Because of its unique natural conditions and geographical location, the Arctic region plays a very important role in global change. Polar sea ice, as an important influencing factor of climate change, is a sensitive instrument of global climate change. The Yellow River Station, one of China's research stations in the Arctic, focuses on supporting the three scientific fields of global change and its regional response, the polar space environment and space climate, and the life characteristics and processes in the polar environment, providing an important platform for China's in-depth scientific research activities in the Arctic. Therefore, the product data set of data validation for key areas of Arctic sea ice in recent years is constructed to monitor the key areas of Arctic sea ice.
Chen Fu, QIU Yubao
The coverage time of microwave scatterometer ice sheet freeze-thaw data is updated to 2015-2019, with a spatial resolution of 4.45km. The time resolution is day by day, and the coverage range is the polar ice sheet. The remote sensing inversion method based on microwave radiometer considers the change of snow cover characteristics in space-time and space. Firstly, the DVPR time series data of scatterometer data is extracted, the high time resolution of scatterometer data is effectively used, and the influence of terrain is removed by channel difference. Then, the variance value of time series at each sampling point is simulated by generalized Gaussian model, so as to make the region. The generalized Gaussian model needs less input parameters than the traditional double Gaussian model, and the obtained threshold is also unique. Finally, the moving window segmentation algorithm is used to accurately find the melting start time, end time and duration of the wet snow point, which can effectively remove the temperature mutation in the melting or non melting period. The impact. The data of long time series microwave scatterometer are from QSCAT and ASCAT. The verification of the measured stations shows that the detection accuracy of ice sheet freezing and thawing is over 70%. The data is stored in a bin file every day. Each file of Antarctic freeze-thaw data based on microwave scatterometer is composed of 810 * 680 grid, and each file of Greenland ice sheet freeze-thaw data is composed of 810 * 680 grid (0 value: non melting area, 1 Value: melting area).
Liang Lei
The aerosol optical thickness data of Qomolangma station and Namuco station in the Qinghai Tibet Plateau is based on the observation data products of Qomolangma station and Namuco station from the atmospheric radiation view of the Institute of Qinghai Tibet Plateau of the Chinese Academy of Sciences. The data coverage time is from 2017 to 2019, the time resolution is hour by hour, the coverage sites are Qomolangma station and Namuco station, the longitude and latitude coordinates are (Qomolangma station: 28.365n, 86.948e, Namuco station Mucuo station: 30.7725n, 90.9626e). The source of the observed data is retrieved from the radiation data observed by mfrsr instrument. The characteristic variable is aerosol optical thickness, and the error range of the observed inversion is about 15%. The data format is TXT.
CONG Zhiyuan
The total solar radiation and the total radiation of absorption and scattering material attenuation are measured by the international general solar radiation meter (li200sz, li-cor, Inc., USA). The measured data are total solar radiation, including direct and diffuse solar radiation, with a wavelength range of 400-1100nm. The unit of measurement is w / m2, and the typical error is ± 3% (incidence angle is within 60 °) under natural lighting. The data of sodankyl ä station in the Arctic comes from cooperation with the site and website download. The coverage time of sodankyl ä station in the Arctic is updated to 2018.
BAI Jianhui
There are many lakes in the Qinghai Tibet Plateau. The glacial phenology and duration of lakes in this region are very sensitive to regional and global climate change, so they are used as the key indicators of climate change research, especially the comparative study of the three polar environmental changes of the earth. However, due to its poor natural environment and sparse population, there is a lack of conventional field measurement of lake ice phenology. The lake ice was monitored with a resolution of 500 meters by using the normalized difference snow index (NDSI) data of MODIS. The traditional snow map algorithm is used to detect the lake daily ice amount and coverage under the condition of sunny days, and the lake daily ice amount and coverage under the condition of cloud cover are re determined through a series of steps based on the spatiotemporal continuity of the lake surface conditions. Through time series analysis, 308 lakes larger than 3km2 are identified as effective records of lake ice range and coverage, forming a daily lake ice range and coverage data set, including 216 lakes.
QIU Yubao
The coverage time of microwave radiometer ice sheet freeze-thaw data set is updated to 2016-2019, with a spatial resolution of 25 km; the remote sensing inversion method based on microwave radiometer adopts the improved wavelet based ice sheet freeze-thaw detection algorithm, which takes into account the change of ice sheet freeze-thaw brightness temperature characteristics in time. First, the long-time brightness temperature data of all ice sheet areas in Greenland is small by using wavelet transform. The multi-scale decomposition of wave is used to analyze the edge information at different scales. Thirdly, the edge information of ice sheet melting and refreezing is separated from the noise by ANOVA. Based on the extracted edge information of long-term brightness and temperature change of ice sheet, the optimal edge threshold of dry snow and wet snow classification is determined by using the generalized Gaussian model, so as to detect the melting area of Greenland ice sheet. Finally, based on the principle of space automatic error correction, the error results caused by noise are detected by using the space neighborhood error correction operator, and the error is corrected manually. The brightness and temperature data of passive microwave in long time series come from SMMR, SSM / I and SSMI / s sensors. To ensure simultaneous interpreting of the brightness temperature of different sensors, simultaneous interpreting of different sensor brightness temperatures is made before freezing and thawing. Through the verification of the actual measurement site, it shows that the detection accuracy of Greenland ice sheet freeze-thaw is more than 70%.
Liang Lei
The Antarctic Peninsula is also called "Palmer peninsula" or "Graham land". Located in the southwest polar continent, it is the largest peninsula in the Antarctic continent and the farthest peninsula extending northward into the ocean (63 ° south latitude), bordering the Weddell Sea and berengske sea in the East and West. The Antarctic Peninsula is known as the "tropics" of Antarctica. This is a typical sub polar marine climate. Compared with the Antarctic continent, it is one of the warmest and wettest regions in Antarctica. There are a small number of pioneer plants distributed on the islands in the marginal area, mainly bryophytes and lichens. The plant abundance data products of Antarctic Peninsula and its surrounding areas are matched with remote sensing images through measured spectra, and the end element spectra of moss, lichen, rock, sea and snow are extracted with pure pixel PPI. The linear mixture model (LMM) is applied to calculate. The vegetation coverage of Fildes Peninsula is obtained according to the linear relationship between the vegetation coverage and the abundance.
XU Xiyan
Based on the sentinel-1 hyperspectral wide-band SAR data, using the proposed u-net ice fissure detection method, the ice fissure elevation data of the north and south polar ice sheet are formed. Firstly, the data preprocessing of sentinel-1 hyperspectral wide-band SAR includes radiometric calibration, ice cover range determination and speckle noise removal. In order to suppress the speckle noise of SAR data, and to ensure the ice fracture characteristics, we use ppb method to remove multiplicative noise. This method can not only effectively remove spots, but also retain the characteristics of ice cracks. Secondly, we use the u-net based ice crack detection algorithm to extract ice cracks. In order to obtain the correct ice fracture SAR data samples, we select the SAR samples by comparing the high-resolution optical data of ice fracture to form the ice fracture SAR data samples. Based on the SAR data of ice fracture area and non ice fracture area, we use u-net method to extract ice fracture. Finally, we geocode the detected ice fracture data to form the ice fracture products of the north and south polar.
Liang Lei
The aerosol optical thickness data of the Arctic Alaska station is based on the observation data products of the atmospheric radiation observation plan of the U.S. Department of energy at the Arctic Alaska station. The data coverage time is updated from 2016 to 2019, with the time resolution of hour by hour. The coverage site is the northern Alaska station, with the longitude and latitude coordinates of (71 ° 19 ′ 22.8 ″ n, 156 ° 36 ′ 32.4 ″ w). The source of the observed data is retrieved from the radiation data observed by mfrsr instrument. The characteristic variable is aerosol optical thickness, and the error range of the observed inversion is about 15%. The data format is NC format.
ZHAO Chuanfeng
River ice is the main component of the cryosphere, and the freezing of rivers in the polar region has a significant impact on the Arctic shipping and transportation industry. With the construction of "ice silk road" between China and Russia, monitoring the change of river ice in Erqis river basin can provide theoretical basis for river navigation. The sparse distribution of hydrological stations in the Arctic limits the study of river ice. The limited available data of hydrological stations show that the trend of river ice rupture is ahead of schedule, but the specific climate mechanism driving this trend is very complex. Therefore, optical data with high temporal resolution (such as MODIS products) are suitable for monitoring river ice phenology and mapping river ice cover range, which is helpful to understand the process of river ice rupture. Based on MODIS and passive microwave data, a method of monitoring river ice in Erqis River Basin by using different remote sensing data is realized in this study, in order to analyze the phenological parameters of river ice such as the time of river closure, the time of river closure, the speed of river opening, the speed of river closure and the duration of freezing period. At the same time, it is helpful to understand the response of river ice breaking process to Arctic climate warming.
Liang Wenshan, QIU Yubao
1) This data is the reconstructed autumn sea ice from 1289 to 1993 in Barents Kara Sea, Arctic ; 2) Based on multiple statistical methods modeling, this sea ice time series is reconstructed by the ice core and tree ring proxy record; 3) This long term sea ice series is annual resolution and have a high reliability; 4) This data can help us know the historical changes of Arctic sea ice and its response and impact on climate change. The Barents Sea Kara Sea area is the key sea area where the extreme cold air flows southward in winter and spring in China. However, the lack of observation data limits our understanding of its mechanism. It is very important to reconstruct the characteristics of long-term Arctic sea ice change to study the Arctic sea ice change in the global context and its impact on China's historical climate.
XIAO Cunde
At present, based on the proposed SAR ice sheet freeze-thaw detection algorithm using change detection and decision tree algorithm, the monthly average ice sheet freeze-thaw is detected using sentinel-1 EW SAR data. At the same time, using the developed production module of freeze-thaw products based on big data platform, the international first production of Antarctic ice sheet and Greenland ice sheet freeze-thaw products. Through the development of automatic weather station temperature data, the ice sheet freeze-thaw detection accuracy reaches 90%. At present, the acquisition time of data products is mainly the summer of the north and south poles, among which the Antarctic ice sheet products are January, February, March, October, November, December and Greenland products are may, June, July, August, September and October.
Lu Zhang
The Antarctic Peninsula is also called "Palmer peninsula" or "Graham land". Located in the southwest polar continent, it is the largest peninsula in the Antarctic continent and the farthest peninsula extending northward into the ocean (63 ° south latitude), bordering the Weddell Sea and berengske sea in the East and West. The Antarctic Peninsula is known as the "tropics" of Antarctica. This is a typical sub polar marine climate. Compared with the Antarctic continent, it is one of the warmest and wettest regions in Antarctica. There are a small number of pioneer plants distributed on the islands in the marginal area, mainly bryophytes and lichens. The spectrum and annotation data of Antarctic Peninsula and its surrounding plants are the spectral data of 37 sample points in 9 regions of Fildes Peninsula and Adeli island around the Antarctic Peninsula on January 7-22, 2018, which provide the background information for the study of the distribution and change of Antarctic plants.
XU Xiyan
Svalbard, Spitsbergen. The archipelago in the Arctic region is the territory of the northernmost border of Norway. It is located in the north of the European continent, between the Norwegian continent and the Arctic point. Vegetation is mainly lichens and bryophytes, the only trees are small polar willow and birch. The vegetation spectrum data set collected in this area is mainly based on the pioneer plant survey of 283 sample points in the new Olson area of Svalbard Islands in the Arctic. The survey time is July 6-22, 2018. The collection place includes London Island, the Yellow River Station area and the front of glaciers, which provides background information for the study of plant distribution and change in the Arctic tundra area.
XU Xiyan
Under the summer sunlight, the snow covering the ice melts, forming different shapes and sizes of ice pools on the ice. The melting pool caused by the melting of the sea ice surface will reduce the sea ice albedo, which will have a significant impact on the energy balance in the polar region, increasing absorption and thus accelerating the sea ice melting process. Among the factors that affect the sea ice albedo, melting pool is one of the most important and most violent factors. With climate change, the rate of ice melting in summer is also getting faster and faster. The energy balance on the Earth's surface has a significant impact, and the acceleration of ice melting speed may also make the melting pool, an important natural phenomenon, one of the most significant ice surface features during the Arctic sea ice melting season. The albedo of melting pool is between sea water and sea ice. The study of melting pool on ice is also an important part of the study of the rapid change mechanism of Arctic sea ice. Due to the similar microwave signal characteristics between sea ice melting pools and the sea surface, and the significant uncertainty of using microwave data to map melting pool coverage due to factors such as wind speed and sea ice melting, the most reliable remote sensing method for melting pool coverage is to use medium resolution optical remote sensing data (such as MODIS) to map sub pixel melting pool coverage. This dataset includes the use of MODIS data for sub pixel decomposition inversion of Arctic sea ice melting pool coverage and sea ice concentration based on dynamic end element reflectance.
Xiong Chuan, REN Yan, QIU Yubao
Permafrost regions occupy about 46% of the exposed land area on the Tibetan Plateau (TP). Permafrost is a hidden phenomenon that cannot be easily observed, and its distribution is hence heavily dependent on in-situ observations. Four methods are used to derive permafrost presence or absence over the TP, including borehole temperature, soil pit, ground surface temperature, and ground-penetrating radar surveys. There are a total of 626 sites of permafrost presence or absence contained in the inventory. In order to apply the permafrost presence or absence inventory more broadly, the degree of confidence in the data is estimated and provided in the inventory. The inventory provided a baseline for the presence or absence of pernmafrost at point scale on the TP, and could be additionally used for permafrost simulation evalution.
CAO Bin, CAO Bin, ZHANG Tingjun, WU Qingbai, ZHAO Lin, ZHOU Defu ZOU Defu ZOU Defu
Using the Landsat8 OLI images at the summerof 2015, the spectral characteristics of satellite sensors were extracted in the Belt and Road's region. The bands included the band (0.45 - 0.51μm)、band (0.53 - 0.59μm)、band (0.64 - 0.67μm)、band (0.85 - 0.88μm)、band (1.57 - 1.65μm)、band (2.11 - 2.29 μm)、band (10.60 - 11.19 μm)和band (11.50 - 12.51 μm). And the Land cover data of the Belt and Road's region (Version 1.0) (2015) was used to extract the land cover/use at each location. Data includes the format of excel and shp. The data of shp format includes the spatial distribuition and the spectral characteristics of each sampling point.
XU Erqi
Based on a recently developed inventory of permafrost presence or absence from 1475 in situ observations, we developed and trained a statistical model and used it to compile a high‐resolution (30 arc‐ seconds) permafrost zonation index (PZI) map. The PZI model captures the high spatial variability of permafrost distribution over the QTP because it considers multi- ple controlling variables, including near‐surface air temperature downscaled from re‐ analysis, snow cover days and vegetation cover derived from remote sensing. Our results showed the new PZI map achieved the best performance compared to avail- able existing PZI and traditional categorical maps. Based on more than 1000 in situ measurements, the Cohen's kappa coefficient and overall classification accuracy were 0.62 and 82.5%, respectively. Excluding glaciers and lakes, the area of permafrost regions over the QTP is approximately 1.54 (1.35–1.66) ×106 km2, or 60.7 (54.5– 65.2)% of the exposed land, while area underlain by permafrost is about 1.17 (0.95–1.35) ×106 km2, or 46 (37.3–53.0)%.
CAO Bin CAO Bin
The data is based on the Harmonized World Soil Database version 1.1 (HWSD) constructed by the Food and Agriculture Organization of the United Nations (FAO) and the Vienna International Institute for Applied Systems (IIASA). The data source of China is 1: 1 million soil data in the second national land survey provided by the Nanjing Soil Research Institute. The data can provide model input parameters for modelers, in agricultural perspective, it can be used to study eco-agricultural zoning, food security and climate change. The data format is grid and the projection is WGS84. The soil classification system used is mainly FAO-90. The main fields of the soil property table include: SU_SYM90 (the soil name in the FAO90 soil classification system); SU_SYM85 (FAO85 classification); T_TEXTURE (top soil texture); DRAINAGE (19.5); REF_DEPTH (soil reference depth); AWC_CLASS (19.5); AWC_CLASS (soil effective water content); PHASE1: Real (soil phase); PHASE2: String (soil phase); ROOTS: String (depth classification with obstacles to the bottom of the soil); SWR: String (soil moisture characteristics); ADD_PROP: Real (a specific soil type related to agricultural use in the soil unit); T_GRAVEL: Real (gravel volume percentage); T_SAND: Real (sand content); T_SILT: Real (silt content); T_CLAY: Real (clay content); T_USDA_TEX: Real (USDA soil texture classification); T_REF_BULK: Real (soil bulk density); T_OC: Real (organic carbon content); T_PH_H2O: Real (pH) T_CEC_CLAY: Real (cation exchange capacity of clay soil); T_CEC_SOIL: Real (cation exchange capacity of soil) T_BS: Real (basic saturation); T_TEB: Real (exchangeable base); T_CACO3: Real (carbonate or lime content) T_CASO4: Real (sulfate content); T_ESP: Real (exchangeable sodium salt); T_ECE: Real (conductivity). The attribute field beginning with T_ indicates the upper soil attribute (0-30cm), and the attribute field beginning with S_ indicates the lower soil attribute (30-100cm). For the meaning of specific attribute values, please refer to the documentation * .pdf and database * .mdb in the folder.
Food and Agriculture Organization of the United Nations(FAO), International Institute for Applied Systems Analysis
This data set provides daily snow thickness distribution data of China from October 24, 1978 to December 31, 2012, with a spatial resolution of 25km.The original data used for the inversion of the snow depth data set came from SMMR (1978-1987), SSM/I (1987-2008) and amsr-e (2002-2012) daily passive microwave bright temperature data processed by the national snow and ice data center (NSIDC).As the three sensors are mounted on different platforms, there is a certain system inconsistency in the obtained data.The time consistency of bright temperature data is improved by cross calibration of bright temperature of different sensors.Then, based on Chang algorithm, Dr. Che tao is used to carry out snow depth inversion.Refer to the data description document for specific inversion methods.
CHE Tao, LI Xin, DAI Liyun
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn