I. Overview The long-term sequence China Vegetation Index dataset is mainly for the normalized vegetation index (NDVI), based on four bands synthesized every 10 days from 1 April 1998 to 31 December 2011 with a spatial resolution of 1 km. Spectral reflectance and 10-day maximized NDVI dataset. Ⅱ. Data processing description The VEGETATION sensor was launched by SPOT-4 in March 1998, and has received SP0T VGT data for global vegetation coverage observation since April 1998. It has a very complete and efficient image ground processing mechanism system. The VEGETATION data is mainly received by the Kiruna ground station in Sweden. The image quality monitoring center in Toulouse, France is responsible for image quality and provides related parameters (such as calibration coefficients). Finally, the image processing and archiving center of VITO Institute in Belgium Global VEGETATION data archiving and user orders. Among them, VGT-P (prototype) data products mainly provide scientific researchers with high-quality physical quantity prototype data in order to facilitate their research and development of algorithms and application models. The data undergoes strict systematic error correction and resampling into a longitude and latitude network projection, the pixel resolution is lkm, and the pixel brightness value is the reflectivity of the ground features on the top layer of the atmosphere. In addition to providing four bands of raw data, relevant auxiliary parameters such as atmospheric conditions, system information (solar zenith angle, azimuth, field of view, and reception time) and terrain data are also provided according to user needs. VGT-S (synthesis) products provide atmospheric-corrected surface reflectance data, and use multi-band synthesis techniques to obtain a normalized vegetation index (w) data set with lkm resolution. VGI-S products include the spectral reflectance and NDVI data set (s1) of four bands synthesized daily, the spectral reflectance of four bands synthesized every 10 days, and the maximum NDVI data set (S10) every 10 days to reduce cloud and The impact of BRDF, while S10 was also resampled into 4km resolution (S10.4) and 8km resolution (S10.8) datasets. VGT-S products are widely used for their high time resolution. This data set contains the spectral reflectance of four bands synthesized every 10 days and the 10-day maximized NDVI data set (S10). The pre-processing of SPOT source data includes atmospheric correction, radiation correction, and geometric correction. NDVI data with a maximum of 10 days of synthesis is generated, and the values of -1 to -0.1 are set to -0.1, and then formula YDN = (JNDVI +0.1) /0.004 Convert to a YDN value from 0 to 250. Ⅲ. Data content description The long-term sequence China Vegetation Index dataset is mainly for the normalized vegetation index (NDVI), based on four bands synthesized every 10 days from 1 April 1998 to 31 December 2011 with a spatial resolution of 1 km. Spectral reflectance and 10-day maximized NDVI dataset. The SPOT-VEGETATION-NDVI data set contains .zip compressed files with time resolution from April 1, 1998 to December 31, 2011. After decompression, it is an ESRI-GRID file with a scene every 10 days. The SPO-VEGETATION-NDVI data set naming rules are: v-yymmdd, where v is the abbreviation of vegetation, yymmdd represents the date of the file, and is the main identifier that distinguishes other files. Ⅳ. Data usage description An important feature of the Vegetation Index product is that it can be converted into leaf crown biophysical parameters. Vegetation index (VI) also plays an "intermediate variable" in the acquisition of vegetation biophysical parameters (such as foliar index LAI, green shade, fAPAR, etc.). The relationship between vegetation indices and vegetation biophysical parameters is currently being studied using globally representative ground, aircraft and satellite observation datasets. These data can be used to evaluate the performance of the VI algorithm before satellite launch, and also provide the conversion coefficient between the vegetation index product and the biophysical characteristics of the leaf crown. The use of biophysical data is part of the Vegetation Index Verification Program. Vegetation index products will play a major role in several Earth Observation System (EOS) studies and are also part of global and regional biosphere model products in recent years.
XUE Xian, DU Heqiang
Ⅰ. Overview Landsat5 was launched in March 1984. The Thematic Mapper (TM) sensor on it includes seven bands, except for the 6th band with a resolution of 120 m, the other 6 bands have a resolution of 30 m. This data set was collected in 1990 and 2010. There are 77 scenes of TM data in the upper reaches of the Yellow River. Ⅱ. Data processing description The product level is L1 and has been geometrically corrected. Ⅲ. Data content description The naming method is LT5 line number column number _ column number year month day, such as LT5129032_03220040816. Ⅳ. Data usage description The main applications are soil use / cover and desertification monitoring.
XUE Xian, DU Heqiang
I. Overview This data set contains socio-economic statistics of counties (cities) in the upper reaches of the Yellow River from 2000 to 2005. The data set is divided into basic conditions, comprehensive economics, agriculture, industry and infrastructure, education, health and social security, 4 There are 30 basic categories, including all the socio-economic statistical indicators. Ⅱ. Data processing description The data is stored in excel format, classified by province, with basic socio-economic statistics for each county. Ⅲ. Data content description This data set contains four basic classifications, namely basic situation, comprehensive economy, agriculture, industry and infrastructure, education, health and social security. The basic information includes the administrative area, the number of townships (towns), the number of villagers' committees, the total number of households at the end of the year, the number of rural households, the rural population, the number of employees at the end of the year, the number of rural employees, and the number of agricultural, forestry, animal husbandry and sideline fishermen The total power of agricultural machinery and local telephone users; the total economic categories include: the value added of the primary industry, value added of the secondary industry, revenue within the local fiscal budget, fiscal expenditure, the balance of savings deposits of urban and rural residents, and loans of financial institutions at the end of the year Balance; major categories of agriculture, industry and capital construction include: grain output, cotton output, oil output, total meat output, number of industrial enterprises above designated size, total industrial output value above designated size, and capital investment completed; education, health and social security The major categories include the number of students in ordinary middle schools, the number of students in primary schools, the number of beds in hospitals and health centers, the number of beds in social welfare homes, and the number of beds in social welfare homes. In some remote areas, some data are missing. Ⅳ. Data usage description Through this data set, the socio-economic problems of counties (cities) in the upper reaches of the Yellow River can be analyzed, and the socio-economic driving forces of certain natural processes can be analyzed and researched through this data set.
XUE Xian, DU Heqiang
This dataset is the snow cover dataset based on the MODIS fractional snow cover mapping algorithm Coupled Regional Approach (CRA). The CRA algorithm mainly consists of three parts. (1) First, the N-FINDR (Volume Iterative Approach) and OSP (Orthogonal Subspace Projection) are used to automatically extract the endmember according to the settings (extracting 30 end endmembers). (2) On the basis of automatic extraction, combined with the IGBG land cover type map, six types of endmembers of snow, vegetation, cloud, soil, rock and water are selected by the manual screening method, and an annual spectrum database is established according to the 2009 image. There are 3 spectra in the early, middle and late months and 36 spectra a year. (3) The established spectral database is used as a priori knowledge, and based on prior knowledge, the fully constrained linear unmixing method (FCLS) for subpixel decomposition is used to obtain the fractional snow cover products. The NDSI ratio algorithm with improved topographic effect is used to obtain the snow cover area, the spatiotemporal data are then interpolated, and, finally, the multisource data fusion with the AMSR-E microwave snow depth product is undertaken. The dataset adopts a latitude and longitude (Geographic) projection method. The datum is WGS84, and the spatial resolution is 0.005°. It provides the daily cloudless snow cover area map of the Tibetan Plateau from 2008 to 2010. The data set is stored by year and consists of 3 folders from 2008 to 2010. Each folder contains the classification results of the daily snow cover of the current year. It is a tif file with the naming rule YYYY***.tif, in which YYYY represents the year (2008-2010), and *** represents the day (001~365/ 366). It can be opened directly with ARCGIS or ENVI.
HAO Xiaohua
NDVNDVI project belongs to the national natural science foundation "environment and ecological science in western China" major research program, led by professor gao qiong of Beijing normal university. The project runs from 2003.1-2005.12. Remittance data of the project: 1. Monitoring data of photosynthesis of 8 plants in ansai station in 2002 (excel) 2. Monitoring data of photosynthesis of 6 plants near the lime temple of ijin horo banner in July 2003 (excel) 3. Monitoring data of photosynthesis of 5 kinds of plants in wufen gutter of huangfuchuan, jungeer banner in July 2003 (excel)
GAO Qiong
The 1:1 million wetland data of Guangdong Province (2000) is cut from the "1:1 million wetland data of China". "China 1:100,000 wetland data" mainly reflects the information of marshes and wetlands throughout the country in the 2000s, and is represented by geographical coordinates in decimal scale. The main contents include: types of marshes and wetlands, types of water supply, types of soil, types of main vegetation, and geographical regions.The information classification and coding standard of China sustainable development information sharing system was implemented.Data source of this database: 1:20 swamp map (internal version), 1:500 000 swamp map (internal version) of qinghai-tibet plateau, 1:100 000 swamp survey data and 1:400 000 swamp map of China;The processing steps are as follows: data source selection, preprocessing, marshland element digitization and coding, data editing and processing, establishment of topological relationship, edge-to-edge processing, projection transformation, connection with attribute database such as geographical name and acquisition of attribute data.
ZHANG Shuqing
This data is digitized from the "Naiman Banner Desertification Types and Land Consolidation Zoning Map" of the drawing. The specific information of this map is as follows: * Editors: Zhu Zhenda and Qiu Xingmin * Editor: Feng Yushun * Re-photography and Mapping: Feng Yushun, Liu Yangxuan, Wen Zi Xiang, Yang Taiyun, Zhao Aifen, Wang Yimou, Li Weimin, Zhao Yanhua, Wang Jianhua * Field trips: Qiu Xingmin and Zhang Jixian * Cartographic unit: compiled by Desert Research Office of Chinese Academy of Sciences * Publishing House: Shanghai China Printing House * Scale: 1: 150000 * Published: May 1984 * Legend: Severe Desertification Land, Intensely Developed Desertification Land, Developing Desertification Land, Potential Desertification Land, Non-desertification Land, Fluctuating Sandy Loess Plain, Forest and Shrub, Saline-alkali Land, Mountain Land, Cultivated Land and Midian Land 2. File Format and Naming Data is stored in ESRI Shapefile format, including the following layers: Naiman banner desertification type map, rivers, roads, reservoirs, railways, zoning 3. Data Attributes Desertification Class Vegetation Background Class Desertified land and cultivated sand dunes under development. Midland in Saline-alkali Land Severely desertified land Reservoir Trees and shrubbery Mountain Strongly developing desertified land Potential desertified land Lakes Non-desertification land Undulating sand-loess plain 2. Projection information: Angular Unit: Degree (0.017453292519943295) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Beijing_1954 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000
ZHU Zhenda, QIU Xingmin, FENG Yusun, ZHAO Yanhua, WANG Jianhua, ZHAO Aifen, WANG Yimou, LI Weimin, ZHANG Jixian, LIU Yangxuan, WEN Zixiang
The dataset of CMA operational meteorological stations observations in the Heihe river basin were provided by Gansu Meteorological Administration and Qinghai Meteorological Administration. It included: (1) Diurnal precipitation, sunshine, evaporation, the wind speed, the air temperature and air humidity (2, 8, 14 and 20 o'clock) in Mazongshan, Yumen touwnship, Dingxin, Jinta, Jiuquan, Gaotai, Linze, Sunan, Zhangye, Mingle, Shandan and Yongchang in Gansu province (2) the wind direction and speed, the temperature and the dew-point spread (8 and 20 o'clock; 850, 700, 600, 500, 400, 300, 250, 200, 150, 100 and 50hpa) in Jiuquan, Zhangye and Mingqin in Gansu province and Golmud, Doulan and Xining in Qinghai province (3) the surface temperature, the dew point, the air pressure, the voltage transformation (3 hours and 24 hours), the weather phenomena (the present and the past), variable temperatures, visibility, cloudage, the wind direction and speed, precipitation within six hours and unusual weather in Jiuquan, Sunan, Jinta, Dingxin, Mingle, Zhangye, Gaotai, Shandan, Linze, Yongchang and Mingqin in Gansu province and Tuole, Yeniugao, Qilian, Menyuan, Xining, Gangcha and Huangyuan in Qinhai province.
Gansu meteorological bureau, Qinghai Meteorological Bureau
The glacial change trend in the Tarim River Basin and its impact on water resources change belong to the National Natural Science Foundation of China's Western Environment and Ecological Science major research project. The time is 2003.1-2005.12. The project submitted data: Kochikarbachi Glacier Observation Data (excel): Including precipitation, wind direction, wind speed and temperature data 1.3300a_climate (2003.6.29-2004.6.22): 4 hours data during the day, including field date, time, wind speed, wind up, temperature. 2.4200b_climate (2004.1.29-2004.5.12): 6:00, 8:00, 9:00, 10:00, 12:00, 14:00, 16:00, 18:00, 20:00, 22: 00, 23:00 observation data, including field date, time, wind speed, wind up, temperature. 3.3700_Precipitation: 13 days daily precipitation from 2003.7 to 2005.9 4.4200_Precipitation: 18-day daily precipitation between 2003.7 and 2006. 6
LIU Shiyin
The forest hydrology experimental area of Heihe River integrated remote sensing experiment includes the dense observation area of Dayekou basin and the dense observation area of Pailugou basin. Due to the concentrated distribution of the fixed sample plots in the drainage ditch basin, these sample plots lack of representativeness to the forest of the whole dayokou basin, so in June 2008, 43 temporary forest sample plots were set up in the whole dayokou basin. The data set is the ground observation data of the 43 temporary plots. In addition to the measurement and recording of stand status and site factors, Lai was also observed. The instruments used to measure each wood in the sample plot are mainly tape, DBH, flower pole, tree measuring instrument and compass. The DBH, tree height, height under branch, crown width in cross slope direction, crown width along slope direction and single tree growth were measured for each tree. WGS84 latitude and longitude coordinates of the center point of the sample plot were measured with different hand-held GPS, and the positioning error was about 5-30m. Other observation factors include: Forest Farm, slope direction, slope position, slope, soil thickness, canopy density, etc. The implementation time of these temporary sample plots is from 2 to 30 June 2008. The data set can provide ground data for the development of remote sensing inversion algorithm of forest structure parameters.
LING Feilong, HE Qisheng, ZHANG Xuelong, WANG Shunli, ZHAO Ming, LEI Jun, NIU Yun, LUO Longfa, CHEN Erxue
The dataset of airborne LiDAR mission in the Dayekou watershed flight zone on Jun. 23, 2008 included peak pulse data (*.LAS), full waveform data (.lgc), CCD photos, DEM, DSM and DOM. The flight routes were as follows: {| ! flight route ! startpoint lat ! startpoint lon ! endpoint lat ! endpoint lon ! altitude (m) ! length (km) ! photos |- | 8 || 38°32′52.25″ || 100°12′35.26″ || 38°30′25.65″ || 100°18′31.76″ || 3650 || 9.7 || 34 |- | 9 || 38°32′57.99″ || 100°12′39.09″ || 38°30′31.59″ || 100°18′35.14″ || 3650 || 9.7 || 34 |- | 10 || 38°33′03.74″ || 100°12′42.91″ || 38°30′40.25″ || 100°18′31.88″ || 3650 || 9.5 || 34 |- | 11 || 38°33′12.80″ || 100°12′38.68″ || 38°30′46.10″ || 100°18′35.47″ || 3650 || 9.8 || 35 |- | 12 || 38°33′18.55″ || 100°12′42.51″ || 38°30′54.86″ || 100°18′31.99″ || 3650 || 9.6 || 35 |- | 13 || 38°33′24.30″ || 100°12′46.34″ || 38°31′00.95″ || 100°18′34.98″ || 3650 || 9.5 || 36 |- | 14 || 38°33′30.05″ || 100°12′50.16″ || 38°31′09.54″ || 100°18′31.92″ || 3650 || 9.3 || 35 |- | 15 || 38°33′35.80″ || 100°12′53.99″ || 38°31′15.47″ || 100°18′35.29″ || 3750 || 9.3 || 35 |- | 16 || 38°33′41.55″ || 100°12′57.82″ || 38°31′21.66″ || 100°18′38.05″ || 3750 || 9.3 || 35 |- | 17 || 38°33′47.30″ || 100°13′01.65″ || 38°31′27.25″ || 100°18′42.27″ || 3750 || 9.3 || 35 |- | 19 || 38°34′02.11″ || 100°13′01.25″ || 38°31′45.61″ || 100°18′33.27″ || 3750 || 9.1 || 45 |- | 20 || 38°34′07.86″ || 100°13′05.07″ || 38°31′51.54″ || 100°18′36.64″ || 3750 || 9.1 || 45 |- | 21 || 38°34′13.61″ || 100°13′08.90″ || 38°32′00.12″ || 100°18′33.60″ || 3750 || 8.9 || 45 |- | 22 || 38°34′19.36″ || 100°13′12.73″ || 38°32′05.45″ || 100°18′38.44″ || 3750 || 8.9 || 45 |- | 23 || 38°34′25.10″ || 100°13′16.56″ || 38°32′14.72″ || 100°18′33.72″ || 3750 || 8.7 || 45 |- | 24 || 38°34′30.85″ || 100°13′20.39″ || 38°32′20.48″ || 100°18′37.52″ || 3750 || 8.7 || 45 |- | 25 || 38°34′36.60″ || 100°13′24.22″ || 38°32′26.24″ || 100°18′41.32″ || 3750 || 8.7 || 45 |- | 26 || 38°34′45.66″ || 100°13′19.98″ || 38°32′31.98″ || 100°18′45.15″ || 3750 || 8.9 || 45 |}
NI Wenjian, BAO Yunfei, ZHOU Mengwei, WANG Tao, CHI Hong, FAN Fengyun, LIU Qingwang, PANG Yong, LI Shiming, Liu Qiang, LI Xin, MA Mingguo
This data set is the acquisition of the super-site forest 3D structure of the scanning point cloud data and other ancillary data based on the ground-based lidar (LiDAR) . Data acquisition time is from June 4, 2008 to June 12, 2008. Riegl LMS-Z360i ground-based LiDAR was used. The super site is divided into 16 sub-samples of 25m×25m, LiDAR base station points are set in each sub-sample, and LiDAR acquisition 3D full coverage LiDAR point metadata is set at each base station point. The content of the data set: total station measurement coordinates (x, y, z) for each LiDAR data acquisition base station point, the instrument attitude measured by a digital slope meter and an angle meter when each station collects data, and the laser radar scanning point cloud data at each station. This data set can provide realistic 3D forest scenes, provide detailed ground observation data for the development and correction of various 3D forest remote sensing models, and provide ground verification data for airborne and spaceborne remote sensing data.
BAO Yunfei, GUO Zhifeng, GUO Zhifeng, NI Wenjian, WANG Qiang, ZHANG Zhiyu
This map was compiled by Li Xin and others in 2008 in order to re-count the permafrost area in China and based on the analysis of the existing permafrost map in China. It consists of three parts, of which the Qinghai-Tibet Plateau part uses the simulated permafrost map of the Qinghai-Tibet Plateau (Nanzhuo Copper, 2002), the northeast part comes from the "14 million map of China's Glacier, Frozen Soil and Desert" (Institute of Environment and Engineering in Cold and Arid Regions, Chinese Academy of Sciences, 2006), and the other part uses the map of China's permafrost zoning and types (1: 10 million) (Zhou Youwu and others, 2000). More Information References (Institute of Environment and Engineering in Cold and Arid Regions, Chinese Academy of Sciences, 2006; Nanzhuo Copper, 2002; Zhou Youwu et al., 2000; Li et al, 2008)。
LI Xin, NAN Zhuotong, ZHOU Youwu
The fixed forest sample plot is located in the drainage ditch of Dayekou, Qilian Mountain, where the hydrological observation field of Gansu Water Conservation Forest Research Institute is located. From July 2003 to August 2003 and from July 2007 to August 2007, the tree survey of the sample plot was completed by technicians from Gansu Water Conservation Forest Research Institute and Institute of environment and Engineering in cold and dry areas of Chinese Academy of Sciences. A total of 17 fixed forest samples were observed, including the survey of sample plot factors and the survey of each tree. The observation factors of sample plots mainly include forest farm, longitude and latitude coordinates, slope direction, slope position, slope, soil thickness, canopy density of arbor layer, leaf area index, etc. The main instruments used in the measurement are tape, DBH, flower pole, tree measuring instrument, compass and fish eye camera. The measurement factors of each tree include DBH, height of tree, height under branch, crown width in cross slope direction, crown width along slope direction, growth status of single tree, etc. For details, please refer to the metadata of "Heihe River Integrated Remote Sensing joint test: fixed sample plot tree survey data set (2003)" and "Heihe River Integrated Remote Sensing joint test: fixed sample plot tree survey data set (2007)". The Lai in this data set is the supplementary measurement data during the joint remote sensing experiment of Heihe River in 2008. That is to say, the supplementary measurement of Lai has been done in these fixed plots. The supplementary observation time of Lai was from June 1 to 13, 2008. 15 of the 17 fixed plots were investigated. Four instruments were used to observe each plot. In addition to the commercial instruments such as hemiview fish eye camera, LAI-2000 and trac, these instruments also use the canopy analysis instrument made by Beijing Normal University. In each 20 m × 20 m plot, trac measures along two parallel routes perpendicular to the direction of sunlight incidence, which can basically represent the entire quadrat; hemiview fisheye camera and LAI-2000 measure the same points, that is, take three points on the trac line, plus the center point of the quadrat, a total of 7 measuring points. This set of data set can provide ground data for the study of remote sensing inversion method of forest structure parameters.
SONG Jinling, FU Zhuo, LI Shihua, ZOU Jie, ZHANG Xuelong, WANG Shunli, ZHAO Ming, LEI Jun, NIU Yun, LUO Longfa, LING Feilong, HE Qisheng, CHEN Erxue
This dataset includes passive microwave remote sensing brightness temperatures data for longitude and latitude projections and 0.25 degree resolution from 2002 to 2008 in China. 1. Data processing process: NSIDC produces AMSR-E gridded brightness temperature data by interpolating AMSR-E data (6.9 GHz, 10.7 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz, and 89.0 GHz) to the output grids from swath space using an Inverse Distance Squared (ID2) method. 2. Data format: Brightness temperature files: two-byte unsigned integers, little-endian byte order Time files: two-byte signed integers, little-endian byte order 3. Data naming: ID2rx-AMSRE-aayyyydddp.vnn.ccc (China-ID2r1-AMSRE-D.252002170A.v03.06V) ID2 Inverse Distance Squared r1 Resolution 1 swath input data AMSRE Identifies this an AMSR-E file D.25 Identifies this as a quarter degree file yyyy Four-digit year ddd Three-digit day of year p Pass direction (A = ascending, D = descending) vnn Gridded data version number (for example, v01, v02, v03) ccc AMSR-E channel indicator: numeric frequency (06, 10, 18, 23, 36, or 89) followed by polarization (H or V) 4. Cutting range: Corner Coordinates: Upper Left (60.0000000, 55.0000000) (60d 0'0.00 "E, 55d 0'0.00" N) Lower Left (60.0000000, 15.0000000) (60d 0'0.00 "E, 15d 0'0.00" N) Upper Right (140.0000000, 55.0000000) (140d 0'0.00 "E, 55d 0'0.00" N) Lower Right (140.0000000, 15.0000000) (140d 0'0.00 "E, 15d 0'0.00" N) Center (100.0000000, 35.0000000) (100d 0'0.00 "E, 35d 0'0.00" N) Origin = (60.000000000000000, 55.000000000000000) 5. Data projection: GEOGCS ["WGS 84", DATUM ["WGS_1984", SPHEROID ["WGS 84", 6378137,298.257223563, AUTHORITY ["EPSG", "7030"]], TOWGS84 [0,0,0,0,0,0,0], AUTHORITY ["EPSG", "6326"]], PRIMEM ["Greenwich", 0, AUTHORITY ["EPSG", "8901"]], UNIT ["degree", 0.0174532925199433, AUTHORITY ["EPSG", "9108"]], AUTHORITY ["EPSG", "4326"]]
Mary Jo Brodzik, Matthew Savoie, Richard Armstrong, Ken Knowles
The data set is based on the geodetic coordinate data and other auxiliary data of the corner points of 16 subsamples of super sample plots, the setting points of lidar base station of the foundation and the base points of each tree trunk measured by the total station. The data acquisition time of total station is from June 3, 2008 to June 12, 2008, which is divided into two groups. One total station is used respectively, with the models of topcon602 and topcon7002. A total of 1468 Picea crassifolia trees in the super sample plot were measured, and all the corner points of the sub sample plot and the top points of the stake set on the base station of lidar were located. These positioning results are the main data content of the dataset. In addition, on June 3, 2008, June 4, 2008, June 6, 2011, the differential GPS z-max was used to locate all the stake vertices. By manually measuring the height of each stake, the height of the surface under the stake was calculated, and finally the three-dimensional coordinate position of the surface of each tree and the topographic map of super sample plot were generated. These data constitute the secondary data of the dataset. This data set can provide detailed ground observation data for the establishment of real three-dimensional forest scene, the development and correction of various three-dimensional forest remote sensing models, and ground validation data for the extraction of airborne lidar forest parameters.
GUO Zhifeng, LIANG Dashuang, WANG Qiang, ZHANG Hao, CHEN Erxue, LIU Qingwang
China long-sequence surface freeze-thaw dataset——decision tree algorithm (1987-2009), is derived from the decision tree classification using passive microwave remote sensing SSM / I brightness temperature data. This data set uses the EASE-Grid projection method (equal cut cylindrical projection, standard latitude is ± 30 °), with a spatial resolution of 25.067525km, and provides daily classification results of the surface freeze-thaw state of the main part of mainland China. The data set is stored by year and consists of 23 folders, from 1987 to 2009. Each folder contains the day-to-day surface freeze-thaw classification results for the current year. It is an ASCII file with the naming rule: SSMI-frozenYYYY ***. Txt, where YYYY represents the year and *** represents the Julian date (001 ~ 365 / 366). The freeze-thaw classification result txt file can be opened and viewed directly with a text program, and can also be opened with ArcView + Spatial Analyst extension module or Arcinfo's Asciigrid command. The original frozen and thawed surface data was derived from daily passive microwave data processed by the National Snow and Ice Data Center (NSIDC) since 1987. This data set uses EASE-Grid (equivalent area expandable earth grid) as a standard format . China's surface freeze-thaw long-term sequence data set-The decision tree algorithm (1987-2009) attributes consist of the spatial-temporal resolution, projection information, and data format of the data set. Spatio-temporal resolution: the time resolution is day by day, the spatial resolution is 25.067525km, the longitude range is 60 ° ~ 140 ° E, and the latitude is 15 ° ~ 55 ° N. Projection information: Global equal-area cylindrical EASE-Grid projection. For more information about EASE-Grid projection, see the description of this projection in data preparation. Data format: The data set consists of 23 folders from 1987 to 2009. Each folder contains the results of the day-to-day surface freeze-thaw classification of the year, and is stored as a txt file on a daily basis. File naming rules: For example, SMI-frozen1994001.txt represents the surface freeze-thaw classification results on the first day of 1994. The ASCII file of the data set is composed of a header file and a body content. The header file consists of 6 lines of description information such as the number of rows, the number of columns, the coordinates of the lower left point of the x-axis, the coordinates of the lower left point of the y-axis, the grid size, and the value of the data-less area. Array, with columns as the priority. The values are integers, from 1 to 4, 1 for frozen, 2 for melting, 3 for desert, and 4 for precipitation. Because the space described by all ASCII files in this data set is nationwide, the header files of these files are unchanged. The header files are extracted as follows (where xllcenter, yllcenter and cellsize are in m): ncols 308 nrows 166 xllcorner 5778060 yllcorner 1880060 cellsize 25067.525 nodata_value 0 All ASCII files in this data set can be opened directly with a text program such as Notepad. Except for the header file, the main content is a numerical representation of the surface freeze-thaw state: 1 for frozen, 2 for melting, 3 for desert, and 4 for precipitation. If you want to display it with an icon, we recommend using ArcView + 3D or Spatial Analyst extension module to read it. During the reading process, a grid format file will be generated. The displayed grid file is the graphic representation of the ASCII code file. Reading method: [1] Add 3D or Spatial Analyst extension module in ArcView software, and then create a new View; [2] Activate View, click the File menu, select the Import Data Source option, the Import Data Source selection box pops up, select ASCII Raster in Select import file type: in this box, and a dialog box for selecting the source ASCII file automatically pops up Find any ASCII file in the data set and press OK; [3] Type the name of the Grid file in the Output Grid dialog box (a meaningful file name is recommended for later viewing), and click the path where the Grid file is stored, press Ok again, and then press Yes (to select an integer) Data), Yes (call the generated grid file into the current view). The generated file can be edited according to the Grid file standard. This completes the process of displaying the ASCII file as a Grid file. [4] During batch processing, you can use ARCINFO's ASCIIGRID command to write an AML file, and then use the Run command to complete in the Grid module: Usage: ASCIIGRID <in_ascii_file> <out_grid> {INT | FLOAT}
LI Xin
The dataset of airborne LiDAR mission in the Zhangye-Yingke flight zone on Jun. 20, 2008 included peak pulse data, full waveform data, CCD photos, DEM, DSM and DOM. The flight routes were as follows: {| ! flight route ! startpoint lat ! startpoint lon ! endpoint lat ! endpoint lon ! altitude (m) ! length (km) ! photos |- | 2 || 38°57′53.06″ || 100°27′22.19″ || 38°50′31.77″ || 100°22′48.36″ || 2150 || 15.1 || 40 |- | 3 || 38°57′49.52″ || 100°27′31.54″ || 38°50′28.23″ || 100°22′57.69″ || 2150 || 15.1 || 40 |- | 4 || 38°57′45.98″ || 100°27′40.88″ || 38°50′24.70″ || 100°23′07.00″ || 2150 || 15.1 || 80 |- | 5 || 38°57′42.44″ || 100°27′50.22″ || 38°50′21.16″ || 100°23′16.35″ || 2150 || 15.1 || 80 |- | 6 || 38°57′38.90″ || 100°27′59.57″ || 38°50′17.63″ || 100°23′25.68″ || 2150 || 15.1 || 79 |- | 7 || 38°57′35.36″ || 100°28′08.91″ || 38°50′14.09″ || 100°23′35.01″ || 2150 || 15.1 || 81 |- | 8 || 38°57′31.81″ || 100°28′18.25″ || 38°50′10.55″ || 100°23′44.34″ || 2150 || 15.1 || 80 |- | 9 || 38°57′28.27″ || 100°28′27.59″ || 38°50′07.01″ || 100°23′53.67″ || 2150 || 15.1 || 81 |- | 10 || 38°57′24.73″ || 100°28′36.94″ || 38°50′03.48″ || 100°24′03.00″ || 2150 || 15.1 || 80 |- | 11 || 38°57′21.19″ || 100°28′46.28″ || 38°49′59.95″ || 100°24′12.33″ || 2150 || 15.1 || 82 |- | 12 || 38°57′17.64″ || 100°28′55.62″ || 38°49′56.41″ || 100°24′21.66″ || 2150 || 15.1 || 80 |- | 13 || 38°57′14.10″ || 100°29′04.96″ || 38°49′52.87″ || 100°24′30.99″ || 2150 || 15.1 || 81 |- | 14 || 38°57′10.56″ || 100°29′14.30″ || 38°49′49.34″ || 100°24′40.32″ || 2150 || 15.1 || 79 |- | 15 || 38°57′07.01″ || 100°29′23.64″ || 38°49′45.80″ || 100°24′49.65″ || 2150 || 15.1 || 80 |}
NI Wenjian, BAO Yunfei, ZHOU Mengwei, WANG Tao, CHI Hong, FAN Fengyun, LIU Qingwang, PANG Yong, LI Shiming, HE Qisheng, Liu Qiang, LI Xin, MA Mingguo
The dataset of airborne WiDAS mission was obtained in the A'rou flight zone on Jul. 7, 2008. Due to cloud/cloud shadow influence, atmospheric correction could not be performed, and geometric registration was performed manually instead of automatic matching. Level-2B (after radiometric and manual geometric corrections) and mosaic images were available for users. For the visible near infrared band the resolution is 1.25m, Radiance was recorded (W/ (sr•m^2•nm);DN=Radiance*100000); for TIR band, the brightness temperature was recorded (℃; DN=Brightness_Temperature*100) . The flying time of each route was as follows: {| ! id ! flight ! relative height ! starttime ! endtime ! data size ! data state ! data quality ! ground targets |- | 1 || 6#1 || 1500m || 13:43:18 || 13:46:26 || 48 || incomplete || incomplete |- | 2 || 6#3 || 1500m || 13:52:26 || 13:55:18 || 43 || incomplete || incomplete |- | 3 || 6#5 || 1500m || 13:59:30 || 14:02:38 || 48 || incomplete || incomplete || A’rou freeze/thaw observation station |- | 4 || 6#7 || 1500m || 14:08:02 || 14:11:02 || 46 || incomplete || incomplete |}
Liu Qiang, XIAO Qing, Wen Jianguang, FANG Li, WANG Heshun, LI Bo, LIU Zhigang, LI Xin, MA Mingguo
The data set is from February 24, 2000 to December 31, 2004, with a resolution of 0.05 degrees, MODIS data, and the data format is .hdf. It can be opened with HDFView. The data quality is good. The missing dates are as follows: 2000 1 -54 132 219-230 303 2001 111 167-182 2002 079-086 099 105 2003 123 324 351-358 2004 219 349 The number after the year is the nth day of the year Pixel values are as follows: 0: Snow-free land 1-100: Percent snow in cell 111: Night 252: Antarctica 253: Data not mapped 254: Open water (ocean) 255: Fill An example of file naming is as follows: Example: "MOD10C1.A2003121.004.2003142152431.hdf" Where: MOD = MODIS / Terra 2003 = Year of data acquisition 121 = Julian date of data acquisition (day 121) 004 = Version of data type (Version 4) 2003 = Year of production (2003) 142 = Julian date of production (day 142) 152431 = Hour / minute / second of production in GMT (15:24:31) The corner coordinates are: Corner Coordinates: Upper Left (70.0000000, 54.0000000) Lower Left (70.0000000, 3.0000000) Upper Right (138.0000000, 54.0000000) Lower Right (138.0000000, 3.0000000) Among them, Upper Left is the upper left corner, Lower Left is the lower left corner, Upper Right is the upper right corner, and Lower Right is the lower right corner. The number of data rows and columns is 1360, 1020 Geographical latitude and longitude coordinates, the specific information is as follows: Coordinate System is: GEOGCS ["Unknown datum based upon the Clarke 1866 ellipsoid", DATUM ["Not specified (based on Clarke 1866 spheroid)", SPHEROID ["Clarke 1866", 6378206.4,294.9786982139006, AUTHORITY ["EPSG", "7008"]]], PRIMEM ["Greenwich", 0], UNIT ["degree", 0.0174532925199433]] Origin = (70.000000000000000, 54.000000000000000)
National Snow and Ice Data Center(NSIDC)
The project “The impact of the frozen soil environment on the construction of the Qinghai-Tibet Railway and the environmental effects of the construction” is part of the “Environmental and Ecological Science in West China” programme supported by the National Natural Science Foundation of China. The person in charge of the project is Wei Ma, a researcher at the Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences. The project ran from January 2002 to December 2004. Data collected in this project included the following: Monitoring data of the active layer in the Beiluhe River Basin (1) Description of the active layer in the Beiluhe River Basin (2) Subsurface moisture data from the Beiluhe River Basin, 2002.9.28-2003.8.10 (Excel file) * Site 1 - Grassland moisture data * Site 2 – Removed turf moisture data * Site 3 - Natural turf moisture data * Site 4 - Gravel moisture data * Site 5 - Insulation moisture data (3) Subsurface temperature data from the Beiluhe River Basin, 0207-0408 Excel file * Temperature data for the ballast surface * Temperature data for insulation materials * Temperature data for a surface without vegetation * Temperature data for a grassland surface * Temperature data for a grit and pebble surface Data on the impact of construction on the ecological environment were obtained at Fenghuoshan, Tuotuohe, and Wudaoliang. Sample survey included plant type, abundance, community coverage, total coverage, aboveground biomass ratio and soil structure. The moisture content at different depths of the soil was detected using a time domain reflectometer (TDR). A set of soil samples was collected at a depth of 0-100 cm at each sample site. An EKKO100 ground-penetrating radar detector was used to continuously sample 1-1.5 km long sections parallel to the road to determine the upper limit depth of the frozen soil. 3. Predicted data: The temperature of the frozen soil at different depths and times was predicted in response to temperature increases of 1 degree and 2 degrees over the next 50 years based on initial surface temperatures of -0.5, -1.5, -2.5, -3.5, and -4.5 degrees. 4. The frozen soil parameters of the Qinghai-Tibet Railway were as follows: location, railway mileage, total mileage (km), frozen soil type mileage, mileage of zones with an average temperature conducive to permafrost, frozen soil with high temperatures and high ice contents, frozen soils with high temperatures and low ice contents, frozen soils with low temperatures and high ice contents, frozen soils with low temperatures and low ice contents, and melting area.
MA Wei, WU Qingbai
This data is digitized from the "Zhangye Land Use Status Map" of the drawing. This map is a key scientific and technological research project of the "Seventh Five-Year Plan" of the country: "Three North" Shelter Forest Remote Sensing Comprehensive Survey, and one of the series maps of Ganqingning Type Area. The information is as follows: * Chief Editor: Wang Yimou * Deputy Editors: Feng Yushun, You Xianxiang, Shen Yuancun * Editors: Wang Xian, Wang Jingquan, Qiu Mingxin, Quan Zhijie, Mou Xindai, Qu Chunning, Yao Fafen, Qian Tianjiu, Huang Autonomy, Mei Chengrui, Han Xichun, Li Yujiu, Hu Shuangxi * Responsible Editor: Huang Meihua * Manuscript: Mou Xin-shi, Cui Sai-hua, Wang Xian. He Shouhua * Compiling: He Shouhua, Wang Xian, Quan Zhijie, Cui Saihua, Long Yaping, Mu Xinshi, He Shouhua, Mao Xiaoli, Cui Saihua, Wang Changhan * Editors: Feng Yushun and Wang Yimou * Qing Hua: Feng Yushun, Zhang Jingqiu, Yang Ping * Cartography: Feng Yushun, Yao Fafen, Wang Jianhua, Zhao Yanhua, Li Weimin * Cartographic unit: compiled by Desert Research Office of Chinese Academy of Sciences * Publishing House: Xi 'an Map Publishing House * Scale: 1: 500000 * Publication time: not yet available 1. File Format and Naming Data is stored in ESRI Shapefile format, including the following layers: Zhang Ye's landuse Map, River, Road, 2. Data Fields and Attributes Type number type face desert Paddy field 12 Irrigated field 13 dryland Non-irrigated field 131 Plain non-irrigated field Valley non-irrigated field Slope non-irrigated field, 133 slope dryland 134 dryland Terrace non-irrigated field ................. Please refer to the data document for details. 3. Projection information: Angular Unit: Degree (0.017453292519943295) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Beijing_1954 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000
WANG Yimou, YOU Xianxiang, SHEN Yuancun, FENG Yusun, WANG Xian, YAO Fafen, SHEN Yuancun, FENG Yusun, WANG Jianhua
This dataset: Editor-in-Chief: Hou Xueyu Drawing: Hou Xueyu, Sun Shizhou, Zhang Jingwei, He Miaoguang. Wang Yifeng, Kong Dezhen, Wang Shaoqing Publishing: Map Press Issue: Xinhua Bookstore Year: 1979 Scale: 1: 4,000,000 It took five years to complete from May 1972 to July 1976. In the process of drawing legends and mapping, referring to the vast majority of vegetation survey data (including maps and texts) after 1949 in China, we held more than a dozen mapping seminars involving researchers from inside and outside the institute. During the layout after the mapping work was completed, many new survey data were added, especially vegetation data in western Tibet. The nature of this map basically belongs to the current vegetation map, including two parts of natural vegetation and agricultural vegetation. The legend of natural vegetation is arranged according to the seven vegetation groups. They are mainly divided according to the appearance of plant communities and certain ecological characteristics. The concept of agricultural vegetation community, like the natural vegetation community, also has a certain life form (appearance, structure, layer), species composition and a certain ecological location. In 1990, the State Key Laboratory of Resources and Environmental Information Systems of the Institute of Geographical Sciences and Resources, Chinese Academy of Sciences completed the digitization of this map, and wrote relevant data description documents. The digitized data also adopt equal product cone projection and can be converted into other projections by GIS software. This data includes a vector file in e00 format, a Chinese vegetation coding design description, a dataset description, a vegetation data layer attribute data table, and a scanned "People's Republic of China Vegetation Map-Brief Description" and other files. Data projection: Projection: Albers false_easting: 0.000000 false_northing: 0.000000 central_meridian: 110.000000 standard_parallel_1: 25.000000 standard_parallel_2: 47.000000 latitude_of_origin: 0.000000 Linear Unit: Meter (1.000000) Geographic Coordinate System: Unknown Angular Unit: Degree (0.017453292519943299) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Unknown Spheroid: Clarke_1866 Semimajor Axis: 6378206.400000000400000000 Semiminor Axis: 6356583.799999999800000000 Inverse Flattening: 294.978698213901000000
HOU Xueyu, SUN Shizhou, ZHANG Jingwei, HE Miaoguang, WANG Yifeng, KONG Dezhen, WANG Shaoqing
The project on the impact of agricultural development in northwest Lvzhou on watershed scale water cycle and eco-environmental effects belongs to the major research program of "Environmental and Ecological Science in Western China" sponsored by the National Natural Science Foundation. The person in charge is Professor Kang Shaozhong of Northwest China Agriculture and Forestry University. The project runs from January 2003 to December 2005. Data collected from this project: soil experimental data of Shiyang River Basin, including: 1. Saturated hydraulic conductivity (excel table): includes four fields: number, sampling point, measured value and saturated hydraulic conductivity. 2. Conductivity (excel table): including number, sampling point, measured value, temperature, temperature correction value and conductivity. 3. Original indoor infiltration data (excel table): including number, time, cumulative value and reading. 4. Field Infiltration Data (excel Form): Including Number, Time, Cumulative Value and Reading. 5. Sampling point of horizontal infiltration data (excel form): including time, measuring cylinder (ml), wetting peak (ml), wet weight, dry weight, box weight and distance. 6. soil particle analysis (excel form): including numbers, > 0.25 mm, < 0.05 mm, < 0.01 mm, < 0.005 mm, < 0.001 mm. 7. Soil moisture characteristic curve (excel table): including soil weight and drying weight when the pressure of pressure membrane instrument is 0,0.05,0.1,0.3,0.5,0.8,1.5,3,5,14.4. 8. Organic matter (excel form): including number, sampling point, amount of soil taken (G), titration amount (ml) 9. Sampling Point Coordinates (excel Form)
KANG Shaozhong
The project studying the evolution pattern and development trend of the arid environment in western China was a major research component of the project Environmental and Ecological Science for West China, which was funded by the National Natural Science Foundation of China. The leading executive of the project was Academician Zhisheng An from the Institute of Earth Environment of the Chinese Academy of Sciences. The project ran from January 2002 to December 2004. The data collected by the project include the following: 1. History and variability data for arid regions in western China: 1) Chinese Loess Plateau mass accumulation rate data (3600-0 kyr BP): Fields include age and mass accumulation rate (MAR) (txt file). 2) Chinese Loess Plateau grain size and magnetic susceptibility data (3600-0 kyr BP): Fields include age, stacked mean grain size, and stacked magnetic susceptibility (txt file). 2. Sporopollen content data of different loess strata since 12 kyr BP in the Yaozhou District of Shanxi Province (excel table): The distributions of 27 species of sporopollen (0-397 cm) from 67 different layers of loess samples are included. 3. 10Be record data (table) 10Be concentration, magnetic susceptibility and bulk density data of loess with different thicknesses (79.67- 0.09 kyr BP). 4. Simulation data on the modulation of the East Asian monsoon resulting from orbital variability driven by the uplift of the Tibetan Plateau: ah0-sum.nc nc file, hh0-sum.nc nc file, jfh0-sum.nc nc file, kdh0-sum.nc nc file, lfh0-sum.nc nc file, mask.nc nc file, phis.nc nc file.
AN Zhisheng
This glacial lake inventory is jointly supported by the International Centre for Integrated Mountain Development (ICIMOD) and United Nationenvironment Programme / Regional Resourc Centre, Asia and The Pacific (UNEP / RRC-AP). 1. The glacial lake inventory refers to remote sensing data such as Landsat 4/5 (MSS, TM1982 / 1985/1984/1999), Landsat 7 (ETM +), IRS-1C, LISS-III (1995IRS-1C), (1997 IRS-1D), etc. It reflects the current status of glacial lakes in the region in 2000. 2. Glacial lake inventory coverage: India-Uttaranchal. 3. The content of the glacial lakeinventory includes: glacial lake inventory, glacial lake type, glacial lake orientation, glacial lake width, glacial lake area, glacial lake depth, glacial lake length and other attributes. 4. Projection parameters: Projection: Universal Transverse Mercator (UTM) Ellipsoid: WGS84 Datum: WGS84 Ellipsoid Parameters: a = 6378137.000 1 / f = 298.257223563 Northem Hemisphere: Yes MinimumX: 221473.969 MinimumY: 3300590.500 MaximumX: 513943.969 MaximumY: 3488960.500 Zone: 44 For detailed data description, please refer to data files and reports.
Pradeep Kumar Mool, WU Lizong, Samjwal Ratna Bajracharya Samjwal Ratna Bajracharya, Basanta Shrestha
Impact of Climate and Glacier Evolution in Southwest Monsoon Region on Resources and Sustainable Development in Lijiang-Yulong Snow Mountain Region Project is a major research program of "Environmental and Ecological Science in Western China" sponsored by the National Natural Science Foundation. The person in charge is a researcher from He Yuanqing, Institute of Environment and Engineering in Cold and Arid Regions, Chinese Academy of Sciences. The project runs from January 2004 to December 2006. This project collects data: the data of Yulong Snow Mountain Glacier and Environment Observation and Research Station are compiled in word document, and the data content includes: 1. Material Balance of Baishui Glacier No.1 from September to December 2008 (Profile, Lever, Accumulation and Dissipation) 2.Changes of Baishui Glacier No.1 in Yulong Snow Mountain from 1997 to 2008 (date, end elevation, end advancing and retreating distance, south advancing and retreating distance) 3. Monthly Average Flow Statistics of Mujia Station from 1979 to 2003 (Annual Average Flow, Annual Maximum Flow, Annual Maximum Time, Annual Minimum Flow, and Annual Minimum Time) 4. Meteorological data of the test station of Yulong Snow Mountain Glacier Observation Room From 2000 to 2008, the daily average temperature (℃), daily precipitation (mm), daily average relative humidity, daily average sunshine hours, daily air pressure value and daily average wind speed of the base camp weather station. From 2006 to 2008, Ganhaizi Meteorological Station daily average temperature (℃), daily precipitation (mm), daily average relative humidity, daily average sunshine hours, daily air pressure value and daily average wind speed In 2008, the day-to-day average temperature table (℃), day-to-day precipitation (mm), day-to-day average relative humidity, day-to-day average sunshine hours, day-to-day air pressure value and day-to-day average wind speed in the Baishui No.1 glacier accumulation area of Yulong Snow Mountain. In 2008, the day-to-day average temperature table (℃), day-to-day precipitation (mm), day-to-day average relative humidity, day-to-day average sunshine hours, day-to-day air pressure, and day-to-day average wind speed at the end of glacier Baishui No.1 in Yulong Snow Mountain were recorded. Dew point temperature of Ganhaizi from 2006 to 2008 Daily average CO2 content (ppm) at Ganhaizi Meteorological Station from 2006 to 2007 Air Water Vapor Pressure (kPa) at Glacier Terminal Meteorological Station Air Water Vapor Pressure (kPa) of Meteorological Station in Glacier Accumulation Area 5. glacier ice Temperature Data of Baishui No.1, Yulong Snow Mountain Measured resistance values of ice temperature holes at measuring points 1, 2 and 3
HE Yuanqing
These data are a digitization of the frozen soil distribution map of the Map of the Glaciers, Frozen Ground and Deserts in China (1:4,000,000). Considering the unification with the global frozen soil classification system, the permafrost is divided into the following five types: (1) Discontinuous permafrost: continuous coefficient 50%-90% (2) Island permafrost: continuous coefficient <50% (3) Plateau discontinuous permafrost: continuous coefficient 50%-90% (4) Plateau island permafrost: continuous coefficient 50%-90% (5) Mountain permafrost The compilation basis of the frozen soil map includes (1) the measured field survey data and exploration of frozen soil; (2) aerial image and satellite image interpretation; (3) TOPO30 1-km resolution ground elevation data; and (4) and temperature and ground temperature data. The distribution of frozen soil on the Tibetan Plateau adopted the research results of Zhuotong Nan et al. (2002). Using the average annual temperature data of 76 boreholes along the Qinghai-Tibet Highway, a statistical regression analysis was performed to obtain the relation between annual mean ground temperature, latitude and elevation. Based on the relation combined with GTOPO30 elevation data (global 1-km digital elevation model data developed by the Earth Resources Observation and Technology Center of the U.S Geological Survey), the annual average ground temperature distribution over the entire Tibetan Plateau was simulated. Taking the annual average ground temperature of 0.5 °C as the boundary between permafrost and seasonal frozen soil and the Map of Snow Ice and Frozen Ground in China (1:4,000,000) (Yafeng Shi, et al., 1988) as a reference, the boundary between the plateau discontinuous permafrost and plateau island permafrost was determined. In addition, taking the Distributions Map of Permafrost in Daxiao Hinganling Northeast China (Dongxin Guo, et al. 1981), the Distribution Map of Permafrost and Ground Ice in Circum-Arctic (Brown et al. 1997) and the latest field data as references, the permafrost boundary of northeast China has been revised; the mountain permafrost boundary in the northwest mostly adopted the boundary delineated in the Map of Snow Ice and Frozen Ground in China (1:4,000,000) (Yafeng Shi, et al., 1988). According to this data set, permafrost area in China is approximately 1.75×106 km2, accounting for 18.25% of the territory of China, among which the mountain permafrost area is 0.29×106 km2, which accounts for 3.03% of the territory of China. For more information, please refer to the Map of the Glaciers, Frozen Ground and Deserts in China (1:4,000,000) specification (Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2006).
WANG Tao, SHI Yafeng, GUO Dongxin
This dataset uses daily temperature data from SMMR (1978-1987), SSM/I (1987-2009) and SSMIS (2009-2015). It is generated by the dual-index (TB, 37v, SG) freeze-thaw discrimination algorithm. The classification results include the frozen surface, the thawed surface, the deserts and water bodies. The data coverage is the main part of China’s mainland, with a spatial resolution of 25.067525 km via the EASE-Grid projection method, and it is stored in ASCIIGRID format. All the ASCII files in this data set can be opened directly with a text program such as Notepad. Except for the head file, the body content is numerically characterized by the freeze/thaw status of the surface soil: 1 for frozen, 2 for thawed, 3 for desert, and 4 for precipitation. If you want to use the icon for display, we recommend using the ArcView + 3D or Spatial Analyst extension module for reading; in the process of reading, a grid format file will be generated, and the displayed grid file is the graphical expression of the ASCII file. The read method comprises the following. [1] Add the 3D or Spatial Analyst extension module to the ArcView software and then create a new View. [2] Activate View, click File menu, and select the Import Data Source option. When the Import Data Source selection box pops up, select ASCII Raster in the Select import file type box. When the dialog box for selecting the source ASCII file automatically pops up, click to find any ASCII file in the data set, and then press OK. [3] Type the name of the Grid file in the Output Grid dialog box (it is recommended that a meaningful file name is used for later viewing) and click the path to store the Grid file, press OK again, and then press Yes (to select integer data) and Yes (to put the generated grid file into the current view). The generated files can be edited according to the Grid file standard. This completes the process of displaying an ASCII file into a Grid file. [4] In the batch processing, the ASCIGRID command of ARCINFO can be used to write AML files, and then use the Run command to complete the process in the Grid module: Usage: ASCIIGRID <in_ascii_file> <out_grid> {INT | FLOAT}. The production of this data is supported by the following Natural Science Foundation Projects: Environmental and Ecological Science Data Center of West China (90502010), Land Data Assimilation System of West China (90202014) and Active and Passive Microwave Radiation Transmission Simulation and Radiation Scattering Characteristics of the Frozen Soil (41071226).
LI Xin
This dataset is the spatial distribution map of the marshes in the source area of the Yellow River near the Zaling Lake-Eling Lake, covering an area of about 21,000 square kilometers. The data set is classified by the Landsat 8 image through an expert decision tree and corrected by manual visual interpretation. The spatial resolution of the image is 30m, using the WGS 1984 UTM projected coordinate system, and the data format is grid format. The image is divided into five types of land, the land type 1 is “water body”, the land type 2 is “high-cover vegetation”, the land type 3 is “naked land”, and the land type 4 is “low-cover vegetation”, and the land type 5 is For "marsh", low-coverage vegetation and high-coverage vegetation are distinguished by vegetation coverage. The threshold is 0.1 to 0.4 for low-cover vegetation and 0.4 to 1 for high-cover vegetation.
KHROMOVA Tatiana,
These data are digitized for the Geocryological Regionalization and Classification Map of the Frozen Soil in China (1:10 million) (Guoqing Qiu et al., 2000; Youwu Zhou et al., 2000), adopting a geocryological regionalization and classification dual series system. The geocryological regionalization system and classification system are used on the same map to reflect the commonality and individuality of the formation and distribution of frozen soil at each level. The geocryological regionalization system consists of three regions of frozen soil: (1) the frozen soil region of eastern China; (2) the frozen soil region of northwestern China; and (3) the frozen soil region of southwestern China (Tibetan Plateau). Based on the three large regions, 16 regions and several subregions are further divided. In the division of the geocryological boundary in the frozen soil area, the boundary between major regions I and III mainly consults the results of Bingyuan Li (1987). The boundary between major regions II and III is the northern boundary of the Tibetan Plateau, which is the Kunlun Mountains-Altun Mountains-Northern Qilian Mountains and the piedmont line. The boundary between major regions I and II is in the area of Helan Mountain-Langshan Mountain. The boundary of the secondary region is divided by the geomorphological conditions in regions II and III. However, in region I, it is mainly divided by the ratio of the annual temperature range A to the annual mean temperature T, and the frozen depths of various regions are taken into consideration. The classification system is divided into 8 types based on the continuity of frozen soil, the time of existence of frozen soil and the seasonal frozen depth. The various classifications of boundaries are mainly taken from the "Map of Snow, Ice and Frozen Ground in China" (1:4 million) (Yafeng Shi et al., 1988) and consult some new materials, whereas the seasonal frozen soil boundary is mainly based on the weather station data. The definitions of each classification are as follows: (1) Large permafrost: the continuous coefficient is 90%-70%; (2) Large-island permafrost: the continuous coefficient is 70%-30%; (3) Sparse island-shaped permafrost: the continuous coefficient is <30%; (4) Permafrost in the mountains; (5) Medium-season seasonal frozen soil: the maximum seasonal frozen depth that can be reached is >1 m; (6) Shallow seasonal frozen soil: the maximum seasonal frozen depth that can be reached is <1 m; (7) Short-term frozen soil: less than one month of storage time; and (8) Nonfrozen soil. According to the data, China's permafrost areas sum to approximately 2.19 × 106 km², accounting for 22.83% of China's territory. Among those areas, the mountain permafrost is found over 0.42×106 km2, which is 4.39% of the territory of China. The seasonal frozen soil area is approximately 4.76×106 km², accounting for 49.6% of China's territory, and the instantaneous frozen soil area is approximately 1.86×106 km², i.e., 19.33% of China's territory. For more information, please see the references (Youwu Zhou et al., 2000).
GUO Dongxin, QIU Guoqing
The assessment of changes in the atmospheric water cycle and the associated impacts in a key area of the Tibetan Plateau under the background of the global warming was a major component of the research project “The Environmental and Ecological Science of West China” run by the National Natural Science Foundation of China. The leading executive of the project was Xiangde Xu from the Chinese Academy of Meteorological Sciences. The project ran from January 2006 to December 2008. The following data were collected by the project of the Sino-Japan Joint Research Center of Meteorological Disaster (JICA Project): 1. Observation category, time period and number of stations 1) JICA AWS data: From January to July of 2008, 73 automatic stations (including 5 automatic stations of the Chinese Academy of Sciences) collected data in Tibet, Yunnan, Sichuan and other provinces or autonomous regions. 2) JICA GPS water vapour data: From January to October of 2008, 24 observation stations collected data in Tibet, Yunnan, Sichuan and other provinces or autonomous regions. 3) JICA encrypted observation GPS sonde data: From March to July of 2008, observations were made in Tibet, Yunnan, Sichuan and other provinces or autonomous regions (detailed observation time and location data can be found in the data catalogue). 2. Observation categories, data content 1) GPS water vapour Data content: serial number, station name (Chinese), station number, longitude, latitude, altitude, year, month, day, time, surface pressure, surface air temperature, relative humidity, total delay (m), precipitation (cm) (Measurement interval: 1 hour). 2) GPS encrypted sonde Data content: air pressure P, temperature T, relative humidity RH, V component, U component, vertical height H, dew point temperature Td, water vapour content Mr, wind direction Wd, wind speed Ws, longitude Lon, latitude Lat, radar height RdH. A value of "-999.90" means no observation data. 3) AWS Data content: station number, longitude, latitude, elevation, site level, total cloud volume, wind direction, wind speed, sea level pressure, 3-hour pressure variable, past weather 1, past weather 2, 6-hour precipitation, low cloud form, low cloud volume, low cloud height, dew point, visibility, current weather, temperature, medium cloud form, high cloud form, 24-hour temperature variable, 24-hour pressure variable. Project Science Advisers: Guoguang Zheng, Xiaofeng Xu, Xiuji Zhou, Zechun Li, Jifan Niu, Jianmin Xu, Lianshou Chen, Dahe Qin, Yihui Ding Project Superintendent: Jixin Yu Project Executives: Renhe Zhang, Xiangde Xu Data set hosting organizations: Chinese Academy of Meteorological Sciences, JICA Project Implementation Expert Group, State Key Laboratory of Severe Weather, JICA Project Implementation Office. Collaborative organizations involved in the production of the data set: Chinese Academy of Meteorological Sciences, State Key Laboratory of Severe Weather, National Satellite Meteorological Center, The Research Center for Atmospheric Sounding Techniques, National Meteorological Center, National Meteorological Information Center, National Climate Center, Sichuan Meteorological Department, Yunnan Meteorological Department, Tibet Autonomous Region Meteorological Department, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Tianjin Meteorological Department. Data set implementation organizations: Beijing Headquarters of JICA Project; JICA Project Sub-center in Sichuan Province, Yunnan Province, Tibet Autonomous Region and Institute of Tibetan Plateau Research, Chinese Academy of Sciences.
XU Xiangde
The data set includes 1. permaice (map of frozen soil types), 2. subsea (subsea boundary vectorgraph), 3. treeline (timberline vectorgraph), 4. nhipa (grid map) and 5. llipa (grid map). Permaice includes the following attribute fields: Num_code (frozen soil attribute code), Combo (frozen soil attribute), extent (frozen soil coverage) and content (ice content). The attribute comparison is as follows. (1) Frozen soil attribute comparison table: 0 (No information) 1 - chf (Continuous permafrost extent with high ground ice content and thick overburden) 2 - dhf (Discontinuous permafrost extent with high ground ice content and thick overburden) 3 - shf (Sporadic permafrost extent with high ground ice content and thick overburden) 4 - ihf (Isolated patches of permafrost extent with high ground ice content and thick overburden) 5 - cmf (Continuous permafrost extent with medium ground ice content and thick overburden) 6 - dmf (Discontinuous permafrost extent with medium ground ice content and thick overburden) 7 - smf (Sporadic permafrost extent with medium ground ice content and thick overburden) 8 - imf (Isolated patches of permafrost extent with medium ground ice content and thick overburden) 9 - clf (Continuous permafrost extent with low ground ice content and thick overburden) 10 - dlf (Discontinuous permafrost extent with low ground ice content and thick overburden) 11 - slf (Sporadic permafrost extent with low ground ice content and thick overburden) 12 - ilf (Isolated patches of permafrost extent with low ground ice content and thick overburden) 13 - chr (Continuous permafrost extent with high ground ice content and thin overburden and exposed bedrock) 14 - dhr (Discontinuous permafrost extent with high ground ice content and thin overburden and exposed bedrock) 15 - shr (Sporadic permafrost extent with high ground ice content and thin overburden and exposed bedrock) 16 - ihr (Isolated patches of permafrost extent with high ground ice content and thin overburden and exposed bedrock) 17 - clr (Continuous permafrost extent with low ground ice content and thin overburden and exposed bedrock) 18 - dlr (Discontinuous permafrost extent with low ground ice content and thin overburden and exposed bedrock) 19 - slr (Sporadic permafrost extent with low ground ice content and thin overburden and exposed bedrock) 20 - ilr (Isolated patches of permafrost extent with low ground ice content and thin overburden and exposed bedrock) 21 - g (Glaciers) 22 - r (Relict permafrost) 23 - l (Inland lakes) 24 - o (Ocean/inland seas) 25 - ld (Land) (2)The frozen soil coverage attribute comparison table c = continuous (90-100%) d = discontinuous (50-90%) s = sporadic (10-50%) i = isolated patches (0-10%) (3)The ice content comparison table h = high (>20% for "f" landform codes) (>10% for "r" landform codes) m = medium (10-20%) l = low (0-10%) ------------------------------------------------------------ Projection of the shapefiles is: PROJCS["Sphere_ARC_INFO_Lambert_Azimuthal_Equal_Area", GEOGCS["GCS_Sphere_ARC_INFO", DATUM["Sphere_ARC_INFO", SPHEROID["Sphere_ARC_INFO",6370997.0,0.0]], PRIMEM["Greenwich",0.0], UNIT["Degree",0.0174532925199433]], PROJECTION["Lambert_Azimuthal_Equal_Area"], PARAMETER["False_Easting",0.0], PARAMETER["False_Northing",0.0], PARAMETER["longitude_of_center",180.0], PARAMETER["latitude_of_center",90.0], UNIT["Meter",1.0]] Projection for the raster (*.byte) files is: Projection: Lambert Azimuthal Units: meters Spheroid: defined Major Axis: 6371228.00000 Minor Axis: 6371228.000 Parameters: radius of the sphere of reference: 6371228.00000 longitude of center of projection: 0 latitude of center of projection: 90 false easting (meters): 0.00000 false northing (meters): 0.00000
O. Ferrians, J. A. Heginbottom, E. Melnikov, ZHANG Tingjun, RAN Youhua
This data set includes the observation data of the automatic meteorological station from January 2008 to September 2009 in Linze Inland River Basin Comprehensive station. The station is located in Linze County, Zhangye City, Gansu Province, with longitude and latitude of 100 ° 08 ′ e, 39 ° 21 ′ N and altitude of 1382m. The observation items include: atmospheric temperature and humidity gradient observation (1.5m and 3.0m), wind speed (2.2m and 3.7m), wind direction, air pressure, precipitation, net radiation and total radiation, carbon dioxide (2.8m and 3.5m), soil tension, multi-layer soil temperature (20cm, 40cm, 60cm, 80cm, 120cm and 160cm) and soil heat flux (5cm, 10cm and 15cm). Please refer to the instruction document published with the data for specific header and other information.
Zhang Zhihui, ZHAO Wenzhi, MA Mingguo
The phased array type l-land synthetic aperture radar (PALSAR) is a phased array L-band SAR sensor mounted on alos satellite. The sensor has three observation modes: high resolution, scanning synthetic aperture radar and polarization, which make it possible to obtain a wider ground width than the general SAR. At present, there are 13 scenes of ALOS pallsar data in Heihe River Basin. The coverage and acquisition time are as follows: 1 scene in the northeast of Zhangye City, HH / HV polarization, 2008-04-25; 2 scenes in Binggou basin + Arjun encrypted observation area, HH / HV polarization, 2008-05-122008-06-27; 2 scenes in Dayekou basin + Yingke oasis intensified observation area, HH / HV polarization, 2008-05-122008-06-27; observation station encrypted observation area Survey area + Linze station densified observation area + Linze grassland densified observation area 2 scenes, HH / HV polarization, time 2008-05-122008-06-27; Linze station densified observation area 1 scene, HH / HV polarization, time 2008-05-12; Binggou basin densified observation area 1 scene, HH / HV polarization, time 2008-07-14; bindukou densified observation area 4 scenes, 2008-04-25 2 scenes, HH / HV polarization, 2008-06-10 2 scenes, HH pole Change. The product level is L1 without geometric correction. The alos PALSAR remote sensing data set of Heihe comprehensive remote sensing joint experiment was obtained from JAXA by Dr. Takeo tadono, researcher Ye Qinghua and Professor Shi Jiancheng (the cooperation project between Qinghai Tibet Institute of Chinese Academy of Sciences and JAXA). (Note: "+" means to overwrite at the same time)
Japan Aerospace Exploration Agency
Proba (project for on board autonomy) is the smallest earth observation satellite launched by ESA in 2001. Chris (compact high resolution imaging Spectrometer) is the most important imaging spectrophotometer on the platform of proba. It has five imaging modes. With its excellent spectral spatial resolution and multi angle advantages, it can image land, ocean and inland water respectively for different research purposes. It is the only on-board sensor in the world that can obtain hyperspectral and multi angle data at the same time. It has high spatial resolution, wide spectral range, and can collect rich information in biophysics, biochemistry, etc. At present, there are 23 scenes of proba Chris data in Heihe River Basin. The coverage and acquisition time are as follows: 4 scenes in Arjun dense observation area, 2008-11-18, 2008-12-05, 2009-03-29, 2009-05-22; 1 scene in pingdukou dense observation area, 2009-07-13; 7 scenes in Binggou basin dense observation area, 2008-11-19, 2008-11-26, 2008-12-06, 2009-01-10, 2009-03-04, 2009-03-30, 2009-03-31; dayokou basin dense observation area, 2009-07-13 There are two views in the observation area, 2008-10-23, 2009-06-08; one in Linze area, 2008-06-23; one in Minle area, 2008-10-22; seven in Yingke oasis dense observation area, 2008-04-30, 2008-05-09, 2008-06-04, 2008-07-01, 2008-07-19, 2009-05-31, 2009-08-10. The product level is L1 without geometric correction. Except that there are only four angles for the images of 2009-03-29 and 2009-05-24 in the Arjun encrypted observation area, each image has five different angles. The remote sensing data set of the comprehensive remote sensing joint experiment of Heihe River, proba Chris, was obtained through the "dragon plan" project (Project No.: 5322) (see the data use statement for details).
LI Xin
ALOS PRISM dataset includes 13 scenes; one covers the A'rou foci experimental area on Mar. 19, 2008, one covers the Haichaoba on Mar. 19, 2008, one covers the Biandukou foci experimental area on Apr. 17, 2008, and one covers the Linze grassland and Linze station foci experimental areas on Apr. 22, 2008. The data version is LB2, which was released after radiometric correction and geometric correction.
Japan Aerospace Exploration Agency
BJ-1 dataset includes 11 scenes, covering the upper and middle reaches of the Heihe river basin, which were acquired on 10-21-2007, 11-19-2007, 01-09-2008, 03-03-2008, 04-04-2008, 04-16-2008, 05-01-2008, 05-16-2008, 07-01-2008, 07-06-2008 and 07-08-2008. The sensor was MSI, substar resolution was 32m, fov was 22.06°, the orbit was 686km high and the dip angle was 98.1725°, the focal distance was 150mm, CCD pixel was 7μm, the near infrared band was 760nm-900nm, red wave band was 630nm-690nm and green wave band was 520nm-620nm. The data version is Level 2, which was released after geometric correction. BJ-1 dataset was acquired from "Dragon Programme" (grant number: 5322).
LI Xin
Advanced along orbit scanning radiometer (AATSR) is an advanced tracking scanning radiometer sensor mounted on the European Space Agency ENVISAT satellite. It is one of many high-precision and stable infrared radiometers for retrieving sea surface temperature (SST). Its accuracy can reach 0.3k, and it can also be used to record meteorological data. AATSR is a multi-channel imaging radiometer. Its main goal is to provide global ocean surface temperature with high accuracy and stability for monitoring the earth's climate change. At present, there are 38 ENVISAT AATSR images in Heihe River Basin. The acquisition time is 2008-05-17 (2 scenes), 2008-05-27 (2 scenes), 2008-05-30 (2 scenes), 2008-06-02 (2 scenes), 2008-06-12 (2 scenes), 2008-06-15 (2 scenes), 2008-06-18 (2 scenes), 2008-06-21 (2 scenes), 2008-07-04 (2 scenes), 2008-07-072008-07-102008-07-172008-07-202008-07-232008-07-262008-08-022008-08-052008-08-082008 -08-11,2008-08-14,2008-08-21,2008-08-24,2008-08-27,2008-08-30,2008-09-06,2008-09-12,2008-09-15,2008-09-18,2008-09-25。 The product level is L1B, which has been corrected by radiation but not by geometry. The ENVISAT AATSR remote sensing data set of Heihe comprehensive remote sensing joint test was obtained through the China EU "dragon plan" project (Project No.: 5322) (see the data use statement for details).
LI Xin
The Map of Permafrost on the Qinghai-Tibet Plateau (1:3,000,000) (Shude Li and Guodong Cheng, 1996) was made by the State Key Laboratory of Frozen Soil Engineering, LIGG, CAS (currently called the Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences). It was based on first-hand information from the study of frozen soil and previous research papers and literature. By detailed study and consultation of aerial photographs, satellite images, the Permafrost Map along the Qinghai-Tibet Highway (1:600,000) (Boliang Tong, et al., 1983), Geomorphological Map of the Qilian Mountains (1:1,000,000) (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 1985), Natural Landscape Map of Qinghai-Tibetan Plateau (1:3,000,000) (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 1990), Quaternary Glacial Distribution Map of the Qinghai-Tibetan Plateau (1:3,000,000) (Bingyuan Li and Jijun Li, 1991), Frozen Soil Remote Sensing Map of the Western Channel Project of the South-North Water Diversion in the Region of the Tongtian-Yalong Rivers (1:500,000) (Lanzhou Institute of Glaciology and Cryopedology, Chinese Academy of Sciences, 1995), and Map of Snow, Ice, Frozen Ground in China (1:4,000,000) (Yafeng Shi and Desheng Mi, 1988), with editing on 1,000,000 aerial survey topographic maps, and the 1:3,000,000 Map of Permafrost on the Qinghai-Tibetan Plateau was then generated. It was later digitized by Zhuotong Nan of the Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences. The data include: 1) Digitized distribution map of frozen soil on the Qinghai-Tibetan Plateau 2) Scanned map of frozen soil map on the Qinghai-Tibetan Plateau The types of frozen soil in the digitized frozen soil map include: 0. Seasonally frozen ground; seasonal frozen soil 1. Permafrost 2. Island permafrost; 3. Continuous permafrost;
CHENG Guodong, LI Shude, NAN Zhuotong, TONG Boliang
Chinese Cryospheric Information System is a comprehensive information system for the management and analysis of Chinese Cryospheric data. The establishment of Chinese Cryospheric Information System is to meet the needs of earth system science, to provide parameters and validation data for the development of response and feedback model of frozen soil, glacier and snow cover to global change under GIS framework; on the other hand, it is to systemically sort out and rescue valuable cryospheric data, to provide a scientific, efficient and safe management and division for it Analysis tools. The basic datasets of the Tibet Plateau mainly takes the Tibetan Plateau as the research region, ranging from longitude 70 -- 105 ° east and latitude 20 -- 40 ° north, containing the following types of data: 1. Cryosphere data. Includes: Permafrost type (Frozengd), (Fromap); Snow depth distribution (Snowdpt) Quatgla (Quatgla) 2. Natural environment and resources. Includes: Terrain: elevation, elevation zoning, slope, slope direction (DEM); Hydrology: surface water (Stram_line), (Lake); Basic geology: Quatgeo, Hydrogeo; Surface properties: Vegetat; 4. Climate data: temperature, surface temperature, and precipitation. 3. Socio-economic resources (Stations) : distribution of meteorological Stations on the Tibetan Plateau and it surrounding areas. 4. Response model of plateau permafrost to global change (named "Fgmodel"): permafrost distribution data in 2009, 2049 and 2099 were projected. Please refer to the following documents (in Chinese): "Design of Chinese Cryospheric Information System.doc", "Datasheet of Chinese Cryospheric Information System.DOC", "Database of the Tibetan Plateau.DOC" and "Database of the Tibetan Plateau 2.DOC".
LI Xin
The research area is located in the middle section o the northern slope of the Tianshan Mountains. The research area extends from Wusu in the Tacheng District of Xinjiang in the west to Mulei County in Changji Prefecture in the east. It is approximately 500 km long from east to west. The vertical vegetation gradient on the northern slope of the Tianshan Mountains can be divided into six different belts: alpine cushion vegetation belt (>3400 m), sub-alpine meadow belt (3400~2700 m), mid-mountain forest belt (2700~1720 m), forest steppe belt (1720~1300 m), semi-desert belt (1300~700 m) and typical desert belt (<700 m). Based on the characteristics of the vertical vegetation belts on the northern slope of the Tianshan Mountains, five sedimentary sections with different elevations, different vegetation belts and different sedimentary ages were selected for analysis. Five mid-late Holocene sections were measured to calculate the composite dissimilarity index of sporopollen, and the index was used to explain the sporopollen diversity. The index was then combined with integrated multiple analysis data, such as particle size, magnetic susceptibility, and ignition loss, and the changes in biodiversity and environmental characteristics since the mid-late Holocene in the area were assessed. The data include the following: 1. Sporopollen grain number data for the Daxigou section (8-110 cm, a total of 52 layers were analysed for sporopollen grain number, 3640±60 a BP to 890±60 a BP) 2. Sporopollen grain number data for the Xiaoxigou section (0-90 cm, a total of 38 layers were analysed for sporopollen grain number, 3240±60 a BP) 3. Sporopollen grain number data for the Huashuwozi section (0-106 cm, a total of 52 layers were analysed for sporopollen grain number, 2170±185 a BP to 450±155 a BP) 4. Sporopollen grain number data for the Sichanghu section (10-84 cm, a total of 19 layers were analysed for sporopollen grain number, 1000±50 a BP to 665±65 a BP) 5. Sporopollen grain number data for the Dongdaohaizi section (0-190 cm, a total of 64 layers were analysed for sporopollen grain number, 4500±310 a BP to 305±130 a BP) For detailed descriptions of the data, please refer to the following study: "Palaeo-biodiversity at the Northern Piedmont of Tianshan Mountains in Xinjiang During the Middle to Late Holocene"
NI Jian
This glacial lake inventory receives joint support from the International Centre for Integrated Mountain Development (ICIMOD) and United Nations Environment Programme/Regional Resource Centre, Asia and the Pacific (UNEP/RRC-AP). 5. This glacial lake inventory referred to Landsat 4/5 (MSS and TM), SPOT(XS), IRS-1C/1D(LISS-III) and other remote sensing data. It reflects the current situation of glacial lakes with areas larger than 0.01 km2 in 2004. 6. Glacial Lake Inventory Coverage: Yamuna basin, Ravi basin, Chenab basin, Satluj River Basin and others. 7. The Glacial Lake Inventory includes glacial lake inventory, glacial lake type, glacial lake width, glacial lake orientation, glacial lake length from the glacier and other attributes. 8. Projection parameter: Projection: Albers Equal Area Conic Ellipsoid: WGS 84 Datum: WGS 1984 False easting: 0.0000000 False northing: 0.0000000 Central meridian: 82° 30’E Central parallel: 0° 0’ N Latitude of first parallel: 20° N Latitude of second parallel: 35° N For a detailed data description, please refer to the data file and report.
International Centre for Integrated Mountain Development (ICIMOD)
Original information on the long-term dry-wet index (1500-2000) in western China is obtained by integrating data on dry-wet/drought-flood conditions and precipitation amounts in the western region published over more than a decade. The integrated data sets include tree rings, ice cores, lake sediments, historical materials, etc., and there are more than 50 such data sets. In addition to widely collecting representative data sets on dry-wet changes in the western region, this study also clarifies the main characteristics of the dry-wet changes and climate zones in the western region, and the long-term dry-wet index sequence was generated by extracting representative data from different zones. The data-based dry-wet index sequence has a 10-year temporal resolution for five major characteristic climate zones in the western region over nearly four hundred years and a high resolution (annual resolution) for three regions over the past five hundred years. The five major characteristic climate zones in the western region with a 10-year dry-wet index resolution over the last four hundred years are the arid regions, plateau bodies, northern Xinjiang, Hetao region, and northeastern plateau, and the three regions with a annual resolution over the last five hundred years are the northeastern plateau, Hetao region, and northern Xinjiang. For a detailed description of the data, please refer to the data file named Introduction of Dry-Wet Index Sequence Data for West China.doc.
QIAN Weihong, LIN Xiang
In the mid-latitude region of Asia, the southeastern region is humid and affected by monsoon circulation (thus, it is referred to as the monsoon region), and the inland region is arid and controlled by the other circulation patterns (these areas include the cold and arid regions in the northern Tibetan Plateau, referred to as the westerly region). Based on the generalization of the climate change records published in recent years, the westerly region was humid in the mid-late Holocene, which was significantly different from the pattern of the Asian monsoon in the early-middle Holocene. In the past few millennia, the westerly region was arid during the Medieval Warm Period but relatively humid during the Little Ice Age. In contrast, the oxygen isotope records derived from a stalagmite in the Wanxiang Karst Cave showed that the monsoon precipitation was high in the Medieval Warm Period and low during the Little Ice Age. In the last century, especially in the last 50 years, the humidity of the arid regions in the northwest has increased, while the eastern areas of northwestern and northern China affected by the monsoon have become more arid. Moreover, in the northern and southern parts of the Tibetan Plateau, which are affected by the westerlies and the monsoon, respectively, the precipitation changes on the interdecadal and century scales have also shown an inverse phase. Based on these findings, we propose that the control zone of the westerly belt in central Asia has different humidity (precipitation) variation patterns than the monsoon region on every time scale (from millennial to interdecadal) in the modern interglacial period. The integrated research project on Holocene climate change in the arid and semi-arid regions of western China was a major research component of the project Environmental and Ecological Science for West China, which was funded by the National Natural Science Foundation of China. The leading executive of the project was Professor Fahu Chen from Lanzhou University. The project ran from January 2006 to December 2009. The data collected by the project include the following: 1. The integrate humidity data over the Holocene in the arid regions of Central-East Asia and 12 lakes (11000-0 cal yr BP): including Lake Van, Aral Sea, Issyk-Kul, Ulunguhai Lake, Bosten Lake, Barkol Lake, Bayan Nuur, Telmen Lake, Hovsgol Nuur, Juyan Lake, Gun Nuur and Hulun Nuur. 2. The integrated humidity data over the past millennium in the arid regions of Central-East Asia and at five research sites (1000-2000): including Aral Sea, Guliya, Bosten Lake, Sugan Lake, and the Badain Juran desert. Data format: excel table.
CHEN Fahu
The GAME/Tibet project conducted a short-term pre-intensive observing period (PIOP) at the Amdo station in the summer of 1997. From May to September 1998, five consecutive IOPs were scheduled, with approximately one month per IOP. More than 80 scientific workers from China, Japan and South Korea went to the Tibetan Plateau in batches and carried out arduous and fruitful work. The observation tests and plans were successfully completed. After the completion of the IOP in September, 1998, five automatic weather stations (AWS), one Portable Atmospheric Mosonet (PAM), one boundary layer tower and integrated radiation observatory (Amdo) and nine soil temperature and moisture observation stations have been continuously observed to date and have obtained extremely valuable information for 8 years and 6 months consecutively (starting from June 1997). The experimental area is located in Nagqu, in northern Tibet, and has an area of 150 km × 200 km (Fig. 1), and observation points are also established in D66, Tuotuohe and the Tanggula Mountain Pass (D105) along the Qinghai-Tibet Highway. The following observation stations (sites) are set up on different underlying surfaces including plateau meadows, plateau lakes, and desert steppe. (1) Two multidisciplinary (atmosphere and soil) observation stations, Amdo and NaquFx, have multicomponent radiation observation systems, gradient observation towers, turbulent flux direct measurement systems, soil temperature and moisture gradient observations, radiosonde, ground soil moisture observation networks and multiangle spectrometer observations used as ground truth values for satellite data, etc. (2) There are six automatic weather stations (D66, Tuotuohe, D105, D110, Nagqu and MS3608), each of which has observations of wind, temperature, humidity, pressure, radiation, surface temperature, soil temperature and moisture, precipitation, etc. (3) PAM stations (Portable Automated Meso - net) located approximately 80 km north and south of Nagqu (MS3478 and MS3637) have major projects similar to the two integrated observation stations (Amdo and NaquFx) above and to the wind, temperature and humidity turbulence observations. (4) There are nine soil temperature and moisture observation sites (D66, Tuotuohe, D110, WADD, NODA, Amdo, MS3478, MS3478 and MS3637), each of which has soil temperature measurements of 6 layers and soil moisture measurement of 9 layers. (5) A 3D Doppler Radar Station is located in the south of Nagqu, and there are seven encrypted precipitation gauges in the adjacent (within approximately 100 km) area. The radiation observation system mainly studies the plateau cloud and precipitation system and serves as a ground true value station for the TRMM satellite. The GAME-Tibet project seeks to gain insight into the land-atmosphere interaction on the Tibetan Plateau and its impact on the Asian monsoon system through enhanced observational experiments and long-term monitoring at different spatial scales. After the end of 2000, the GAME/Tibet project joined the “Coordinated Enhanced Observing Period (CEOP)” jointly organized by two international plans, GEWEX (Global Energy and Water Cycle Experiment) and CL IVAR (Climate Change and Forecast). The Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau of the Global Coordinated Enhanced Observation Program (CEOP) has been started. The data set contains POP data for 1997 and IOP data for 1998. Ⅰ. The POP data of 1997 contain the following. 1. Precipitation Gauge Network (PGN) 2. Radiosonde Observation at Naqu 3. Analysis of Stable Isotope for Water Cycle Studies 4. Doppler radar observation 5. Large-Scale Hydrological Cycle in Tibet (Link to Numaguchi's home page) 6. Portable Automated Mesonet (PAM) [Japanese] 7. Ground Truth Data Collection (GTDC) for Satellite Remote Sensing 8. Tanggula AWS (D105 station in Tibet) 9. Syamboche AWS (GEN/GAME AWS in Nepal) Ⅱ. The IOP data of 1998 contain the following. 1. Anduo (1) PBL Tower, 2) Radiation, 3) Turbulence SMTMS 2. D66 (1) AWS (2) SMTMS (3) GTDC (4) Precipitation 3. Toutouhe (1) AWS (2) SMTMS (3 )GTDC 4. D110 (1) AWS (2) SMTMS (3) GTDC (4) SMTMS 5. MS3608 (1) AWS (2) SMTMS (3) Precipitation 6. D105 (1) Precipitation (2) GTDC 7. MS3478(NPAM) (1) PAM (2) Precipitation 8. MS3637 (1) PAM (2) SMTMS (3) Precipitation 9. NODAA (1) SMTMS (2) Precipitation 10. WADD (1) SMTMS (2) Precipitation (3) Barometricmd 11. AQB (1) Precipitation 12. Dienpa (RS2) (1) Precipitation 13. Zuri (1) Precipitation (2) Barometricmd 14. Juze (1) Precipitation 15. Naqu hydrological station (1) Precipitation 16. MSofNaqu (1) Barometricmd 16. Naquradarsite (1)Radar system (2) Precipitation 17. Syangboche [Nepal] (1) AWS 18. Shiqu-anhe (1) AWS (2) GTDC 19. Seqin-Xiang (1) Barometricmd 20. NODA (1)Barometricmd (2) Precipitation (3) SMTMS 21. NaquHY (1) Barometricmd (2) Precipitation 22. NaquFx(BJ) (1) GTDC(2) PBLmd (3) Precipitation 23. MS3543 (1) Precipitation 24. MNofAmdo (1) Barometricmd 25. Mardi (1) Runoff 26. Gaize (1) AWS (2) GTDC (3) Sonde A CD of the data GAME-Tibet POP/IOP dataset cd (vol. 1) GAME-Tibet POP/IOP dataset cd (vol. 2)
MA Yaoming
A map of the frozen soil distribution in the Republic of Mongolia is digitized from the National Atlas of the Republic of Mongolia (Sodnom and Yanshin, 1990). This data set describes the distribution and general properties of permafrost, seasonally frozen soil, and low-temperature phenomena in the Republic of Mongolia. Two plates were specifically digitized. The first plate, with a scale of 1:12,000,000, describes four general frozen soil regions: (1) continuous and discontinuous permafrost; (2) island-like and sparse island-like permafrost; (3) sporadic permafrost; and (4) seasonally frozen soil. The second plate, with a scale of 1:4,500,000, describes 14 different terrain types. The terrain types are divided based on elevation, annual average temperature, permafrost thickness, melting depth, and freezing depth of seasonally frozen soil. The locations of the six types of low-temperature phenomena in Mongolia are also included: pingos, ice cones, hot karst, detachment failures, solifluction, and cryoplatation processes. The data are provided in the ESRI shape file format and can be downloaded from the US Ice and Snow Data Center.
A. L.Yanshin, Sodnom
The data are a digitized permafrost map along the Qinghai-Tibet Highway (1:600,000) (Boliang Tong, et al. 1983), which was compiled by Boliang Tong, shude Li, Jueying bu, and Guoqing Qiu from the Cold and Arid Regions Environmental and Engineering Research Institute of the Chinese Academy of Sciences (originally called the Lanzhou Institute of Glaciology and Cryopedology, Chinese Academy of Sciences) in 1981. The map aims to reflect the basic laws of permafrost distribution along the highway and its relationship with the main natural environmental factors. The basic data for the compilation of the map include hydrogeological and engineering geological survey results and maps along the Qinghai-Tibet Highway(1:200000) (First Hydrogeological Engineering Geological Brigade of Qinghai Province, Institute of Geomechanics of the Academy of Geological Science), the cryopedological research results of the Institute of Glaciology and Cryopedology of Chinese Academy of Sciences since 1960 in nine locations along the Qinghai-Tibet Highway (West Datan, Kunlun pass basin, Qingshuihe, Fenghuohe, Tuotuohe, the Sangma Basin, Buquhe, Tumengela, and Liangdaohe) and drilling data of the Golmud-Lhasa oil pipeline and aerial topographic data of the work area. Taking the 1:200000 topographic map as the working base map, a permafrost map was compiled, which was then downscaled to a 1:600000 map to ensure the accuracy of the map. To make up for the lack of data in a larger area along the line, the characteristics and principles of the frozen soils found in the nine frozen soil research points along the highway were applied to areas with the same geologic and geographical conditions; meanwhile, aerial photographs were used as supplements to the freeze-thaw geology and frozen soil characteristics. The permafrost map along the Qinghai-Tibet Highway (1:600,000) includes the annual average temperature contour map along the Qinghai-Tibet Highway (1:7,200,000) and the permafrost map along the Qinghai-Tibet Highway (1:600,000). The permafrost map along the Qinghai-Tibet Highway also contains information on permafrost types, lithology, frozen soil phenomena, types of through-melting zones, classification of frozen soil engineering, and geological structural fractures. These data contain only digitized permafrost information. The spatial coverage is from Daxitan on the Qinghai-Tibet Highway in the north to Sangxiong in the south and is nearly 800 kilometers long and 40-50 kilometers wide. The data set includes a vectorized and a scanned map of the permafrost map along the Qinghai-Tibet Highway. The attribute information of the map is as follows. A-1; Continuous permafrost; >0°C; remained as a frozen soil layer and isolation layer A-2; Continuous permafrost; 0~-0.5°C; 0-25 m A-3; Continuous permafrost; -0.5~-1.5°C; 25-60 m A-4; Continuous permafrost; -1.5~-3.5°C; 60-120 m A-5;Continuous permafrost;<-3.5°C;>120 m B-1; Island permafrost ground; Seasonal Frozen Ground; B-2; Continuous permafrost; >0°C; remained as a frozen soil layer and isolation layer B-3; Island permafrost extent; 0~-0.5°C; 0-25 m B-4; Island permafrost extent; -0.5~-1.5°C; 25-60 m B-5; Island permafrost extent; -1.5~-3.5°C; 60-120 m
TONG Boliang, LI Shude, BO Jueying, QIU Guoqing
This glacier inventory is supported by the International Centre for Integrated Mountain Development (ICIMOD) and the United Nation Environment Programme/Regional Resources Centre, Asia and The Pacific (UNEP/RRC-AP)。 1、The glacier inventory uses the remote sensing data of Landsat,reflecting the current status of glaciers in Nepal in 2000. 2、The spatial coverage of the glacier inventory: Nepal 3、Contents of the glacier inventory: glacier location, glacier code, glacier name, glacier area, glacier length, glacier thickness, glacier stocks, glacier type, glacier orientation, etc. 4、Data Projection: Grid Zone IIA Projection: Lambert conformal conic Ellipsoid: Everest (India 1956) Datum: India (India, Nepal) False easting: 2743196.40 False northing: 914398.80 Central meridian: 90°00'00"E Central parallel: 26°00'00"N Scale factor: 0.998786 Standard parallel 1: 23°09'28.17"N Standard parallel 2: 28°49'8.18"N Minimum X Value: 1920240 Maximum X Value: 2651760 Minimum Y Value: 914398 Maximum Y Value: 1188720 Grid Zone IIB Projection: Lambert conformal conic Ellipsoid: Everest (India 1956) Datum: India (India, Nepal) False easting: 2743196.40 False northing: 914398.80 Central meridian: 90°00'00"E Central parallel: 26°00'00"N Scale factor: 0.998786 Standard parallel 1: 21°30'00"N Standard parallel 2: 30°00'00"N Minimum X Value: 1823188 Maximum X Value: 2000644 Minimum Y Value: 1306643 Maximum Y Value: 1433476 For a detailed data description, please refer to the data file and report.
Samjwal Ratna Bajracharya Samjwal Ratna Bajracharya, Sharad Prasad Joshi
The source of the data is a 1:2500000-scale map series, "Geocryological Map of Russia and Neighboring Republics", published by Russia from 1991 to 1996, which is labelled in Russian and includes a total of 16 images. In 1998, Zaitsev and others translated it into English. In this study, seven of the images were digitized: 1) Distribution of frozen and unfrozen ground, 2) Mean annual temperature of unfrozen ground at the depth of zero annual amplitude (note that there is some uncertainty because the depth of zero amplitude is not provided, and data on this parameter is generally lacking), 3) Thickness of permafrost, 4) Depth from the surface and thickness of relict permafrost, 5) Distribution of permafrost containing cryopegs, 6) Thickness of permafrost containing cryopegs, 7) Distribution of permafrost with depth. 1. The data include multiple vector layers: (1) permafrost distribution, (2) permafrost temperature, (3) permafrost thickness, (4) permafrost formation conditions, and (5) the correction image. 2. The permafrost distribution map includes the following fields: AREA, PERIMETER, FROZEN_, FROZEN_ID: POLY_, POLY_, RINGS_OK, RINGS_NOK, A, FROZEN_SOI (frozen soil layer), and temperature. FROZEN_SOI are the Chinese and English representations of the type of frozen soil, respectively. 4. Frozen soil properties: Frozen soil Continuous predominantly unfrozen 1-5 Continuous permafrost -3- -5 Continuous unfrozen ground 4-6 Discontinuous permafrost 0.5- -2 Predominantly continuous permafrost -1- -3 Predominantly unfrozen ground 1-3 5. Projection information: PROJCS["Asia_North_Equidistant_Conic", GEOGCS["GCS_North_American_1927", DATUM["North_American_Datum_1927", SPHEROID["Clarke_1866",6378206.4,294.9786982]], PRIMEM["Greenwich",0.0], UNIT["Degree",0.0174532925199433]], PROJECTION["Equidistant_Conic"], PARAMETER["False_Easting",0.0], PARAMETER["False_Northing",0.0], PARAMETER["longitude_of_center",100.0], PARAMETER["Standard_Parallel_1",15.0], PARAMETER["Standard_Parallel_2",58.3], PARAMETER["latitude_of_center",60.0], UNIT["Meter",1.0]]
Yershow
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn