categories), land mask (LANDMASK, 1 for land and 0 for water), and soil category (ISLTYP, 16 categories). The meteorological elements are daily precipitation (PREC, mm/day), daily mean/maximum/minimum temperature at 2m (T2MEAN/T2MAX/T2MIN, K), daily mean relative humidity at 2m (RH2MEAN, %), daily mean eastward and northward wind at 10m (U10MEAN/V10MEAN, m/s), daily mean downward shortwave/longwave flux at surface (SWD/LWD, W/m2), and daily mean surface pressure (PSFC, Pa). The reference and future periods are 1986-2005 and 2031-2050, respectively. The carbon emission scenario is RCP4.5. The results show the data product has good quality in describing the climatology of all the elements in CA, which ensures the suitability of the dataset for future research. The main feature of projected climate changes in CA in the near-term future is strong warming (annual mean temperature increasing by 1.62-2.02℃) and significant increase in downward shortwave and longwave flux at surface, with minor changes in other elements. The HCPD-CA dataset presented here serves as a scientific basis for assessing the impacts of climate change over CA on many sectors, especially on ecological and hydrological systems.
QIU Yuan QIU Yuan
The observation data are from the Khunjerab gradient meteorological observation and test station on Pamir Plateau built by Urumqi desert Meteorological Institute of China Meteorological Administration in 2017, including the gradient data of various meteorological elements. The data period is from November 18, 2019 to October 8, 2021. The *. Xlsx format obtained by using toa5 merging tool and MS office has good data quality. This data can provide support for the research on the law of surface radiation and energy budget in Pamir Plateau and China Pakistan Economic Corridor, and provide reference basis for land surface process. Khunjerab meteorological station is located in the Pamir Plateau of China, with an altitude of 4600m, close to the border between China and Pakistan, and the data is extremely precious.
HUO Wen
Surface soil moisture (SSM) is a crucial parameter for understanding the hydrological process of our earth surface. Passive microwave (PM) technique has long been the primary choice for estimating SSM at satellite remote sensing scales, while on the other hand, the coarse resolution (usually >~10 km) of PM observations hampers its applications at finer scales. Although quantitative studies have been proposed for downscaling satellite PM-based SSM, very few products have been available to public that meet the qualification of 1-km resolution and daily revisit cycles under all-weather conditions. In this study, therefore, we have developed one such SSM product in China with all these characteristics. The product was generated through downscaling of AMSR-E and AMSR-2 based SSM at 36-km, covering all on-orbit time of the two radiometers during 2003-2019. MODIS optical reflectance data and daily thermal infrared land surface temperature (LST) that have been gap-filled for cloudy conditions were the primary data inputs of the downscaling model, in order to achieve the “all-weather” quality for the SSM downscaling outcome. Daily images from this developed SSM product have achieved quasi-complete coverage over the country during April-September. For other months, the national coverage percentage of the developed product is also greatly improved against the original daily PM observations. We evaluated the product against in situ soil moisture measurements from over 2000 professional meteorological and soil moisture observation stations, and found the accuracy of the product is stable for all weathers from clear sky to cloudy conditions, with station averages of the unbiased RMSE ranging from 0.053 vol to 0.056 vol. Moreover, the evaluation results also show that the developed product distinctly outperforms the widely known SMAP-Sentinel (Active-Passive microwave) combined SSM product at 1-km resolution. This indicates potential important benefits that can be brought by our developed product, on improvement of futural investigations related to hydrological processes, agricultural industry, water resource and environment management.
SONG Peilin, ZHANG Yongqiang
Kara batkak glacier meteorological station in West Tianshan, Kyrgyzstan (42 ° 9'46 ″ n, 78 ° 16'21 ″ e, 3280m). The observation data include hourly meteorological elements (hourly rainfall (mm), instantaneous wind direction (°), instantaneous wind speed (M / s), 2-minute wind direction (°), 2-minute wind speed (M / s), 10 minute wind direction (°), 10 minute wind speed (M / s), wind direction at maximum wind speed (°), maximum wind speed (M / s), maximum wind speed time, wind direction at maximum wind speed (°), and maximum wind speed (M / s) , maximum wind speed time, maximum instantaneous wind speed and wind direction in minutes (°), maximum instantaneous wind speed in minutes (M / s), air pressure (HPA), maximum air pressure (HPA), maximum air pressure occurrence time, minimum air pressure (HPA), minimum air pressure occurrence time). Meteorological observation elements, after accumulation and statistics, are processed into climate data to provide important data for planning, design and research of agriculture, forestry, industry, transportation, military, hydrology, medical and health, environmental protection and other departments.
HUO Wen
The temperature humidity index (THI) was proposed by J.E. Oliver in 1973. Its physical meaning is the temperature after humidity correction. It considers the comprehensive impact of temperature and relative humidity on human comfort. It is an important index to measure regional climate comfort. On the basis of referring to the existing classification standards of physiological and climatic evaluation indexes, combined with the natural and geographical characteristics of the Qinghai Tibet Plateau and facing the needs of human settlements suitability evaluation in the Qinghai Tibet Plateau, the temperature and humidity index and its suitability zoning results of the Qinghai Tibet Plateau (more than 3000 meters) are developed (including unsuitable, critical suitable, general suitable, relatively suitable and highly suitable).
LI Peng, LIN Yumei
The data set mainly includes the ice observation frequency (ICO) of north temperate lakes in four periods from 1985 to 2020, as well as the location, area and elevation of the lakes. Among them, the four time periods are 1985-1998 (P1), 1999-2006 (P2), 2007-2014 (P3) and 2015-2020 (P4) respectively, in order to improve the "valid observation" times in the calculation period and improve the accuracy. The ICO of the four periods is calculated by the ratio of "icing" times and "valid observation" times counted by all Landsat images in each period. Other lake information corresponds to the HydroLAKEs data set through the "hylak_id" column in the table. In addition, the data only retains about 30000 lakes with an area of more than 1 square kilometer, which are valid for P1-P4 observation. The data set can reflect the response of Lake icing to climate change in recent decades.
WANG Xinchi
Under the funding of the first project (Development of Multi-scale Observation and Data Products of Key Cryosphere Parameters) of the National Key Research and Development Program of China-"The Observation and Inversion of Key Parameters of Cryosphere and Polar Environmental Changes", the research group of Zhang, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, developed the snow depth downscaling product in the Qinghai-Tibet Plateau. The snow depth downscaling data set for the Tibetan Plateau is derived from the fusion of snow cover probability dataset and Long-term snow depth dataset in China. The sub-pixel spatio-temporal downscaling algorithm is developed to downscale the original 0.25° snow depth dataset, and the 0.05° daily snow depth product is obtained. By comparing the accuracy evaluation of the snow depth product before and after downscaling, it is found that the root mean square error of the snow depth downscaling product is 0.61 cm less than the original product. The details of the product information of the Downscaling of Snow Depth Dataset for the Tibetan Plateau (2000-2018) are as follows. The projection is longitude and latitude, the spatial resolution is 0.05° (about 5km), and the time is from September 1, 2000 to September 1, 2018. It is a TIF format file. The naming rule is SD_yyyyddd.tif, where yyyy represents year and DDD represents Julian day (001-365). Snow depth (SD), unit: centimeter (cm). The spatial resolution is 0.05°. The time resolution is day by day.
YAN Dajiang, MA Ning, MA Ning, ZHANG Yinsheng
The data set records the statistical data of grassland type area and livestock carrying capacity in Haidong area of Qinghai Province in 1988 and 2012. The data are classified and counted according to the grassland group code, such as: I represents Alpine dry grassland, II represents mountain dry grassland, III represents Alpine desert, B represents medium grass group, J represents shrub group, etc, For specific grassland group type codes and their corresponding meanings, see "description of grassland group type codes in Qinghai Province. PDF" in the data set. The data are compiled from the grassland station of Qinghai Province and the grassland resources statistics of Qinghai Province issued in 1988 and 2012. The data set contains three data tables, which are: statistical data of grassland area and livestock carrying capacity of various types in Haidong area (1988), statistical data of grassland area and livestock carrying capacity in Haidong area (2012) and description of grassland group code in Qinghai Province. The data table structure is similar. For example, there are 8 fields in the statistical data (2012) of grassland type, area and livestock carrying capacity in Haidong area: Field 1: type code Field 2: grassland type name Field 3: grassland area Field 4: available area of grassland Field 5: average unit yield of fresh grass Field 6: average unit yield of edible fresh grass Field 7: stocking capacity Field 8: grassland type, etc
AGRICULTURAL AND RURAL Department of Qinghai Province
This data set is the global high accuracy global elevation control point dataset, including the geographic positioning, elevation, acquisition time and other information of each elevation control point. The accuracy of laser footprint elevation extracted from satellite laser altimetry data is affected by many factors, such as atmosphere, payload instrument noise, terrain fluctuation in laser footprint and so on. The dataset extracted from the altimetry observation data of ICESat satellite from 2003 to 2009 through the screening criteria constructed by the evaluation label and ranging error model, in order to provide global high accuracy elevation control points for topographic map or other scientific fields relying on good elevation information. It has been verified that the elevation accuracy of flat (slope<2°), hilly (2°≤slope<6°), and mountain (6°≤slope<25°) areas meet the accuracy requirements of 0.5m, 1.5m, and 3m respectively.
XIE Huan, LI Binbin, TONG Xionghua, TANG Hong, LIU Shijie, JIN Yanmin, WANG Chao, YE Zhen, CHEN Peng, XU Xiong, LIU Sicong, FENG Yongjiu
Supported by the Strategic Priority Research Program of the Chinese Academy of Science (XDA19070100). Tao Che, the director of this program, who comes from Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources, CAS. They used machine learning methods combined with multi-source gridded snow depth product data to derive a long-time series over the Northern Hemisphere. Firstly, the applicability of artificial neural network (ANN), support vector machine (SVM) and random forest (RF) method in snow depth fusion are compared. It is found that random forest method shows strong advantages in snow depth data fusion. Secondly, using the random forest method, combined with remote sensing snow depth products such as AMSR-E, AMSR-2, NHSD and GlobSnow and reanalysis data such as ERA-Interim and MERRA-2. These gridded snow depth products and environmental factor variables are used as the input independent variables of the model. In situ observations of China Meteorological Station (945), Russia Meteorological Station (620), Russian snow survey data (514), and global historical meteorological network (41261) are used as reference truth to train and verify the model. The daily gridded snow depth dataset of the snow hydrological year from 1980 to 2019 (September 1 of the previous year to May 31 of the current year) is prepared on the cloud platform provided by the CASEarth. Since the passive microwave brightness temperature data from 1980 to 1987 is the data of every other day, there will be a small number of missing trips in the data during this period. Using the ESM-SnowMIP and independent ground observation data for verification, the quality of the fusion data set has been improved. According to the comparison between the ground observation data and the snow depth products before fusion, the determination coefficient (R2) of the fusion data is increased from 0.23 (GlobSnow snow depth product) to 0.81, and the corresponding root mean square error (RMSE) and mean absolute error (MAE) are also reduced to 7.7 cm and 2.7 cm.
CHE Tao, HU Yanxing, DAI Liyun, XIAO Lin
This data set consists of tree ring carbon and oxygen data in East Asian monsoon region and Qilian Mountain region of China. Tree rings in Qilian mountain area include 4 tree cores, the tree species is Sabina przewalskii, and the measured isotopic data is 921. Cellulose was extracted from tree ring logs by chemical treatment, and the obtained cellulose samples were wrapped in a silver cup. The isotopic ratio was measured by Delta V advantage stable isotope mass spectrometer, and the analysis error was less than 0.21 ‰. The experimental analysis was completed in the laboratory of soil structure and minerals, Institute of Geology and Geophysics, Chinese Academy of Sciences. This data has certain significance for the study of paleoclimate in East Asian monsoon region.
XU Chenxi
This data set is composed of tree ring width data of Qilian Mountain region of China in East Asian monsoon region . The tree rings in Qilian mountain contain 52 tree cores, which have 17081 values, the measurement accuracy is 0.01mm, and the tree species is Qilian juniper. The tree ring width was measured by lintab 6 tree ring analyzer, and the cross dating is checked by coffcha program to guarantee that the accuracy of the dating. The experiment analysis was performed in the laboratory of soil structure and minerals, Institute of Geology and Geophysics, Chinese Academy of Sciences. This data has certain significance for the study of paleoclimate in the edge of East Asian monsoon region .
XU Chenxi
Geladandong region is an important and typical source region of great rivers and lakes in the Qinghai Tibet Plateau. This data set provides DEM covering glaciers in the source region of the Yangtze River and Selin Co with different time scales and resolutions to calculate the seasonal and decadal changes of glacier surface elevation in the source region. This data set includes seven 5-meter resolution TanDEM-X data from July 2016 to 2017, which can be used to calculate the seasonal change of glacier surface elevation; it includes one KH-9 DEM with a resolution of 30m in 1976, five TanDEM-X with a resolution of 30m in 2011, one TanDEM-X in 2014 and three TanDEM-X in 2017 with a resolution of 30m. The data can be used to calculate the change of glacier surface elevation during 1976-2000, 2000-20112011-2017. At the same time, Landsat ETM data are used to extract the glacier outline in 1976and we divide it according to the RGI6.0; The right figure shows the spatial and temporal coverage information of the data set, and the base figure is the orthophoto corrected kh-9 image.
CHEN Wenfeng
The surface elevation of the ice sheet is very sensitive to climate change, so the elevation change of the ice sheet is considered as an important variable to evaluate climate change. The time series of long-term ice sheet surface elevation change has become a fundamental data for understanding climate change. The longest time series of ice sheet surface elevation can be established by combining the observation records of radar satellite altimetry missions. However, the previous methods for correcting the intermission bias still have error residue when cross-calibrating different missions. Therefore,we modify the commonly used plane-fitting least-squares regression model by restricting the correction of intermission bias and the ascending–descending bias at the same time to ensure the self-consistency and coherence of surface elevation time series across different missions. Based on this method, we use Envisat and CryoSat-2 data to construct the time series of Antarctic ice sheet elevation change from 2002 to 2019. The time series is the monthly grid data, and the spatial grid resolution is 5 km×5 km. Using airborne and satellite laser altimetry data to evaluate the results, it is found that compared with the traditional method, this method can improve the accuracy of intermission bias correction by 40%. Using the merged elevation time series, combining with firn densification-modeled volume changes due to surface processes, we find that ice dynamic processes make the ice sheet along the Amundsen Sea sector the largest volume loss of the Antarctic ice sheet. The surface processes dominate the volume changes in Totten Glacier sector, Dronning Maud Land, Princess Elizabeth Land, and the Bellingshausen Sea sector. Overall, accelerated volume loss in the West Antarctic continues to outpace the gains observed in the East Antarctic. The total volume change during 2002–2019 for the AIS was −68.7 ± 8.1 km3/y, with an acceleration of −5.5 ± 0.9 km3/y2.
ZHANG Baojun, WANG Zemin, YANG Quanming, LIU Jingbin, AN Jiachun, LI Fei, GENG Hong
This biophysical permafrost zonation map was produced using a rule-based GIS model that integrated a new permafrost extent, climate conditions, vegetation structure, soil and topographic conditions, as well as a yedoma map. Different from the previous maps, permafrost in this map is classified into five types: climate-driven, climate-driven/ecosystem-modified, climate-driven/ecosystem protected, ecosystem-driven, and ecosystem-protected. Excluding glaciers and lakes, the areas of these five types in the Northern Hemisphere are 3.66×106 km2, 8.06×106 km2, 0.62×106 km2, 5.79×106 km2, and 1.63×106 km2, respectively. 81% of the permafrost regions in the Northern Hemisphere are modified, driven, or protected by ecosystems, indicating the dominant role of ecosystems in permafrost stability in the Northern Hemisphere. Permafrost driven solely by climate occupies 19% of permafrost regions, mainly in High Arctic and high mountains areas, such as the Qinghai-Tibet Plateau.
RAN Youhua, M. Torre Jorgenson, LI Xin, JIN Huijun, Wu Tonghua, Li Ren, CHENG Guodong
As an important part of global semi-arid grassland, adequately understanding the spatio-temporal variability of evapotranspiration (ET) over the temperate semi-arid grassland of China (TSGC) could advance our understanding of climate, hydrological and ecological processes over global semi-arid areas. Based on the largest number of in-situ ET measurements (13 flux towers) within the TSGC, we applied the support vector regression method to develop a high-quality ET dataset at 1 km spatial resolution and 8-day timescale for the TSGC from 1982 to 2015. The model performed well in validation against flux tower‐measured data and comparison with water-balance derived ET.
LEI Huimin
Kilometer-level spatially complete (seamless) land surface temperature products have a wide range of applications needs in climate change and other fields. Satellite retrieved LST has high reliability. Integrating the LST retrieved from thermal infrared and microwave remote sensing observation is an effective way to obtain the SLT with certain accuracy and spatial integrity. Based on this guiding ideology, the author developed a framework for retrieving 1km and seamless LST over China landmass, and generated the LST data set accordingly (2002-2020) Firstly, a look-up table based empirical retrieval algorithm is developed for retrieving microwave LST from AMSR-E/AMSR2 observations. Then, AMSR-E/AMSR2 LST is downscaled by using geographic weighted regression to obtain 1km LST. Finally, the multi-scale Kalman filter is used to fuse AMSR-E/AMSR2 LST and MODIS LST to generate a 1km seamless LST data set. The ground valuation results show that the root mean square error (RMSE) of the 1km seamless LST is about 3K. In addition, the spatial distribution of the 1km seamless LST is consistent with MODIS LST and CLDAS LST.
CHENG Jie, DONG Shengyue, SHI Jiancheng
Snow over sea ice controls the energy budgets, affects the sea ice growth/melting, and thus has essential climatic effects. Snow depth, one of the fundamental properties of snow cover, is essential for understanding of the rapid change in Antarctic climate and for sea ice thickness estimation. Passive microwave radiometer can be used for basin-scale snow depth estimation in daily scale, however, previous published methods applied for Antarctic snow depth shows clear underestimation, which limits their further application. Here, we construct a new and robust linear regression equation for snow depth retrieval using microwave radiometers by including lower frequencies, and we produce the snow depth product over Antarctic sea ice from 2002 to 2020 from AMSR-E, AMSR-2, SSMIS based on this method. A regression analysis using 7 years of Operation IceBridge (OIB) airborne snow depth measurements shows that the gradient ratio (GR) calculated using brightness temperatures in vertical polarized 37 and 19 GHz, i.e., GR(37/7), is the optimal one for deriving Antarctic snow depth with an root mean square deviation (RMSD) of 8.92 cm and a correlation coefficient of -0.64, the related equation coefficients are then derived. GR(37/19) is used to retrieve snow depth from SSMIS data to fill the observation gaps between AMSR-E and AMSR-2, and the estimated snow depth is corrected for the consistence with these from AMSR-E/2. An averaged uncertainty of 3.81 cm is found based on a Gaussian error propagation, which accounts for 12% of the estimated mean snow depth. The evaluation of proposed method with in-situ measurements from Australian Antarctic Data Centre shows that the proposed method outperforms the previous available method, with a mean difference of 5.64 cm and an RMSD of 13.79 cm, comparing to -14.47 cm and 19.49 cm. Comparison to shipborne observations from Antarctic Sea Ice Processes and Climate indicates that the proposed method shows slight better performance than previous method (RMSDs of 16.85 cm and 17.61 cm, respectively); and comparable performances in growth and melting seasons suggests that the proposed method can still be used in the melting season. We generate a complete snow depth product over Antarctic sea ice from 2002 to 2020 in daily scale, and negative trends can be found in all sea sectors and seasons. This dataset can be further used in the reanalysis data evaluation, sea ice thickness estimation, climate model and other aspects.
SHEN Xiaoyi, KE Changqing
Land surface temperature (LST) is a key parameter in the study of surface energy balance. It is widely used in the fields of meteorology, climate, hydrology, agriculture and ecology. As an important means to obtain global and regional scale LST information, satellite (thermal infrared) remote sensing is vulnerable to the influence of cloud cover and other atmospheric conditions, resulting in temporal and spatial discontinuity of LST remote sensing products, which greatly limits the application of LST remote sensing products in related research fields. The preparation of this data set is based on the empirical orthogonal function interpolation method, using Terra / Aqua MODIS surface temperature products to reconstruct the lst under ideal clear sky conditions, and then using the cumulative distribution function matching method to fuse era5 land reanalysis data to obtain the lst under all-weather conditions. This method makes full use of the spatio-temporal information of the original MODIS remote sensing products and the cloud impact information in the reanalysis data, alleviates the impact of cloud cover on LST estimation, and finally reconstructs the high-quality global 0.05 ° spatio-temporal continuous ideal clear sky and all-weather LST data set. This data set not only realizes the seamless coverage of space-time, but also has good verification accuracy. The reconstructed ideal clear sky LST data in the experimental areas of 17 land cover types in the world, the average correlation coefficient (R) is 0.971, the bias (bias) is -0.001 K to 0.049 K, and the root mean square error (RMSE) is 1.436 K to 2.688 K. The verification results of the reconstructed all-weather LST data and the measured data of ground stations: the average R is 0.895, the bias is 0.025 K to 2.599 K, and the RMSE is 4.503 K to 7.299 K. The time resolution of this data set is 4 times a day, the spatial resolution is 0.05 °, the time span is 2002-2020, and the spatial range covers the world.
ZHAO Tianjie, YU Pei
This data set includes the average concentrations of chemical species (Na+, K+, Mg2+, Ca2+ and TDS) in meltwater runoff draining 77 glaciers worldwide, annual glacial runoff from eight mountain ranges in Asia, and the mineral compositions of glacial deposits in some typical glacial catchments within Asia. This data set comes from the field monitoring of 19 glaciers in Asia by the data set provider, the previous published data worldwide, and the data shared by the authors of published papers. This data set can be used to evaluate the impact of climate warming on glacier erosion process and chemical weathering process, and the impact of glacier melt caused by climate warming on downstream ecosystems and element cycles.
LI Xiangying
China's daily snow depth simulation and prediction data set is the estimated daily snow depth data of China in the future based on the nex-gdpp model data set. The artificial neural network model of snow depth simulation takes the maximum temperature, minimum temperature, precipitation data and snow depth data of the day as the input layer of the model, The snow depth data of the next day is used as the target layer of the model to build the model, and then the snow depth simulation model is trained and verified by using the data of the national meteorological station. The model verification results show that the iterative space-time simulation ability of the model is good; The spatial correlations of the simulated and verified values of cumulative snow cover duration and cumulative snow depth are 0.97 and 0.87, and the temporal and spatial correlations of cumulative snow depth are 0.92 and 0.91, respectively. Based on the optimal model, this model is used to iteratively simulate the daily snow depth data in China in the future. The data set can provide data support for future snow disaster risk assessment, snow cover change research and climate change research in China. The basic information of the data is as follows: historical reference period (1986-2005) and future (2016-2065), as well as rcp4.5 and rcp8.5 scenarios and 20 climate models. Its spatial resolution is 0.25 ° * 0.25 °. The projection mode of the data is ease GR, and the data storage format is NC format. The following is the data file information in NC Time: duration (unit: day) Lon = 320 matrix, 320 columns in total Lat = 160 matrix, 160 rows in total X Dimension: Xmin = 60.125; // Coordinates of the corner points of the lower left corner grid in the X direction of the matrix Y Dimension: Ymin = 15.125; // Coordinates of the corner points of the grid at the lower left corner of the Y-axis of the matrix
CHEN Hongju, YANG Jianping, DING Yongjian
This data is precipitation data, which is the monthly precipitation product of tropical rainfall measurement mission TRMM 3b43. It integrates the main area of the Qinghai Tibet Plateau (25 ~ 40 ° n; 25 ~ 40 ° n); The precipitation data of 332 meteorological stations are from the National Meteorological Information Center of China Meteorological Administration. The reanalysis data set is obtained by the station 3 ° interpolation optimization variational correction method. For the monthly sample data from January 1998 to December 2018, the spatial coverage is 25 ~ 40 ° n; 73 ~ 105 ° e, the spatial resolution is 1 ° * 1 °.
XU Xiangde, SUN Chan
The data set is the seasonal hydrological observation data of the Yellow River from the hydrological station of the Qinghai Tibet Plateau. There are two hydrological stations: 1. Longmen hydrological station in the middle reaches of the Yellow River, which is the weekly hydrological data in 2013, including water temperature (T), runoff (QW), physical erosion rate (per) and pH. 2. Tangnaihai hydrological station of the Yellow River is monthly data from July 2012 to June 2014, including runoff (QW), sediment (salt), pH and EC. The data set was commissioned to be observed by the staff of the hydrological station of the Yellow River Water Conservancy Commission to provide basic hydrological data for the study of hydrology, hydrochemistry and hydrosphere cycle under the background of Qinghai Tibet Plateau uplift.
JIN Zhangdong, ZHAO Zhiqi
The data coverage area is Sichuan Tibet traffic corridor, which is vector line data. The data defines its active period and names it. The strike, nature, active period and exposure of the fault are described. However, the content is missing, and the secondary fault zone is not named. There are 590 linear elements within the Sichuan Tibet traffic corridor in this data set, but some linear elements are multiple elements of the same fault zone. The active fault zone is often the combination zone of different plates and different blocks. It is a relatively weak zone of the crust, which is easy to induce extremely serious earthquake disasters. It is also a concentrated development zone of geological disasters such as collapse, landslide and debris flow. The judgment of the location and nature of fault zone is of great significance to the risk susceptibility evaluation of geological disasters, and it is the key factor to study geological disasters.
WANG Lixuan
The Tibet-Obs established in 2008 consists of three regional-scale soil moisture (SM) monitoring networks, i.e. the Maqu, Naqu, and Ngari (including Ali and Shiquanhe) networks. This surface SM dataset includes the original 15-min in situ measurements collected at a depth of 5 cm by multiple SM monitoring sites of all the networks, and the spatially upscaled SM records produced for the Maqu and Shiquanhe networks.
ZHANG Pei, ZHENG Donghai, WEN Jun, ZENG Yijian, WANG Xin, WANG Zuoliang, MA Yaoming, SU Zhongbo
In recent years, the melting of the Antarctic ice sheet has accelerated, and a large amount of surface melt water has appeared on the surface of the Antarctic ice sheet. Understandings of the spatial distribution and dynamics of surface melt water on the Antarctic ice sheet is of great significance for the study of the mass balance of the Antarctic ice sheet. This dataset is 2000-2020 surface melt water dataset of Antarctica Ice Sheet typical melting area (Prydz bay) based on 10-30m Landsat-7, 8 and Sentinel-2 images. The projections are polar azimuthal projections in vector format (ESRI Shapefile) and raster format (GeoTIFF) and the time is Southern Hemisphere summer (December-to-February).
YANG Kang
Snow water equivalent (SWE) is an important parameter of the surface hydrological model and climate model. The data is based on the ridge regression algorithm of machine learning, which integrates a variety of existing snow water equivalent data products to form a set of snow water equivalent data products with continuous time series and high accuracy. The spatial range of the data is Pan-Arctic (45 N° to 90 N °), The data time series is 1979-2019. The dataset is expected to provide more accurate snow water equivalent data for the hydrological and climate model, and provide data support for cryosphere change and global change.
LI Hongyi, SHAO Donghang, LI Haojie, WANG Weiguo, MA Yuan, LEI Huajin
The data set mainly includes typical rare earth deposits in China, such as Maoniuping and Lizhuang rare earth deposits in Mianning, Western Sichuan, and Gansha OBO rare earth deposits in Gansu Province. These rare earth deposits are genetically related to carbonate alkaline rock complex. In situ U-Pb dating, whole rock major and trace elements, Sr nd Pb radioisotopes, C-O-B-Ca stable isotopes and mineral in situ major and trace elements contents of rocks or ores in these complexes were analyzed. The major elements were measured by X-ray fluorescence spectrometer (XRF), the trace elements were measured by inductively coupled plasma mass spectrometry (ICP-MS), and the isotopes were mainly measured by mc-icp-ms. The main conclusions are as follows: (1) it is revealed that the magma source area of alkaline carbonate type REE deposit experienced the addition of strong subduction material, and its formation depth may be deeper than previously thought(2) It is revealed that the aegirization may be related to carbonatite and alkaline magmatism, and there may be differences in the aegirization between the two types of magma(3) The later reformation of the rare earth deposits with younger age may be relatively weak, while the rare earth deposits with older age are easy to be influenced by the later geological process and difficult to distinguish.
WENG Qiang, LI Ningbo, LI Ao
Based on the analysis of brgdgts and hydrogen isotopes of leaf wax in lake sediments from Tengchong Qinghai (tcqh) in Yunnan Province, this study shows for the first time the high-resolution annual average temperature change history of low latitude land since the last glacial period (since the last 88000 years). According to the annual average temperature of South Asia established by tcqh core, there are two warm periods of 88000-71000 years and 45000-22000 years in this region, and the temperature range is about 2-3 ° C. Since the Holocene, the temperature has been increasing for about 1-2 years ° C。
ZHAO Cheng
This dataset contains the glacier outlines in Qilian Mountain Area in 2020. The dataset was produced based on classical band ratio criterion and manual editing. Chinese GF series images collected in 2020 were used as basic data for glacier extraction. Google images and Map World images were employed as reference data for manual adjusting. The dataset was stored in SHP format and attached with the attributions of coordinates, glacier ID and glacier area. Consisting of 1 season, the dataset has a spatial resolution of 2 meters. The accuracy is about 1 pixel (±2 meter). The dataset directly reflects the glacier distribution within the Qilian Mountain in 2020, and can be used for quantitative estimation of glacier mass balance and the quantitative assessment of glacier change’s impact on basin runoff.
Li Jia Li Jia LI Jia LI Jia
Based on AVHRR-CDR SR products, a daily cloud-free snow cover extent dataset with a spatial resolution of 5 km from 1981 to 2019 was prepared by using decision tree classification method. Each HDF4 file contains 18 data elements, including data value, data start date, longitude and latitude, etc. At the same time, to quickly preview the snow distribution, the daily file contains the snow area thumbnail, which is stored in JPG format. This data set will be continuously supplemented and improved according to the real-time satellite remote sensing data and algorithm update (up to may 2019), and will be fully open and shared.
HAO Xiaohua
The data include K, Na, CA, Mg, F, Cl, so 4 and no 3 in the glacier runoff of zhuxigou, covering most of the inorganic dissolved components. The detection limit is less than 0.01 mg / L and the error is less than 10%; The data can be used to reflect the contribution of chemical weathering processes such as sulfide oxidation, carbonate dissolution and silicate weathering to river solutes in zhuxigou watershed, and then accurately calculate the weathering rates of carbonate and silicate rocks, so as to provide scientific basis for evaluating the impact of glaciation on chemical weathering of rocks and its carbon sink effect.
WU Guangjian
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn