This dataset contains the flux measurements from the Qinghai Lake eddy covariance system (EC) belonging to the Qinghai Lake basin integrated observatory network from January 2 to October 18 in 2018. The site (100° 29' 59.726'' E, 36° 35' 27.337'' N) was located on the Yulei Platform in Erlangjian scenic area, Qinghai Province. The elevation is 3209m. The EC was installed at a height of 16.1m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (Gill&Li7500A) was about 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Data during October 13 to December 31, 2018 were absent due to the unavailable collecting condition in winter. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.
Li Xiaoyan
This dataset contains the flux measurements from the Dashalong station eddy covariance system (EC) in the upperstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2018. The site (98.9406° E, 38.8399° N) was located in the Qilian County in Qinghai Province. The elevation is 3739 m. The EC was installed at a height of 4.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500RS) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Data during September 27 to November 14, 2018 were missing due to the sensor calibration of sonic anemometer. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Arou Superstation in the Heihe integrated observatory network from January 1 to December 31 in 2018. There were two types of LASs at Arou Superstation: BLS450 and zzlas, produced by Germany and China, respectively. The north tower was set up with the zzlas receiver and the BLS450 transmitter, and the south tower was equipped with the zzlas transmitter and the BLS450 receiver. The site (north: 100.471° E, 38.057° N; south: 100.457° E, 38.038° N) was located in Caodaban village of A’rou town in Qilian county, Qinghai Province. The underlying surface between the two towers was alpine meadow. The elevation is 3033 m. The effective height of the LASs was 9.5 m, and the path length was 2390 m. The data were sampled 1 minute at both BLS450 and zzlas. The raw data acquired at 1 min intervals were processed and quality controlled. The data were subsequently averaged over 30 min periods, in which sensible heat flux was iteratively calculated by combining Cn2 with meteorological data according to the Monin-Obukhov similarity theory. The main quality control steps were as follows: (1) The data were rejected when Cn2 exceeded the saturated criterion (BLS450: Cn2>7.25E-14, zzlas: Cn2>7.84E-14). (2) The data were rejected when the demodulation signal was small (BLS450: Mininum X Intensity<50; zzlas: Demod>-20mv). (3) The data were rejected when collected during precipitation. (4) The data were rejected if collected at night when weak turbulence occurred (u* was less than 0.1 m/s). In the iteration process, the universal functions of Thiermann and Grassl, 1992 and Andreas, 1988 were selected for BLS450 and zzlas, respectively. Detailed can refer to Liu et al. (2011, 2013). Several instructions were included with the released data. (1) The data were primarily obtained from BLS450 measurements, and missing flux measurements from the BLS450 instrument were substituted with measurements from the zzlas instrument. The missing data were denoted by -6999. Due to the problems of storing and wireless transmission, data from 5 July to 24 August, were not collected. (2) The dataset contained the following variables: Date/time (yyyy/m/d h:mm), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). In this dataset, a time of 0:30 corresponds to the average data for the period between 0:00 and 0:30, and the data were stored in *.xlsx format. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) (for data processing) in the Citation section.
LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This dataset includes data recorded by the Heihe integrated observatory network obtained from a Cosmic-ray Soil Moisture Observing System for soil moisture observation at the Daman Superstation from January 1 to December 31, 2018. The site (100.372° E, 38.856° N) was located on a cropland (maize surface) in the Daman irrigation area, which is near Zhangye city, Gansu Province. The elevation is 1556 m. The bottom of the probe was 0.5 m above the ground; the sampling interval was 1 hour. The raw COSMOS data include the following variables: battery (Batt, V), temperature (T, C), relative humidity (RH, %), air pressure (P, hPa), fast neutron counts (N1C, counts per hour), thermal neutron counts (N2C, counts per hour), sample time of fast neutrons (N1ET, s), and sample time of thermal neutrons (N2ET, s). The distributed data include the following variables: Date, Time, P, N1C, N1C_cor (corrected fast neutron counts) and VWC (volume soil moisture, %), which were processed as follows: 1) Data were removed and replaced by -6999 when (a) the battery voltage was less than 11.8 V, (b) the relative humidity was greater than 80% inside the probe box, (c) the counting data were not of one-hour duration and (d) neutron count differed from the previous value by more than 20%; 2) An air pressure correction was applied to the quality-controlled raw data according to the equation contained in the equipment manual; 3) After the quality control and corrections were applied, soil moisture was calculated using the equation in Zreda et al. (2012), where N0 is the neutron counts above dry soil and the other variables are fitted constants that define the shape of the calibration function. Here, the parameter N0 was calibrated using the in situ observed soil moisture by SoilNET within the footprint; 4) Based on the calibrated N0 and corrected N1C, the hourly soil moisture was computed using the equation from the equipment manual. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Zhu et al. (2015) for data processing) in the Citation section.
ZHU Zhongli, XU Ziwei, LI Xin, CHE Tao, TAN Junlei, REN Zhiguo, ZHANG Yang
The dataset contains phenological camera observation data collected at the Arou Superstation in the midstream of the Heihe integrated observatory network from June 13 to November 16, 2018. The instrument was developed with data processed by Beijing Normal University. The phenomenon camera integrates data acquisition and data transmission functions. The camera captures high-quality data with a resolution of 1280×720 by looking-downward. The calculation of the greenness index and phenology are following 3 steps: (1) calculate the relative greenness index (GCC, Green Chromatic Coordinate, calculated by GCC=G/(R+G+B)) according to the region of interest, (2) perform gap-filling for the invalid values, filtering and smoothing, and (3) determine the key phenological parameters according to the growth curve fitting (such as the growth season start date, Peak, growth season end, etc.) There are also 3 steps for coverage data processing: (1) select images with less intense illumination, (2) divide the image into vegetation and soil, and (3) calculate the proportion of vegetation pixels in each image in the calculation area. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user, and the filtered result is the final time series coverage. This data set includes relative greenness index (Gcc). Please refer to Liu et al. (2018) for sites information in the Citation section.
Qu Yonghua, XU Ziwei, LI Xin
This dataset contains the flux measurements from the Sidaoqiao superstation eddy covariance system (EC) in the downstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2018. The site (101.1374° E, 42.0012° N) was located in the Ejina Banner in Inner Mongolia Autonomous Region . The elevation is 873 m. The EC was installed at a height of 3.2 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Latent heat flux during November 9 to 21, 2018 were missing due to the sensor malfunction of CO2/H2O gas analyzer. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset includes data recorded by the Heihe integrated observatory network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Yakou station from January 1 to December 31, 2018. The site (100.2421°E, 38.0142°N) was located on an alpine meadow surface, which is near west of Qilian county, Qinghai Province. The elevation is 4148 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45C; 5 m, north), wind speed and direction profile (010C/020C; 10 m, north), air pressure (PTB110; in the tamper box on the ground), rain gauge (TE525M; 10 m), four-component radiometer (CNR1; 6 m, south), two infrared temperature sensors (SI-111; 6 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (109ss-L; 0, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and soil moisture profile (CS616; -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), and soil moisture (Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. Due to the sensor malfunction, the infrared temperature and wind direction were wrong during October 10 to November 17 and after August, respectively. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This dataset contains the flux measurements from the A’rou superstation eddy covariance system (EC) in the upperstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2018. The site (100.372° E, 38.856° N) was located in the Daban Village, near Qilian County in Qinghai Province. The elevation is 3033 m. The EC was installed at a height of 3.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Data during insufficient power supply, data were missing occasionally. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Guazhou Station from September 23 to December 31, 2018. The site (95.673E, 41.405N) was located on a desert in the Liuyuan Guazhou, which is near Jiuquan city, Gansu Province. The elevation is 2016 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (2, 4, 8, 16, 32, and 48 m, towards north), wind speed and direction profile (windsonic; 2, 4, 8, 16, 32, and 48 m, towards north), air pressure (1.5 m), rain gauge (4 m), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (-0.05 m and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile -0.05, -0.1m, -0.2m, -0.4m, -0.6m and -0.8m in south of tower), four-component radiometer (4 m, towards south), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_2 m, Ta_4 m, Ta_8 m, Ta_16 m, Ta_32 m, and Ta_48 m; RH_2 m, RH_4 m, RH_8 m, RH_16 m, RH_32 m, and RH_48 m) (℃ and %, respectively), wind speed (Ws_2 m, Ws_4 m, Ws_8 m, Ws_16 m, Ws_32 m, and Ws_48 m) (m/s), wind direction (WD_2 m, WD_4 m, WD_8 m, WD_16 m, WD_32 m, and WD_48 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m^2)), soil heat flux (Gs_0.05m, Gs_0.1m) (W/m^2), soil temperature (Ts_5 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, and Ts_80 cm) (℃), soil moisture (Ms_5 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, and Ms_80 cm) (%, volumetric water content),soil water potential (SWP_5cm, SWP_10cm, SWP_20cm, SWP_40cm, SWP_60cm, and SWP_80cm)(kpa), soil conductivity (Ec_5cm, Ec_10cm, Ec_20cm, Ec_40cm, Ec_60cm, and Ec_80cm)(μs/cm), sun time (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The soil water potential in the area is so low that it has exceeded the sensor measurements. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This data is originated from the 1:100,000 national basic geographic database, which was open freely for public by the National Basic Geographic Information Center in November 2017. The boundary of the Qinghai-Tibet Plateau was spliced and clipped as a whole, so as to facilitate the study on the Qinghai-Tibet plateau. This data set is the 1:100,000 administrative boundaries of the qinghai-tibet plateau, including National_Tibet_line、 Province_Tibet、City_Tibet、County_Tibet_poly and County_Tibet_line. Administrative boundary layer (County_Tibet_poly) property name and definition: Item Properties Describe Example PAC Administrative division code 513230 NAME The name of the County line name Administrative boundary layer (BOUL) attribute name and definition: Item Properties Describe Example GB classification code 630200 Administrative boundary layer (County_Tibet_line) attribute item meaning: Item Properties Describe Example GB 630200 Provincial boundary GB 640200 Prefectural, municipal and state administrative boundaries GB 650201 county administrative boundaries (determined)
National Basic Geographic Information Center
Qinghai Tibet Plateau is the largest permafrost area in the world. At present, some permafrost distribution maps have been compiled. However, due to the limited data sources, unclear standards, insufficient verification and lack of high-quality spatial data sets, there is great uncertainty in drawing Permafrost Distribution Maps on TP. Based on the improved medium resolution imaging spectrometer (MODIS) surface temperature (LSTS) model of 1 km clear sky mod11a2 (Terra MODIS) and myd11a2 (Aqua MODIS) product (reprocessing version 5) in 2003-2012, the data set simulates the distribution of permafrost and generates the permafrost map of Qinghai Tibet Plateau. The map was verified by field observation, soil moisture content and bulk density. Permafrost attributes mainly include: seasonally frozen ground, permafrost and unfrozen ground. The data set provides more detailed data of Permafrost Distribution and basic data for the study of permafrost in the Qinghai Tibet Plateau.
ZHAO Lin
This dataset includes data recorded by the Heihe integrated observatory network obtained from the automatic weather station (AWS) at the observation system of Zhangye wetland station from January 1 to December 31, 2018. The site (100.4464° E, 38.9751° N) was located on a wetland (reed surface) in Zhangye National Wetland Park, Gansu Province. The elevation is 1460 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45AC; 5 and 10 m, north), wind speed profile (03002; 5 and 10 m, north), wind direction profile (03002; 10 m, north), air pressure (CS100; 2 m), rain gauge (TE525M; 10 m), four-component radiometer (CNR1; 6 m, south), two infrared temperature sensors (SI-111; 6 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (109ss-L; 0, -0.02, -0.04, -0.1, -0.2 and -0.4 m), and four photosynthetically active radiation (PQS-1; two above the plants, 6 m, south, one vertically downward and one vertically upward; two below the plants, 0.25 m, south, one vertically downward and one vertically upward). The observations included the following: air temperature and humidity (Ta_5 m and Ta_10 m; RH_5 m and RH_10 m) (℃ and %, respectively), wind speed (Ws_5 m and Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm and Ts_40 cm) (℃), on the plants photosynthetically active radiation of upward and downward (PAR_U_up and PAR_U_down) (μmol/ (s m^-2)), and below the plants photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m^-2)). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset contains the flux measurements from the Yakou station eddy covariance system (EC) in the upper stream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2018. The site (100.2421° E, 38.0142° N) was located in the Qilian County in Qinghai Province. The elevation is 4148 m. The EC was installed at a height of 3.2 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The power loss occurs occasionally at this site. Data during May 24 to June 21, 2018 were missing due to the insufficient pow supply. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Dunhuang Station from January 1 to December 31, 2018. The site (93.708° E, 40.348° N) was located on a wetland in the Dunhuang west lake, Gansu Province. The elevation is 990 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4m and 8 m, towards north), wind speed and direction profile (windsonic; 4m and 8 m, towards north), air pressure (1 m), rain gauge (4 m), infrared temperature sensors (4 m, towards south, vertically downward), soil heat flux (-0.05 and -0.1m ), soil soil temperature/ moisture/ electrical conductivity profile (below the vegetation in the south of tower, -0.05 and -0.2 m), photosynthetically active radiation (4 m, towards south), four-component radiometer (4 m, towards south), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m, Ta_8 m; RH_2 m, RH_4 m, RH_8 m) (℃ and %, respectively), wind speed (Ws_4 m, Ws_8 m) (m/s), wind direction (WD_4 m, WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), soil heat flux (Gs_0.05m, Gs_0.1m) (W/m^2), soil temperature (Ts_0.05m, Ts_0.2m) (℃), soil moisture (Ms_0.05m, Ms_0.2m) (%, volumetric water content), soil conductivity (Ec_0.05m, Ec_0.2m)(μs/cm), sun time(h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The data were missing during Jan. 23 to Jan. 24 because of collector failure; the data during Mar. 17 and May 24 were wrong because of the tower body tilt; The air humidity data were rejected due to program error. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30.
ZHAO Changming, ZHANG Renyi
This dataset contains the flux measurements from the Zhangye wetland station eddy covariance system (EC) in the midstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2018. The site (100.44640° E, 38.97514° N) was located in the Zhangye City in Gansu Province. The elevation is 1460 m. The EC was installed at a height of 5.2 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (Gill&Li7500A) was 0.25 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Flux data during March 25 to May 10, 2018 were wrong to the sensor malfunction. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset contains the flux measurements from the Jingyangling station eddy covariance system (EC) in the upperstream reaches of the Heihe integrated observatory network from August 28 to December 31 in 2018. The site (101.1160E, 37.8384N) was located in the Jingyangling, near Qilian County in Qinghai Province. The elevation is 3750 m. The EC was installed at a height of 4.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Data during insufficient power supply, data were missing occasionally. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei
This dataset contains the flux measurements from the desert station eddy covariance system (EC) in the downstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2018. The site (100.9872° E, 42.1135° N) was located in the Ejina Banner in Inner Mongolia Autonomous Region. The elevation is 1054 m. The EC was installed at a height of 4.7 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Data during May 14 to June 26, 2018 were missing due to the data logger malfunction. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset contains five types of boundaries. 1. TPBoundary_ 2500m: Based on ETOPO5 Global Surface Relief, ENVI+IDL was used to extract data at an elevation of 2500m within the longitude (65~105E) and latitude (20~45N) range in the Tibetan Plateau. 2. TPBoundary_ 3000m: Based on ETOPO5 Global Surface Relief, ENVI+IDL was used to extract data at an elevation of 3000m within the longitude (65~105E) and latitude (20~45N) range in the Tibetan Plateau. 3. TPBoundary_ HF (high_frequency): This boundary is defined according to 2 previous studies. Bingyuan Li (1987) had a systematic discussion on the principles for determining the extent of the Tibetan Plateau and the specific boundaries. From the perspective of the formation and basic characteristics of the Tibetan Plateau, he proposed the basic principles for determining the extent of the Tibetan Plateau based on the geomorphological features, the plateau surface and its altitude, while considering the integrity of the mountain. Yili Zhang (2002) determined the extent and boundaries of the Tibetan Plateau based on the new results of research in related fields and years of field practice. He combined information technology methods to precisely locate and quantitatively analyze the extent and boundary location of the Tibetan Plateau, and concluded that the Tibetan Plateau in China extends from the Pamir Plateau in the west to the Hengduan Mountains in the east, from the southern edge of the Himalayas in the south to the northern side of the Kunlun-Qilian Mountains in the north. On April 14, 2017, the Ministry of Civil Affairs of the People's Republic of China issued the Announcement on Adding Geographical Names for Public Use in the Southern Tibetan Region (First Batch), adding six geographical names in the southern Tibetan region, including Wo’gyainling, Mila Ri, Qoidêngarbo Ri, Mainquka, Bümo La, and Namkapub Ri. 4. TPBoundary_ New (2021): Along with the in-depth research on the Tibetan Plateau, the improvement of multidisciplinary research and understanding inside and outside the plateau, and the progress of geographic big data and Earth observation science and technology, the development of the 2021 version of the Tibetan Plateau boundary data by Yili Zhang and et al. was completed based on the comprehensive analysis of ASTER GDEM and Google Earth remote sensing images. The range boundary starts from the northern foot of the West Kunlun Mountain-Qilian Mountain Range in the north and reaches the southern foot of the Himalayas and other mountain ranges in the south, with a maximum width of 1,560 km from north to south; from the western edge of the Hindu Kush Mountains and the Pamir Plateau in the west to the eastern edge of the Hengduan Mountains and other mountain ranges in the east, with a maximum length of about 3,360 km from east to west; the latitude and longitude range is 25°59′30″N~40°1′0″N, 67°40′37″E~104°40′57″E, with a total area of 3,083,400km2 and an average altitude of about 4,320m. Administratively, the Tibetan Plateau is distributed in nine countries, including China, India, Pakistan, Tajikistan, Afghanistan, Nepal, Bhutan, Myanmar, and Kyrgyzstan. 5. TPBoundary_ Rectangle: The rectangle was drawn according to the range of Lon (63~105E) and Lat (20~45N). The data are in latitude and longitude projection WGS84. As the basic data, the boundary of the Tibetan Plateau can be used as a reference basis for various geological data and scientific research on the Tibetan Plateau.
ZHANG Yili
This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Daman Superstation in the Heihe integrated observatory network from January 1 to December 31 in 2018. There were two types of LASs at Daman Superstation: BLS450 and BLS900, produced by Germany. The north tower was set up with the BLS450 receiver and the BLS900 transmitter, and the south tower was equipped with the BLS450 transmitter and the BLS900 receiver. The site (north: 100.379° E, 38.861° N; south: 100.369° E, 38.847° N) was located in Daman irrigation district, which is near Zhangye, Gansu Province. The underlying surfaces between the two towers were corn, orchard, and greenhouse. The elevation is 1556 m. The effective height of the LASs was 22.45 m, and the path length was 1854 m. The data were sampled 1 minute at both BLS450 and BLS900. The raw data acquired at 1 min intervals were processed and quality controlled. The data were subsequently averaged over 30 min periods, in which sensible heat flux was iteratively calculated by combining Cn2 with meteorological data according to the Monin-Obukhov similarity theory. The main quality control steps were as follows: (1) The data were rejected when Cn2 exceeded the saturated criterion (Cn2>1.43E-13). (2) The data were rejected when the demodulation signal was small (Average X Intensity<1000). (3) The data were rejected when collected during precipitation. (4) The data were rejected if collected at night when weak turbulence occurred (u* was less than 0.1 m/s). In the iteration process, the universal functions of Thiermann and Grassl, 1992 was selected. Detailed can refer to Liu et al. (2011, 2013). Several instructions were included with the released data. (1) The data were primarily obtained from BLS900 measurements, and missing flux measurements from the BLS900 instrument were substituted with measurements from the BLS450 instrument. The missing data were denoted by -6999. (2) The dataset contained the following variables: Date/time (yyyy/m/d h:mm), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). In this dataset, a time of 0:30 corresponds to the average data for the period between 0:00 and 0:30, and the data were stored in *.xlsx format. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) (for data processing) in the Citation section.
LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
This dataset includes data recorded by the Heihe integrated observatory network obtained from the automatic weather station (AWS) at the observation system of Heihe remote sensing station from January 1 to December 31, 2018. The site (100.4756° E, 38.8270° N) was located on artificial grassland in Dangzhai Town of Zhangye, Gansu Province. The elevation is 1560 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (1.5 m, north), wind speed and direction (10 m, north), air pressure (2 m), rain gauge (0.7 m), four-component radiometer (1.5 m, south), two infrared temperature sensors (1.5 m, south, vertically downward), soil heat flux (3 duplicates, -0.06 m), soil temperature profile (0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, -1.6 m), soil moisture profile (-0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, -1.6 m), and two photosynthetically active radiation (1.5 m, south, one vertically downward and one vertically upward). The observations included the following: air temperature and humidity (Ta_1.5, RH_1.5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, Ms_160 cm) (℃),on the plants photosynthetically active radiation of upward and downward (PAR_U_up and PAR_U_down) (μmol/ (s m^-2)). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, LI Xin, CHE Tao, XU Ziwei, REN Zhiguo, TAN Junlei
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn