The MODIS land cover type product is a data classification product (MOD12Q1) with different classification schemes for land cover features extracted from Terra data each year. These data are generated by reprojecting the standard MODIS land cover product MOD12Q1 to geographic coordinates with a spatial resolution of one-half degree. The basic land cover classification comprises the 17 types defined by the International Geosphere Biosphere Programme (IGBP): 11 types of natural vegetation classification, 3 types of land use and land inlays, and 3 types of nonvegetation land classification. It covers a longitude range of -180-180 degrees and a latitude range of -64-84 degrees. The data are in GeoTIFF format. This data are free to use, and the copyright belongs to the University of Maryland Department of Geography and NASA.
Channan, S, Channan, XU Xiyan
The data set of lake dynamics on the Tibetan Plateau was mainly derived from Landsat remote sensing data. Band ratio and the threshold segmentation method were applied. The temporal coverage of the data set was from 1984 to 2016, with a temporal resolution of 5 years. It covered the whole Tibetan Plateau at a spatial resolution of 30 meters. The water body area extraction method mainly adopted the band ratio (B4/B2) or water body index to construct the classification tree. The algorithm construction considered the spatial and temporal variations of the spectral characteristics of the water body and adjusted the threshold of the decision tree by the slope and the slope aspect information of the water body. The long-term sequence satellite-borne data came from different sensors, e.g., Landsat MSS, TM, ETM+, and OLI. The minimum unit for extracting water body information was 2*2 pixels, and all water body areas less than 0.36*10^-2 Km² were removed. The water body information extracted by high-resolution remote sensing data and the verification of the water body checkpoint determined by visual interpretation indicated that the overall accuracy of the water body area information for the Tibetan Plateau was above 95%. The data were saved as a shape file, and projected by Albers projection, with a central meridian of 105 ° and a double standard latitude of 25 ° and 47 °.
SONG Kaishan, DU Jia
The NDVI data set is the sixth version of the MODIS Normalized Difference Vegetation Index product (2001-2016) jointly released by NASA EOSDIS LP DAAC and the US Geological Survey (USGS EROS). The product has a temporal resolution of 16 days and a spatial resolution of 0.05 degrees. This version is a Climate Modeling Grid (CMG) data product generated from the original NDVI product (MYD13A2) with a resolution of 1 kilometer. Please indicate the source of these data as follows in acknowledgments: The MOD13C NDVI product was retrieved online courtesy of the NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, The [PRODUCT] was (were) retrieved from the online [TOOL], courtesy of the NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota.
NASA
This dataset is the Fractional Vegetation Cover observation in the artificial oasis experimental region of the middle stream of the Heihe River Basin. The observations lasted for a vegetation growth cycle from May 2012 to September 2012 (UTC+8). Instruments and measurement method: Digital photography measurement is implemented to measure the FVC. Plot positions, photographic method and data processing method are dedicatedly designed. Details are described in the following: 0. In field measurements, a long stick with the camera mounted on one end is beneficial to conveniently measure various species of vegetation, enabling a larger area to be photographed with a smaller field of view. The stick can be used to change the camera height; a fixed-focus camera can be placed at the end of the instrument platform at the front end of the support bar, and the camera can be operated by remote control. 1. For row crop like corn, the plot is set to be 10×10 m2, and for the orchard, plot scale is 30×30 m2. Shoot 9 times along two perpendicularly crossed rectangular-belt transects. The picture generated of each time is used to calculate a FVC value. “True FVC” of the plot is then acquired as the average of these 9 FVC values. 2. The photographic method used depends on the species of vegetation and planting pattern: Low crops (<2 m) in rows in a situation with a small field of view (<30 ), rows of more than two cycles should be included in the field of view, and the side length of the image should be parallel to the row. If there are no more than two complete cycles, then information regarding row spacing and plant spacing are required. The FVC of the entire cycle, that is, the FVC of the quadrat, can be obtained from the number of rows included in the field of view. 3. High vegetation in rows (>2 m) Through the top-down photography of the low vegetation underneath the crown and the bottom-up photography beneath the tree crown, the FVC within the crown projection area can be obtained by weighting the FVC obtained from the two images. Next, the low vegetation between the trees is photographed, and the FVC that does not lie within the crown projection area is calculated. Finally, the average area of the tree crown is obtained using the tree crown projection method. The ratio of the crown projection area to the area outside the projection is calculated based on row spacing, and the FVC of the quadrat is obtained by weighting. 4. FVC extraction from the classification of digital images. Many methods are available to extract the FVC from digital images, and the degree of automation and the precision of identification are important factors that affect the efficiency of field measurements. This method, which is proposed by the authors, has the advantages of a simple algorithm, a high degree of automation and high precision, as well as ease of operation.
MU Xihan, HUANG Shuai, MA Mingguo
The NDVI data set is the latest release of the long sequence (1981-2015) normalized difference vegetation index product of NOAA Global Inventory Monitoring and Modeling System (GIMMS), version number 3g.v1. The temporal resolution of the product is twice a month, while the spatial resolution is 1/12 of a degree. The temporal coverage is from July 1981 to December 2015. This product is a shared data product and can be downloaded directly from ecocast.arc.nasa.gov. For details, please refer to https://nex.nasa.gov/nex/projects/1349/.
The National Center for Atmospheric Research
This dataset is the spatial distribution map of the marshes in the source area of the Yellow River near the Zaling Lake-Eling Lake, covering an area of about 21,000 square kilometers. The data set is classified by the Landsat 8 image through an expert decision tree and corrected by manual visual interpretation. The spatial resolution of the image is 30m, using the WGS 1984 UTM projected coordinate system, and the data format is grid format. The image is divided into five types of land, the land type 1 is “water body”, the land type 2 is “high-cover vegetation”, the land type 3 is “naked land”, and the land type 4 is “low-cover vegetation”, and the land type 5 is For "marsh", low-coverage vegetation and high-coverage vegetation are distinguished by vegetation coverage. The threshold is 0.1 to 0.4 for low-cover vegetation and 0.4 to 1 for high-cover vegetation.
DAI Liyun
The freeze/thaw status of the near-surface soil is the water-ice phase transition that occurred at the top soil layer. It is an important indicator as a giant on-off “switch” of the land surface processes including water, energy, and carbon exchanges between the land surface and atmosphere. The freeze/thaw status is an essential variable for understanding how the ecosystem responds to and affects global changes. This dataset is based on the AMSR-E and AMSR2 passive microwave brightness temperature data, and the freeze-thaw discriminant function algorithm is used to generate the global near-surface soil freeze-thaw status with a spatial resolution of grids at 0.25° from 2002 to 2019. The dataset can be used for the analysis of the spatial distribution and trend changes of global freeze-thaw cycles, such as the freeze/thaw onset dates and duration. It provides data support for understanding the interaction mechanism between the land surface freeze-thaw cycle and the land-atmosphere exchanges under the context of global changes.
Zhao Tianjie
The Tibetan Plateau is known as “The World’s Third Pole” and “The Water Tower of Asia”. A relatively accurate map of the frozen soil in the Tibetan Plateau is therefore significant for local cold region engineering and environmental construction. Thus, to meet the engineering and environmental needs, a decision tree was established based on multi-source remote sensing data (elevation, MODIS surface temperature, vegetation index and soil moisture) to divide the permafrost and seasonally frozen soil of the Tibetan Plateau. The data are in grid format, DN=1 stands for permafrost, and DN=2 stands for seasonally frozen soil. The elevation data are from the 1 km x 1 km China DEM (digital elevation model) data set (http://westdc.westgis.ac.cn); the surface temperature is the yearly average data based on daily data estimated by Bin Ouyang and others using the Sin-Linear method. The estimation of the daily average surface temperature was based on the application of the Sin-Linear method to MODIS surface products, and to reduce the time difference with existing frozen soil maps, the surface temperature of the study area in 2003 was used as the information source for the classification of frozen soil. Vegetation information was extracted from the 16-day synthetic product data of Aqua and Terra (MYD13A1 and MOD13A1) in 2003. Soil moisture values were obtained from relatively high-quality ascending pass data collected by AMSR-E in May 2003. Therefore, based on the above data, the classification threshold of the decision tree was obtained using the Map of Frozen Soil in the Tibetan Plateau (1:3000000) and Map of the Glaciers, Frozen Soil and Deserts in China (1:4000000) as the a priori information. Based on the prosed method, the frozen soil types on the Tibetan Plateau were classified. The classification results were then verified and compared with the surveyed maps of frozen soil in the West Kunlun Mountains, revised maps, maps of hot springs and other existing frozen soil maps related to the Tibetan Plateau. Based on the Tibetan Plateau frozen soil map generated from the multi-source remote sensing information, the permafrost area accounts for 42.5% (111.3 × 104 km²), and the seasonally frozen soil area accounts for 53.8% (140.9 × 104 km²) of the total area of the Tibetan Plateau. This result is relatively consistent with the prior map (the 1:3000000 Map of Frozen Soil in the Tibetan Plateau). In addition, the overall accuracy and Kappa coefficient of the different frozen soil maps show that the frozen soil maps compiled or simulated by different methods are basically consistent in terms of the spatial distribution pattern, and the inconsistencies are mainly in the boundary areas between permafrost areas and seasonally frozen soil areas.
NIU Fujun, YIN Guoan
This dataset is the FPAR observation in the artificial oasis experimental region of the middle stream of the Heihe River Basin. The observation period is from 24 May to 19 July, 2012 (UTC+8). Measurement instruments: AccuPAR (Beijing Normal University) Measurement positions: Core Experimental Area of Flux Observation Matrix 18 corn samples, 1 orchard sample, 1 artificial white poplar sample Measurement methods: For corn, to measure the incoming PAR on the canopy, transmission PAR under the canopy, reflected PAR on the canopy, reflected PAR under the canopy. For orchard and white poplar forest, to measure the incoming PAR outside of the canopy, transmission PAR under the canopy. Corresponding data: Land cover, plant height, crop rows identification
MA Mingguo
The data sets include four sets of data obtained from the Scanning Multi-channel Microwave Radiometer (SMMR), Special Sensor Microwave Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS) sensors using passive microwave remote sensing inversion. SMMR was aboard the Nimbus-7 satellite, and its working period was from October 26, 1978 to July 8, 1987. Since July 1987, the data provided by the SSM/I and the SSMIS aboard the US Defense Meteorological Satellite Program (DMSP) satellite group have been used. The first three data sets contain sea ice concentration data, covering the Antarctic region with a spatial resolution of 25 km: (1) The data were obtained from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Version 1 by applying the NASA Team algorithm inversion. The temporal coverage is from November 1978 to February 2017, with a temporal resolution of one month. A bin file is stored every month. (2) The data source is the same as the first set. The temporal coverage is from 1978-10-26 to 2017-2-28. The temporal resolution is two days, and the spatial resolution is 25 km. A folder was stored every year, and a bin file was stored every other day. (3) The data were obtained from near-real-time DMSP SSMIS by applying the NASA Team algorithm inversion. The temporal coverage is from 2015-1-1 to 2018-2-3, and the temporal resolution is one day. A bin file is stored every day. Each file consists of a 300-byte file title (data time information, projection pattern, file name) and a 316*332 matrix. The fourth set of data is the sea ice coverage and sea ice area time series. The temporal coverage is from November 1978 to December 2017. This data set is a time series sequence of sea ice coverage and sea ice area in the Antarctic. The temporal resolution is one month, and an ASCII file is stored every month. Each file consists of a file title (time, data type), a 39*1 sea ice cover matrix and a 39*1 sea ice area matrix. For further details on the data, please visit the US Ice and Snow Data Center NSIDC website - Data Description http://nsidc.org/data/NSIDC-0051; http://nsidc.org/data/NSIDC-0081; http://nsidc.org/data/G02135
LI Shuanglin, LIU Na
Due to the short snow duration and thin snow layer on the Tibetan Plateau, dynamic monitoring data for daily fractional snow cover are urgently needed in order to better understand water cycling and other processes. This data set is based on MODIS Snow Cover Daily L3 Global 500 m Grid data and includes the Normalized Difference Snow Index (NDSI) data product generated from MODIS/Terra data (MOD10A1) and MODIS/Aqua data (MYD10A1). The data are in the .hdf format. The projection method is sinusoidal map projection. Combining the advantages of 90 m SRTM terrain data and fractional snow cover estimation algorithms under multiple cloud coverage types, the fractional snow cover under different cloud coverage conditions can be re-estimated to meet the production requirements of the daily less cloud (< 10%) data products in High Asia. On the basis of this method, the MODIS daily fractional snow cover data set over High Asia (2002-2016) was constructed. By taking the binary snow product under cloudless conditions as a reference, the spatial and temporal comparisons between snow distribution and snow coverage show that the spatio-temporal characteristics of the product and the binary products are highly consistent. Taking the winter of 2013 as an example, when the fractional snow cover is greater than 50%, the correlation can reach 0.8628. This data set provides daily fractional snow cover data for use in studying snow dynamics, the climate and environment, hydrology, energy balance, and disaster assessment in High Asia.
QIU Yubao
The dataset includes the fractional vegetation cover data generated from the stations of crop land, wetland, Gebi desert and desert steppe in Yingke Oasis and biomass data generated from the stations of crop land (corn) and wetland. The observations lasted for a vegetation growth cycle from 19 May, 2012 to 15 September, 2012. 1. Fractional vegetation cover observation 1.1 Observation time 1.1.1 Station of the crop land: The observations lasted from 20 May, 2012 to 15 September, 2012, and in five-day periods for each observation before 31 July and in ten-day periods for each observation after 31 July. The observation time for the station of crop land (corn) are 2013-5-20, 2013-5-25, 2013-5-30, 2013-6-5, 2013-6-10, 2013-6-16, 2013-6-22, 2013-6-27, 2013-7-2, 2013-7-7, 2013-7-12, 2013-7-17, 2013-7-27, 2013-8-3, 2013-8-13, 2013-8-25, 2013-9-5 and 2013-9-15. 1.1.2 The other four stations: The observations lasted from 20 May, 2012 to 15 September, 2012 and in ten-day periods for each observation. The observation time for the crop land are 2013-5-20, 2013-6-5, 2013-6-16, 2013-6-27, 2013-7-7, 2013-7-17, 2013-7-27, 2013-8-3, 2013-8-13, 2013-8-25, 2013-9-5 and 2013-9-15. 1.2 method 1.2.1 Instruments and measurement method Digital photography measurement is implemented to measure the FVC. Plot positions, photographic method and data processing method are dedicatedly designed. In field measurements, a long stick with the camera mounted on one end is beneficial to conveniently measure various species of vegetation, enabling a larger area to be photographed with a smaller field of view. The stick can be used to change the camera height; a fixed-focus camera can be placed at the end of the instrument platform at the front end of the support bar, and the camera can be operated by remote control. 1.2.2 Design of the samples Three and two plots with the area of 10×10 m^2 were measured for the station of the crop land and wetland, respectively. One plot with the area of 10×10 m^2 was measured for the other three stations. Shoot 9 times along two perpendicularly crossed rectangular-belt transects. The picture generated of each time is used to calculate a FVC value. “True FVC” of the plot is then acquired as the average of these 9 FVC values. 1.2.3 Photographic method The photographic method used depends on the species of vegetation and planting pattern. A long stick with the camera mounted on one end is used for the stations of crop land and wetland. For the station of the crop land, rows of more than two cycles should be included in the field of view (<30), and the side length of the image should be parallel to the row. If there are no more than two complete cycles, then information regarding row spacing and plant spacing are required. The FVC of the entire cycle, that is, the FVC of the quadrat, can be obtained from the number of rows included in the field of view. For other three stations, the photos of FVC were obtained by directly photographing for the lower heights of the vegetation. 1.2.4 Method for calculating the FVC The FVC calculation was implemented by the Beijing Normal University. The detail method can be found in the reference below. Many methods are available to extract the FVC from digital images, and the degree of automation and the precision of identification are important factors that affect the efficiency of field measurements. This method, which is proposed by the authors, has the advantages of a simple algorithm, a high degree of automation and high precision, as well as ease of operation (see the reference). 2. Biomass observation 2.1. Observation time 2.1.1 Station of the crop land: The observations lasted from 20 May 2012 to 15 September 2012, and in five-day periods for each observation before 31 July and in ten-day periods for each observation after 31 July. The observation time for the crop land are 2013-5-25, 2013-5-30, 2013-6-5, 2013-6-10, 2013-6-16, 2013-6-22, 2013-6-27, 2013-7-2, 2013-7-7, 2013-7-12, 2013-7-17, 2013-7-27, 2013-8-3, 2013-8-13, 2013-8-25, 2013-9-5 and 2013-9-15. 2.1.2 The station of wetland: The observations lasted from 20 May 2012 to 15 September 2012, and in ten-day periods for each observation. The observation time for the crop land are 2013-6-5, 2013-6-16, 2013-6-27, 2013-7-7, 2013-7-17, 2013-7-27, 2013-8-3, 2013-8-13, 2013-8-25, 2013-9-5 and 2013-9-15. 2.2. Method Station of the crop land: Three plots were selected and three strains of corn for each observation were random selected for each plot to measure the fresh weight (the aboveground biomass and underground biomass) and dry weight. Per unit biomass can be obtained according to the planting structure. Station of the wetland: Two plots of reed with the area of 0.5 m × 0.5 m were random selected for each observation. The reed of the two plots was cut to measure the fresh weight (the aboveground biomass) and dry weight. 2.3. Instruments Balance (accuracy 0.01 g); drying oven 3. Data storage All observation data were stored in excel. Other data including plant spacing, row spacing, seeding time, irrigation time, the time of cutting male parent and the harvest time of the corn for the station of cropland were also stored in the excel.
GENG Liying, Jia Shuzhen, Li Yimeng, MA Mingguo
By applying Supply-demand Balance Analysis, the water resource supply and demand of the whole river basin and each county or district were calculated, based on which the vulnerability of the water resources system of the basin was evaluated. The IPAT equation was used to set a future water resource demand scenario, which was to establish the scenario by setting variables such as future population growth rate, economic growth rate, and unit GDP water consumption. By taking 2005 as the base year and using assorted forecasting data of population size and economic scale, the future water demand scenarios of various counties and cities from 2010 to 2050 were predicted. By applying the basic structure of the HBV conceptual hydrological model of the Swedish Hydrometeorological Institute, a model of the variation tendency of the basin under climate change was designed. The glacial melting scenario was used as the model input to construct the runoff scenario under climate change. According to the national regulations of the water resources allocation of the basin, a water distribution plan was set up to calculate the water supply comprehensively. Considering the supply and demand situation, the water resource system vulnerability was evaluated by the water shortage rate. By calculating the (grain production) land pressure index of the major counties and cities in the basin, the balance of supply and demand of land resources under the climate change, glacial melt and population growth scenarios was analyzed, and the vulnerability of the agricultural system was evaluated. The Miami formula and HANPP model were used to calculate the human appropriation of net primary biomass and primary biomass in the major counties and cities for the future, and the vulnerability of ecosystems from the perspective of supply and demand balance was assessed.
YANG Linsheng
The Tibetan Plateau has an average altitude of over 4000 m and is the region with the highest altitude and the largest snow cover in the middle and low latitudes of the Northern Hemisphere regions. Snow cover is the most important underlying surface of the seasonal changes on the Tibetan Plateau and an important composing element of ecological environment. Ice and snow melt water is an important water resource of the plateau and its downstream areas. At the same time, plateau snow, as an important land-surface forcing factor, is closely related to disastrous weather (such as droughts and floods) in East Asia, the South Asian monsoon and in the middle and lower reaches of the Yangtze River. It is an important indicator of short-term climate prediction and one of the most sensitive responses to global climate change. The snow depth refers to the vertical depth from the surface of the snow to the ground. It is an important parameter for snow characteristics and one of the conventional meteorological observation elements. It is the key parameter of snow water equivalent estimation, climate effect studies of snow cover, the basin water balance, the simulation and monitoring of snow-melt, and snow disaster evaluation and grading. In this data set, the Tibetan Plateau boundary was determined by adopting the natural topography as the leading factor and by comprehensive consideration of the principles of altitude, plateau and mountain integrity. The main part of the plateau is in the Tibetan Autonomous Region and Qinghai Province, with an area of 2.572 million square kilometers, accounting for 26.8% of the total land area of China. The snow depth observation data are the monthly maximum snow depth data after quality detection and quality control. There are 102 meteorological stations in the study area, most of which were built during the 1950s to 1970s. The data for some months or years for sites existing during this period were missing, and the complete observational records from 1961 to 2013 were adopted. The temporal resolution is daily, the spatial coverage is the Tibetan Plateau, and all the data were quality controlled. Accurate and detailed plateau snow depth data are of great significance for the diagnosis of climate change, the evolution of the Asian monsoon and the management of regional snow-melt water resources.
National Meteorological Information Center, Tibet Meteorological Bureau, China
The global Cryosat-2 GDR dataset is generated by the European Space Agency (ESA); it has a temporal coverage from 2010 to 2016 and covers the globe. On April 8, 2010, the ESA launched the Cryosat-2 high-tilt polar orbit satellite. The satellite is equipped with an SAR Interferometer Radar Altimeter (SIRAL), which is mainly used to monitor polar ice thickness and sea ice thickness changes, and, furthermore, to study the effects of melting polar ice on global sea level rise and that of global climate change on Antarctic ice thickness. The altimeter operates in the Ku-band and at a frequency of 13.575 GHz, it includes three measurement modes. One is a low-resolution altimeter measurement mode (LRM) that points to the subsatellite point to obtain all surface observations for land, sea, and ice sheets; its processing is similar to ENVISAT/RA-2, with an orbital resolution of 5 to 7 km. The second is the Synthetic Aperture Radar (SAR) measurement mode, which is mainly used to improve the accuracy and resolution of sea ice observations; it can make the resolution along the orbit reach approximately 250 m. The third is the Interferometric Synthetic Aperture Radar (InSAR), which is mainly used to improve the accuracy of areas with complex terrain such as the edges of ice sheets or ice shelves. The CryoSat -2/SIRAL data products mainly include 0-level data, 1b-level data, 2-level data and high-level data. The Cryosat-2/SIRAL products consist of two files: an XML head file (.HDR) and a data product file (.DBL). The HDR file is an auxiliary ASCII file for fast identification and retrieval of the data files. 1b-level products are stored separately according to the measurement modes, and the data recording formats of different modes are also different. Each waveform in LRM mode and SAR mode has 128 sampling points, while that in SARIn mode has 512 sampling points. 2-level GDR products are available for most scientific applications, including measurement time, geographic location, altitude, and more. In addition, the altitude information in GDR products has been obtained through instrumental calibration, transmission delay corrections, geometric corrections, and geophysical corrections (such as atmospheric corrections and tidal corrections). The GDR products are single global full-track data, that is, the measurement results of the three modes. After different processing, they are combined in chronological order; thereby, the data recording formats are unified. The data in the three modes use different waveform retracking algorithms to obtain altitude values. In the latest updated Baseline C data, the LRM mode data use three algorithms: Refined CFI, UCL and Refined OCOG.
SHEN Guozhuang, FU Wenxue
The Sentinel-1A/B satellite uses a near-polar sun-synchronous orbit with an orbital altitude of 693 km, an orbital inclination of 98.18°, and an orbital period of 99 minutes. It is equipped with a C-band Synthetic Aperture Radar (SAR) with a designed service life of 7 years (12 years expected). Sentinel-l has a variety of imaging methods that enable different polarization modes such as single-polarization and dual-polarization. Sentinel-1A SAR has four working modes: Strip Map Mode (SM), Extra Wide Swath (EW), Interferometric Wide Swath (IW) and Wave Mode (WV). Satellite A was successfully launched in April 2014. The revisit period of the same region was 12 days. Satellite B successfully operated on orbit in April 2016. The current revisiting period reached 3 to 6 days. After the operation of two satellites, the S1 data acquisition frequency in the Antarctic region increased greatly. This data set comprises the Sentinel-1 SAR data for the Antarctic ice sheet and the Greenland Ice Sheet area. The data band comprises C-band extra wide multiview data with a resolution of 20 m*40 m. The temporal resolution is 12 days and is related to the round-trip period, the width is 400 km, the noise level is -25 dB, and the radiation measurement accuracy is 1.0 dB. The annual temporal coverage of these data is October to the next March in the Antarctic and April to September in Greenland, and the spatial coverage comprises the Antarctic ice sheet ice shelf area and Greenland ice sheet.
Lu Zhang
The Tibetan Plateau Glacial Data -TPG1976 is a glacial coverage data on the Tibetan Plateau in the 1970s. It was generated by manual interpretation from Landsat MSS multispectral image data. The temporal coverage was mainly from 1972 to 1979 by 60 m spatial resolution. It involved 205 scenes of Landsat MSS/TM. There were 189 scenes(92% coverage on TP)in 1972-79,including 116 scenes in 1976/77 (61% of all the collected satellite data).As high quality of MSS data is not accessible due to cloud and snow effects in the South-east Tibetan Plateau, earlier Landsat TM data was collected for usage, including 14 scenes of 1980s(1981,1986-89,which covers 6.5% of TP) and 2 scenes in 1994(by 1.5% coverage on TP).Among all satellite data,77% was collected in winter with the minimum effects of cloud and seasonal snow. The most frequent year in this period was defined as the reference year for the mosaic image: i.e. 1976. Glacier outlines were digitized on-screen manually from the 1976 image mosaic, relying on false-colour image composites (MSS: red, green and blue (RGB) represented by bands 321; TM: RGB by bands 543), which allowed us to distinguish ice/snow from cloud. Debris-free ice was distinguished from the debris and debris-covered ice by its higher reflectance. Debris-covered ice was not delineated in this data. The delineated glacier outlines were compared with band-ratio results, and validated by overlapping them onto Google Earth imagery, SRTM DEM, topographic maps and corresponding satellite images. For areas with mountain shadows and snow cover, they were verified by different methods using data from different seasons. For glaciers in deep shadow, Google EarthTM imagery from different dates was used as the reference for manual delineation. Steep slopes or headwalls were also excluded in the TPG1976. Areas that appeared in any of these sources to have the characteristics of exposed ground/basement/bed rock were manually delineated as non-glacier, and were also cross-checked with CGI-1 and CGI-2. Steep hanging glaciers were included in TPG1976 if they were identifiable on images in all three epochs (i.e. TPG1976, TPG2001, and TPG2013). The accuracy of manual digitization was controlled within one half-pixel. All glacier areas were calculated on the WGS84 spheroid in an Albers equal-area map projection centred at (95°E, 30°N) with standard parallels at 15°N and 65°N. Our results showed that the relative deviation of manual interpretation was less than 6.4% due to the 60 m spatial resolution images.
YE Qinghua, WU Yuwei
The continuous advancement of SAR interferometry technology makes it possible to obtain multitemporal DEMs with high precision in the glacial area. In particular, in 2000, the Shuttle Radar Topography Mission (SRTM) led by NASA provided DEM data covering the area from 56ºS to 60ºN; the TanDEM-X bistatic SAR interferometry system of DLR could provide the global DEM data with high resolution and precision. These high-quality, large-coverage SAR interferometry data, as well as published DEM data products, provided valuable information for using the multitemporal DEMs to detect changes in ice thickness. The temporal coverage of the ice thickness variation data of typical glaciers on the Tibetan Plateau was from 2000 to 2013, covering Puruogangri and the west Qilian Mountains with a spatial resolution of 30 meters. Using TanDEM-X bistatic InSAR data and a C-band SRTM DEM, the differential radar interferometry method was first used to generate a TanDEM-X DEM with high precision. Then, based on the precise registration of DEM, the DEM data obtained in different periods were compared. Lastly, the ice thickness changes were estimated. The format of the data set was GeoTIFF, and each typical glacier ice thickness change was stored in a folder. For details of the data, please refer to the Ice elevation changes for typical glaciers on the Tibetan Plateau - Data Description.
JIANG Liming
The Tibetan Plateau Glacial Data –TPG2001 is a glacial coverage data on the Tibetan Plateau in around 2000 from 150 scenes of Landsat7 TM/ETM+ images by 30 m spatial resolution. The selected Landsat7 TM/ETM+ images were within the period between 1999 and 2002, including 61 scenes (41%) in 2001 and 47 scenes (31%) in 2000. Among all the images, 71% was taken in winter. The most frequent year in this period was defined as the reference year for the mosaic image: i.e. 2001. Glacier outlines were digitized on-screen manually from the 2001 image mosaic, relying on false-colour image composites (RGB by bands 543), which allowed us to distinguish ice/snow from cloud. Debris-free ice was distinguished from the debris and debris-covered ice by its higher reflectance. Debris-covered ice was not delineated in this data. The delineated glacier outlines were compared with band-ratio (e.g. TM3/TM5) results, and validated by overlapping them onto Google Earth imagery, SRTM DEM, topographic maps and corresponding satellite images. Topographic maps from the 1970s and all available satellite images (including Google EarthTM imagery) were used as base reference data. For areas with mountain shadows and snow cover, they were verified by different methods using data from different seasons. For glaciers in deep shadow, Google EarthTM imagery from different dates was used as the reference for manual delineation. Steep slopes or headwalls were also excluded in the TPG2001. Areas that appeared in any of these sources to have the characteristics of exposed ground/basement/bed rock were manually delineated as non-glacier, and were also cross-checked with CGI-1 and CGI-2. Steep hanging glaciers were included in TPG2001 if they were identifiable on images in all three epochs (i.e. TPG1976, TPG2001, and TPG2013). The accuracy of manual digitization was controlled within one half-pixel. All glacier areas were calculated on the WGS84 spheroid in an Albers equal-area map projection centred at (95°E, 30°N) with standard parallels at 15°N and 65°N. Our results showed that the relative deviation of manual interpretation was less than 3.8%.
YE Qinghua, WU Yuwei
Snow duration on the Tibetan Plateau changes relatively quickly, and the mountainous areas around the plateau are characterized by abundant snow and ice resources and active atmospheric convection. Optical remote sensing is often affected by clouds. Snow cover monitoring needs to consider the cloud-removal problem on a daily time scale. Taking full account of the terrain of the Tibetan Plateau and the characteristics of snow on the mountains, this data set adopted a combination of various cloud-removing processes and steps to gradually remove the daily snow cover by maintaining the cloud-classify accuracy of the snow cover. In addition, a step-by-step comprehensive classification algorithm was formed, and the “MODIS daily cloud-free snow cover product over the Tibetan Plateau (2002-2015)” was completed. Two snow seasons from October 1, 2009, to April 30, 2011, were selected as test data for algorithm research and accuracy verification, and the snow depth data provided by 145 ground stations in the study area were used as a ground reference. The results showed that in the plateau region, when the snow depth exceeds 3 cm, the total classification accuracy of the cloud-free snow cover products is 96.6%, and the snow cover classification accuracy is 89.0%. The whole algorithm procedure, based on WGS84 projected MODIS snow products (MOD10A1 and MYD10A1) with medium resolution, results in a small loss of cloud-removal accuracy, which made the data highly reliable.
QIU Yubao
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn