Data content: this data set is the historical archived satellite data of the domestic high score series (GF1 / 2 / 3 / 4) in the key river and lake research areas of the Qinghai Tibet Plateau from 2015 to 2020, which can cover the typical river and lake areas for effective monitoring. The time range of the data is from 2015 to 2020. Data source and processing method: the data are level 1 products. After equalizing radiation correction, the changes affecting the sensors are corrected by the equalizing functions of different detectors. Some data are based on the Landsat 8 images in the same period as the base map, and control points are selected for geometric correction of the images. Then, orthophoto correction is carried out based on DEM data, and band fusion processing is carried out for the corresponding data. Data quality description: the Gaofen series satellites are processed by the China Resources Satellite Application Center. There are raw data received by the satellite ground receiving station of the Chinese Academy of Sciences and processed products at all levels. Among them, level 1a (pre-processing level radiometric correction image product): image data processed by data analysis, uniform radiometric correction, noise removal, MTFC, CCD splicing, band registration, etc; And provide RPC files for satellite direct attitude orbit data production. Refer to the data website of China Resources Satellite Application Center for details. Data application achievements and prospects: the data are domestic high-resolution data with high resolution, which can be used to monitor the changes of the Qinghai Tibet Plateau as a water tower in Asia and the generated images, and test the accuracy of other data in the region
QIU Yubao
The data is the result of the prediction of Arctic sea ice density and sea ice coverage by the climate system model FGOALS independently developed by the project members. The correct selection of assimilation technology is an important factor for Arctic sea ice prediction. In the sea ice data assimilation technology, the singular value evolutionary interpolation Kalman filter (seik) is a relatively early but still commonly used filtering algorithm. However, due to the calculation of error covariance between all grid points, there is a false teleconnection error. Therefore, it is considered to develop a local filtering method to assimilate sea ice density and sea ice thickness. In the climate system model FGOALS, the project will initialize and process the sea ice thickness data retrieved by the European Space Agency (ESA) cryosat-2 and soil moisture and ocean salinity (SMOs) satellite remote sensing.
SONG Mirong
The data is the result of the prediction of Arctic sea ice density and sea ice coverage by the climate system model FGOALS independently developed by the project members. The correct selection of assimilation technology is an important factor for Arctic sea ice prediction. In the sea ice data assimilation technology, the singular value evolutionary interpolation Kalman filter (seik) is a relatively early but still commonly used filtering algorithm. However, due to the calculation of error covariance between all grid points, there is a false teleconnection error. Therefore, it is considered to develop a local filtering method to assimilate sea ice density and sea ice thickness. In the climate system model FGOALS, the project will initialize and process the sea ice thickness data retrieved by the European Space Agency (ESA) cryosat-2 and soil moisture and ocean salinity (SMOs) satellite remote sensing.
SONG Mirong
(1) Data content: data set of precipitation field of the three poles (Arctic, Antarctic and Qinghai Tibet Plateau) in the past millennium; (2) Data source and processing method: the data is independently produced by the author and is produced by assimilating the precipitation proxy data in the three polar regions through the paleoclimate data assimilation method; (3) Data quality description: there is a high degree of spatial-temporal consistency between the data set and the precipitation data sets measured by multiple instruments (correlation coefficient is above 0.35, P < 0.001; Nash efficiency coefficient is above 0.3). In addition, the correlation coefficient with multiple precipitation data series reconstructed based on proxy data is between 0.2 and 0.6 (P < 0.001); (4) It can be used to study the temporal and spatial changes of precipitation in the past millennium in the three polar regions.
FANG Miao
(1) Data content: Millennial temperature (near-surface air temperature anomaly based on the millinnial mean)datasets over the three poles, e.g., Arctic, Antarctic, and Qinghai-Tibet Plateau; (2) Data sources and processing methods: These datasets were produced by the authors themselves using the paleoclimate data assimilationand approach based on climatic proxies over the three poles; (3) Description of data quality: There are high spatio-temporal consistency between these datasets and several instrumental gridded temperature datasets (correlation coefficient above 0.6, p <0.001; Nash efficiency coefficient above 0.5). In addition, the correlations between these datasets and several proxy-based temperature series are between 0.4 and 0.8 (p <0.001). (4) Data application achievements and prospects: These datasets can be used to investigate the temporal and spatial variations in temperature over the three poles during the past millennium.
FANG Miao
In recent years, with the acceleration of the melting of the Antarctic ice sheet, a large amount of ice melt has formed on the surface of the ice sheet from 2000 to 2019. It is of great significance to study the material balance of the Antarctic ice sheet to deeply understand the spatial-temporal distribution and dynamic changes of the melt water on the Antarctic ice sheet. This data set is based on Landsat7 and landsat8 images with 30 m spatial resolution from 2000 to 2019. By using normalized water body index, Gabor filtering and morphological path opening operations, the ice melt grid data set is generated, and the grid water body mask is converted into vector data in ArcGIS. This data set is based on the 250m ice surface melt water data set of the Antarctic ice sheet melting area (Alexander Island, Antarctic Peninsula) from 2000 to 2019 extracted from Landsat images. The time is concentrated from December to February (Southern Hemisphere summer)
YANG Kang
According to the data of three future scenarios of CMIP5 (RCP2.6、RCP4.5、RCP8.5), the spatial variation characteristics and temporal variation trend of the global mean annual air temperature from 2006 to 2100 are analyzed. Under rcp2.6 scenario, the mean annual air temperature shows an increasing trend, with the growth rate ranging from 0.0 ° c/decade to 0.2 ° c/decade (P<0.05), the growth in high latitude regions is faster, ranging from 0.1 ° c/decade to 0.2 ° C / decade. Based on the spatial and temporal characteristics of the mean annual air temperature in the northern hemisphere in the 21st century, under different scenarios, the mean annual air temperature shows a warming trend, and the high latitudes show a more sensitive and rapid growth.
NIU Fujun
According to the inducing factors of potential thermal melting disasters (mainly thermal melting landslides) in the pan Arctic, including temperature (freezing and Thawing Environment), rainfall, snow cover, soil type, topography and landform, and underground ice content, based on the basic data provided by the big data resource database of the earth, machine learning methods (logic regression, random forest, artificial neural network, support vector machine, etc.) are adopted, and the currently interpreted thermal melting landslides in the northern hemisphere are taken as training samples, Finally, the zonation map of thermal melt disaster susceptibility (occurrence probability) in the pan Arctic was obtained. According to the sensitivity of driving factors, it is found that climate factors (temperature and rainfall) have the largest contribution to the occurrence and distribution of thermal melt disasters, followed by slope factors, and ice content and radiation also have a high contribution.
NIU Fujun
Firstly, the freeze thaw index is calculated by using the resampled crunep data, and then the permafrost area of circum-Arctic is predicted by the frozen number model after snow depth correction. The simulated pan Arctic permafrost area from 2000 to 2015 is 19.96 × 106 km2。 Places inconsistent with the distribution of Pan Arctic permafrost provided by the existing international snow and Ice Data Center are mainly located in island permafrost areas.
NIU Fujun
The global high-resolution simulated near sea surface temperature precipitation SST data set from 1990 to 2020 is from the latest cmip6 project. Cmip6 is the sixth climate model comparison program organized by the world climate research project (WCRP). Original data source: https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6 。 The data set includes the global near ocean surface temperature (TMP), precipitation (PR) and sea surface temperature (TOS). The air temperature and precipitation data include the rectangular combination of shared social economic path (SSP) and representative concentration path (RCP) of four different experimental scenarios of scenario MIP in cmip6. (1) Ssp126: upgrade rcp2.6 scenario based on ssp1 (low forcing scenario) (radiation forcing will reach 2.6w/m2 in 2100). (2) Ssp245: upgrade rcp4.5 scenario based on SSP2 (moderate forcing scenario) (radiation forcing will reach 4.5 w / m2 in 2100). (3) Ssp370: a new rcp7.0 emission path based on ssp3 (medium forcing scenario) (radiation forcing will reach 7.0 w / m2 in 2100). (4) Ssp585: upgrade rcp8.5 scenario based on ssp5 (high forcing scenario) (ssp585 is the only SSP scenario that can make radiation forcing reach 8.5 w / m2 in 2100). SST data provides ssp126 scenario data.
YE Aizhong
The basic data of hydrometeorology, land use and DEM were collected through the National Meteorological Information Center, the hydrological Yearbook, the China Statistical Yearbook and the Institute of geographical science and resources of the Chinese Academy of Sciences. The distributed time-varying gain hydrological model (DTVGM) with independent intellectual property rights is adopted for modeling, and the Qinghai Tibet Plateau is divided into 10937 sub basins with a threshold of 100 square kilometers. The daily flow data of 14 flow stations in Heihe River, Yarlung Zangbo River, Yangtze River source, Yellow River source, Yalong River, Minjiang River and Lancang River Basin were selected to draft and verify the model. The daily scale Naxi efficiency coefficient is above 0.7 and the correlation coefficient is above 0.8. The actual evaporation simulation is basically consistent with the station observation published by the Meteorological Bureau. The model simulates the water cycle process from 1998 to 2017. After verification, the spatial and temporal distribution of the actual evaporation (including soil evaporation and plant transpiration) on the 0.01 degree daily scale in the whole Tibetan Plateau is given.
YE Aizhong
The basic data of hydrometeorology, land use and DEM were collected through the National Meteorological Information Center, the hydrological Yearbook, the China Statistical Yearbook and the Institute of geographical science and resources of the Chinese Academy of Sciences. The distributed time-varying gain hydrological model (DTVGM) with independent intellectual property rights is adopted for modeling, and the Qinghai Tibet Plateau is divided into 10937 sub basins with a threshold of 100 square kilometers. The daily flow data of 14 flow stations in Heihe River, Yarlung Zangbo River, Yangtze River source, Yellow River source, Yalong River, Minjiang River and Lancang River Basin were selected to draft and verify the model. The daily scale Naxi efficiency coefficient is above 0.7 and the correlation coefficient is above 0.8. The model simulates the water cycle process from 1998 to 2017, and gives the spatial and temporal distribution of 0.01 degree daily scale runoff in the whole Qinghai Tibet Plateau.
YE Aizhong
We propose an algorithm for ice fissure identification and detection using u-net network, which can realize the automatic detection of ice fissures of Typical Glaciers in Greenland ice sheet. Based on the data of sentinel-1 IW from July and August every year, in order to suppress the speckle noise of SAR image, the probabilistic patch based weights (ppb) algorithm is selected for filtering, and then the representative samples are selected and input into the u-net network for model training, and the ice cracks are predicted according to the trained model. Taking two typical glaciers in Greenland (Jakobshavn and Kangerdlussuaq) as examples, the average accuracy of classification results can reach 94.5%, of which the local accuracy of fissure area can reach 78.6%, and the recall rate is 89.4%.
LI Xinwu , LIANG Shuang , YANG Bojin , ZHAO Jingjing
We propose an algorithm for ice crack identification and detection using u-net network, which can realize the automatic detection of Antarctic ice cracks. Based on the data of sentinel-1 EW from January to February every year, in order to suppress the speckle noise of SAR image, the probabilistic patch based weights (ppb) algorithm is selected for filtering, and then representative samples are selected and input into the u-net network for model training, and the ice cracks are predicted according to the trained model. Taking five typical ice shelves(Amery、Fimbul、Nickerson、Shackleton、Thwaiters) in Antarctica as an example, the average accuracy of classification results can reach 94.5%, of which the local accuracy of fissure area can reach 78.6%, and the recall rate is 89.4%.
LI Xinwu , LIANG Shuang , YANG Bojin , ZHAO Jingjing
In order to better understand the mechanism of the interaction between the global climate and the Fimbu and Jelbart ice shelves, it is important to obtain the long-term ice velocity changes in this region. 1960-1980s Ice Flow Velocity Field Data Product Set of the Fimbul and Jelbart Ice Shelves, East Antarctica: Using the early Argon, Landsat MSS and TM satellite images, based on pre-processing the early remote sensing images to obtain the orthophoto images with precise geometric status, a layered matching method under the constraint strategy of artificial point feature point grid point was proposed, and the historical ice flow velocity field data product of the Fimbul Jelbart Ice Shelf, East Antarctica was extracted. This study is of great significance for studying the historical ice velocity of the Fimbul Jelbart Ice Shelf in East Antarctica from 1963 to 1987, and can provide basic data for studying the response of the ice sheet to global climate change.
LI Rongxing , FENG Tiantian , LI Yanjun , CHENG Yuan , QIAO Gang
Global solar radiation and diffuse horizontal solar radiation at Dome C (Antarctica) are measured by radiation sensors (pyranometers CM22, Kipp & Zonen Inc., The Netherlands), and water vapor pressure (hPa) at the ground are obtained from the IPEV/PNRA Project “Routine Meteorological Observation at Station Concordia”, http://www.climantartide.it. This dataset includes hourly solar radiation and its absorbing and scattering losses caused by the absorbing and scattering atmospheric substances (MJ m-2, 200-3600 nm), and the albedos at the top of the atmosphere and the surface. The above solar radiations are calculated by using an empirical model of global solar radiation (Bai, J.; Zong, X.; Lanconelli, C.; Lupi, A.; Driemel, A.; Vitale, V.; Li, K.; Song, T. 2022. Long-Term Variations of Global Solar Radiation and Its Potential Effects at Dome C (Antarctica). Int. J. Environ. Res. Public Health, 19, 3084. https://doi.org/10.3390/ijerph19053084). The observed global solar radiation and meteorological parameters are available at https://doi.org/10.1594/PANGAEA.935421. The data set can be used to study solar radiation and its attenuation at Dome C, Antarctica.
BAI Jianhui
Global solar radiation at Qomolangma station (The Tibetan Plateau) is measured by radiation sensor (pyranometers CM22, Kipp & Zonen Inc., The Netherlands), and water vapor pressure (hPa) at the ground is measured by HMP45C-GM (Vaisala Inc., Vantaa, Finland). This dataset includes hourly solar radiation and its absorbing and scattering losses caused by the absorbing and scattering atmospheric substances (MJ m-2, 200-3600 nm), and the albedos at the top of the atmosphere and the surface. The above solar radiations are calculated by using an empirical model of global solar radiation (Bai, J.; Zong, X.; Ma, Y.; Wang, B.; Zhao, C.; Yang, Y.; Guang, J.; Cong, Z.; Li, K.; Song, T. 2022. Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. Int. J. Environ. Res. Public Health, 19, 8906. https://doi.org/10.3390/ijerph19158906). The observed global solar radiation and meteorological variables are available at https://data.tpdc.ac.cn/zh-hans/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/. The data set can be used to study solar radiation and its attenuation at Qomolangma region.
BAI Jianhui
The data product of ice flow velocity field of Rayner Glacier in East Antarctica in 1963 based on ARGON historical remote sensing images. Using two declassified satellite images taken in 1963 with an interval of two months, the early ice flow velocity field of the Reina Glacier in eastern Antarctica is estimated by hierarchical matching based on parallax decomposition. The accuracy of the estimated velocity map can reach 70 m/year. A method for estimating the surface velocity of cooperative glaciers based on the parallax decomposition of optical stereo images. First, the image to be matched generates the core image and the pyramid of the core image; Next, the ice flow area mask is used to divide the image into ice flow area and non ice flow area for matching respectively. In addition to the normal matching steps, the ice flow area also needs to perform parallax demarcation to distinguish the impact of ice flow movement on terrain parallax. Finally, through layer by layer matching, we can get the DTM and ice flow diagram of the object side at the bottom. This data is of great significance for reconstructing the early surface morphology and ice flow velocity of Rayner Glacier in East Antarctica.
LI Rongxing , QIAO Gang , YE Wenkai
Aerosol Optical Depth (AOD) reflects the attenuation of solar radiation to the surface by aerosols. The aerosol type is calculated according to the aerosol optical thickness (AOD). This data set is derived from the latest MODIS aerosol secondary product MOD04_ L2 and MYD04_ L2, where MOD and MYD represent Terra and Aqua satellites respectively. At present, MODIS aerosol retrieval algorithms are Dark Target (DT) and Deep Blue (DB). According to the inversion accuracy of the metadata field table Quality Assurance Confidence (QAC), DT and DB algorithm products are integrated to deal with land, ocean and coast respectively. The index quality is optimal (QAF=3) or suboptimal (QAF=2) or meets the basic needs (QAF=1) to obtain high-resolution AOD products (0.1 degree, daily scale) with full coverage and long time series. According to AOD experience threshold (AOD: 0~0.2, clean type; 0.2~0.6, urban or industrial type; greater than 0.6, sand dust type) The aerosol types are classified into three types: clean type (1), urban or industrial type (2) and sand dust type (3). This dataset provides MOD, MYD and fusion products based on transit time.
YE Aizhong
Aerosol Optical Depth (AOD) reflects the attenuation of solar radiation to the surface by aerosols. This data set is derived from the latest MODIS aerosol secondary product MOD04_ L2 and MYD04_ L2, where MOD and MYD represent Terra and Aqua satellites respectively. At present, MODIS aerosol retrieval algorithms are Dark Target (DT) and Deep Blue (DB). According to the inversion accuracy of the metadata field table Quality Assurance Confidence (QAC), DT and DB algorithm products are integrated to deal with land, ocean and coast respectively. The index quality is optimal (QAF=3) or suboptimal (QAF=2) or meets the basic needs (QAF=1) to obtain high-resolution AOD products (0.1 degree, daily scale) with full coverage and long time series. This dataset provides MOD, MYD and fusion products based on transit time.
YE Aizhong
The data set of bacterial post-treatment products and conventional water quality parameters of some lakes in the third pole in 2015 collected the bacterial analysis results and conventional water quality parameters of some lakes in the Qinghai Tibet Plateau during 2015. Through sorting, summarizing and summarizing, the bacterial post-treatment products of some lakes in the third pole in 2015 are obtained. The data format is excel, which is convenient for users to view. The samples were collected by Mr. Ji mukan from July 1 to July 15, 2015, including 28 Lakes (bamuco, baimanamuco, bangoso (Salt Lake), Bangong Cuo, bengcuo, bieruozhao, cuo'e (Shenza), cuo'e (Naqu), dawaco, dangqiong Cuo, dangjayong Cuo, Dongcuo, eyaco, gongzhucuo, guogencuo, jiarehbu Cuo, mabongyong Cuo, Namuco, Nier CuO (Salt Lake), Norma Cuo, Peng yancuo (Salt Lake), Peng Cuo, gun Yong Cuo, Se lincuo, Wu rucuo, Wu Ma Cuo, Zha RI Nan Mu Cuo, Zha Xi CuO), a total of 138 samples. The extraction method of bacterial DNA in lake water is as follows: the lake water is filtered onto a 0.45 membrane, and then DNA is extracted by Mo bio powerOil DNA kit. The 16S rRNA gene fragment amplification primers were 515f (5'-gtgccagcmgcgcggtaa-3') and 909r (5'-ggactachvggtwtctaat-3'). The sequencing method was Illumina miseq PE250. The original data were analyzed by mothur software, including quality filtering and chimera removal. The sequence classification was based on the silva109 database. The archaeal, eukaryotic and unknown source sequences had been removed. OTU classifies with 97% similarity and then removes sequences that appear only once in the database. Conventional water quality detection parameters include dissolved oxygen, conductivity, total dissolved solids, salinity, redox potential, nonvolatile organic carbon, total nitrogen, etc. The dissolved oxygen is determined by electrode polarography; Conductivity meter is used for conductivity; Salinity is measured by a salinity meter; TDS tester is used for total dissolved solids; ORP online analyzer was used for redox potential; TOC analyzer is used for non-volatile organic carbon; The water quality parameters of total nitrogen were obtained by Spectrophotometry for reference.
YE Aizhong
The data set includes the observed and simulated runoff into the sea and the composition of each runoff component (total runoff, glacier runoff, snowmelt runoff, rainfall runoff) of two large rivers in the Arctic (North America: Mackenzie, Eurasia: Lena), with a time resolution of months. The data is a vic-cas model driven by the meteorological driving field data produced by the project team. The observed runoff and remote sensing snow data are used for correction. The Nash efficiency coefficient of runoff simulation is more than 0.85, and the model can also better simulate the spatial distribution and intra/inter annual changes of snow cover. The data can be used to analyze the runoff compositions and causes of long-term runoff change, and deepen the understanding of the runoff changes of Arctic rivers.
ZHAO Qiudong, WU Yuwei
This product provides the data set of key variables of the water cycle of major Arctic rivers (North America: Mackenzie, Eurasia: Lena from 1971 to 2017, including 7 variables: precipitation, evapotranspiration, surface runoff, underground runoff, glacier runoff, snow water equivalent and three-layer soil humidity, which are numerically simulated by the land surface model vic-cas developed by the project team. The spatial resolution of the data set is 0.1degree and the temporal resolution is month. This data set can be used to analyze the change of water balance in the Arctic River Basin under long-term climate change, and can also be used to compare and verify remote sensing data products and the simulation results of other models.
ZHAO Qiudong, WANG Ninglian, WU Yuwei
This product provides the data set of key variables of the water cycle of Arctic rivers (North America:Mackenzie, Eurasia:Lena) from 1998 to 2017, including 7 variables: precipitation, evapotranspiration, surface runoff, underground runoff, glacier runoff, snow water equivalent and three-layer soil humidity, which are numerically simulated by the land surface model vic-cas developed by the project team. The spatial resolution of the data set is 50km and the temporal resolution is month. This data set can be used to analyze the change of water balance in the Arctic River Basin under climate change, and can also be used to compare and verify remote sensing data products and the simulations of other models.
ZHAO Qiudong, WANG Ninglian, WU Yuwei
The microbial reprocessing products of polar ice and snow in typical years collected the analysis results of bacteria sampled from glaciers, Glacial Snow and ice in the polar regions and the Qinghai Tibet Plateau from 2010 to 2018. Through sorting, summarizing and summarizing, the post-processing data products of soil microorganisms in the three pole region are obtained, and the data format is excel, which is convenient for users to view. Among them, the prokaryotes of Glacial Snow and ice in the polar regions and Qinghai Tibet Plateau are the sequences of bacterial 16S ribosomal RNA gene collected by teacher Liu Yongqin's experimental group from NCBI database from 2010 to 2018. The collected sequences calculate the similarity between sequences by using dotour software. Sequences with a similarity of more than 97% are clustered into an OTU, and OTU representative sequences are defined. OTU representative sequences were compared with RDP database through "Classifier" software, and were identified to the first level when the reliability was greater than >80%; The glaciers on the Qinghai Tibet Plateau were collected from 2010 to 2018, including the bacterial 16S ribosomal RNA gene sequence of seven glaciers on the Qinghai Tibet Plateau (East Rongbu glacier on Mount Everest, Tianshan No. 1 glacier, Guliya glacier, Laohugou glacier, muzitang glacier, July 1st glacier and yuzhufeng glacier) isolated by teacher Liu Yongqin's experimental group, Malan glacier isolated by teacher Xiang Shurong and ruogangri glacier isolated by teacher Zhang Xinfang. Glacier samples were collected and brought back to the ecological Laboratory of the Institute of Qinghai Tibet Plateau Research in Beijing and the Lanzhou cryosphere National Laboratory. After coating the plate, it was cultured at different temperatures (4-25 ℃) for 20-90 days, and a single colony was picked for purification. The isolated bacteria extracted DNA, amplified 16S ribosomal RNA gene fragments with 27f/1492r primers, and sequenced with Sanger method. 16S ribosomal RNA gene sequence was compared with RDP database through "Classifier" software, and was identified to the first level when the reliability was greater than >80%.
YE Aizhong
The three pole soil microbial post-treatment products in typical years collected the distribution and analysis results of soil samples from the north and south polar regions from 2005 to 2006 and the distribution and analysis results of soil samples from the Qinghai Tibet Plateau in 2015. Through sorting and summarizing, the post-processing data products of soil microorganisms in the three pole region are obtained. The data format is excel, which is convenient for users to view. Among them, the collection time of samples from the north and south polar regions was from December 13, 2005 to December 8, 2006, including 52 samples from three regions in the Arctic (Spitsbergen slijeringa, Spitsbergen vestpynten, and Alexandra fjord Highlands), and 171 samples from five regions in the Antarctic (Mitchell Peninsula, Casey station main power house, Robinson ridge, herring Island, browning Peninsula); The Qinghai Tibet Plateau was collected from July 1 to July 15, 2015, including meadow, grassland and desert ecosystems. There were 18 sampling points in total, and the number of samples at each sampling point was 3-5. The precipitation, air temperature and drought degree of the sampling point are estimated from the meteorological information for reference. The soil surface samples were collected and stored in liquid nitrogen, then transported back to the Sydney Laboratory for extraction by fastprep DNA kit. The extracted DNA samples were amplified with the 16S rRNA gene fragment using 27F (5'-gagttttgatcntggctca-3') and 519r (5'-gtnttacngcgckctg-3'). The amplified fragments were sequenced by 454 method, and the original data were analyzed by mothur software. The sequences with poor sequencing quality were first removed, and then the chimeric sequences were sequenced and removed. After that, the similarity between sequences is calculated. Sequences with a similarity of more than 97% are clustered into one OTU, and OTU representative sequences are defined. The OTU representative sequences were aligned with the Silva database, and were identified to belong to the first level when the reliability was greater than 80%.
YE Aizhong
The fractional snow cover (FSC) is the ratio of snow cover area (SCA) to unit pixel area. The data set is made by bv-blrm snow area proportional linear regression empirical model; The source data used are mod09ga 500m global daily surface reflectance products and mod09a1 500m 8-day synthetic global surface reflectance products; The production platform uses Google Earth engine; The data range is global, the data preparation time is from 2000 to 2021, the spatial resolution is 500 meters, and the temporal resolution is year by year. This set of data can provide quantitative information of snow cover distribution for regional climate simulation and hydrological models.
MA Yuan
Zoige Wetland observation point is located at Huahu wetland (102 ° 49 ′ 09 ″ E, 33 ° 55 ′ 09 ″ N) in Zoige County, Sichuan Province, with an initial altitude of 3435 m. The underlying surface is the alpine peat wetland, with well-developed vegetation, water and peat layer. This data set is the meteorological observation data of Zoige Wetland observation point from 2017 to 2019. It is obtained by using Kipp&Zonen CNR4, Vaisala HMP155A, PTB110 and other instruments. The time resolution is half an hour, mainly including wind speed, wind direction, air temperature, relative humidity, air pressure, downward short wave radiation, downward long wave radiation.
MENG Xianhong, LI Zhaoguo
This data set is the conventional meteorological observation data of Maqu grassland observation site in the source region of the Yellow River from 2017 to 2020, obtained by using Kipp&Zonen CNR4, Vaisala HMP155A, PTB110 and other instruments, with a time resolution of half an hour. Mainly include wind speed, wind direction, temperature, relative humidity, air pressure, downward short-wave radiation, downward long-wave radiation, precipitation.
MENG Xianhong, LI Zhaoguo
The high-resolution atmosphere-hydrologic simulation dataset over Tibetan Plateau is prepared by WRFv4.1.1 model with grids of 191 * 355 and spatial resolution of 9 km, and a spatial range covering the entire plateau. The main physics schemes are configured with Thompson microphysics scheme, the rapid radiative transfer model (RRTM), and the Dudhia scheme for longwave and shortwave radiative flux calculations, respectively, the Mellor-Yamada-Janjic (MYJ) TKE scheme for the planetary boundary layer and the Unified Noah Land Surface Model. The time resolution is 3h and the time span is 2000-2010. Variables include: precipitation (Rain), temperature (T2) and water vapor (Q2) at 2m height on the ground, surface skin temperature (TSK), ground pressure (PSFC), zonal component (U10) and meridional component (V10) at 10m heigh on the ground, downward long-wave flux (GLW) and downward short-wave flux (SWDOWN) at surface, ground heat flux (GRDFLX), sensible heat flux (HFX), latent heat flux (LH), surface runoff (SFROFF) and underground runoff (UDROFF). The data can effectively support the study of regional climate characteristics, climate change and its impact over the Tibet Plateau, which will provide scientific basis for the sustainable development of the TP under the background of climate change.
MENG Xianhong, MA Yuanyuan
This data set is the conventional meteorological observation data of the Ngoring Lake Grassland Observation site (GS) in the source region of the Yellow River from 2017 to 2020, obtained by using Kipp&Zonen CNR4, Vaisala HMP155A, PTB110 and other instruments, with a time resolution of half an hour. Mainly include wind speed, wind direction, temperature, relative humidity(specific humidity in 2020), air pressure, downward short-wave radiation, downward long-wave radiation, precipitation.
MENG Xianhong, LI Zhaoguo
The normalized difference vegetation index (NDVI) can accurately reflect the surface vegetation coverage. At present, NDVI time series data based on spot / vegetation and MODIS satellite remote sensing images have been widely used in the research of vegetation dynamic change monitoring, land use / cover change detection, macro vegetation cover classification and net primary productivity estimation at various scales. Evi is similar to the normalized difference vegetation index (NDVI) and can be used to quantify vegetation greenness. However, evi corrects for some atmospheric conditions and canopy background noise and is more sensitive in areas with dense vegetation. It contains an "L" value to adjust the canopy background, a "C" value as the atmospheric drag coefficient, and a value from the blue band (b). These enhancements allow the ratio between R and NIR values to be calculated exponentially while reducing background noise, atmospheric noise and saturation in most cases. This research work mainly focuses on post-processing NDVI and evi data, and gives a more reliable vegetation situation of the Qinghai Tibet Plateau in 2013 and 2018 through transformation of projection coordinate system, data fusion, maximum value synthesis method, elimination of outliers and clipping. The spatial resolution of the data is 0.05 °, and the temporal resolution is month.
YE Aizhong
Fractional Vegetation Cover (FVC) refers to the percentage of the vertical projected area of vegetation to the total area of the study area. It is an important indicator to measure the effectiveness of ecological protection and ecological restoration. It is widely used in the fields of climate, ecology, soil erosion and so on. FVC is not only an ideal parameter to reflect the productivity of vegetation, but also can play a good role in evaluating topographic differences, climate change and regional ecological environment quality. This research work is mainly to post process two sets of glass FVC data, and give a more reliable vegetation coverage of the circumpolar Arctic Circle (north of 66 ° n) and the Qinghai Tibet Plateau (north of 26 ° n to 39.85 °, east longitude 73.45 ° to 104.65 °) in 2013 and 2018 through data fusion, elimination of outliers and clipping.
YE Aizhong
NDVI reflects the background effects of plant canopy, such as soil, wet ground, snow, dead leaves, roughness, etc., and is related to vegetation cover. It is one of the important parameters to reflect the crop growth and nutrient information. According to this parameter, the N demand of crops in different seasons can be known, which is an important guide to the reasonable application of N fertilizer. Correct NDVI (C-NDVI) is the value of NDVI after excluding the influence of climate elements (temperature, precipitation, etc.) on NDVI. Taking precipitation as an example, studies on the lag effect of precipitation on vegetation growth show that the lag time of precipitation effects varies in different regions due to differences in vegetation composition and soil types. In this study, we post-processed the MODIS NDVI data and firstly correlated the NDVI value of the current month with the precipitation of the current month, the average value of the precipitation of the current month with that of the previous month, and the average value of the precipitation of the current month with that of the previous two months to determine the optimal lag time. The NDVI was regressed on precipitation and air temperature to obtain the correlation coefficients, and then the corrected NDVI values were calculated by the difference between the MODIS NDVI and the NDVI regressed on climate factors. We corrected NDVI using climate data to give reliable vegetation correction indices for the circum-Arctic Circle (range north of 66°N) and the Tibetan Plateau (range 26°N to 39.85°N and 73.45°E to 104.65°E) for 2013 and 2018. The spatial resolution of the data is 0.5 degrees and the temporal resolution is monthly values.
YE Aizhong
The vegetation data of the Antarctic Peninsula were obtained from the Antarctic Pioneer vegetation cover classification data of the spatio-temporal three-level environmental big data platform by applying pure image element PPI to extract the end element spectra of mosses, lichens, rocks, sea and snow and applying the linear Mixture Model (LMM) to calculate them. The characteristic vegetation cover of the Fildes Peninsula was obtained based on its correlation with the linear relationship of abundance. The data format is geotiff format. The data content is the vegetation cover of the typical zone of the Antarctic Peninsula in a typical year. In this research work, tif raster format products were generated by post-processing the typical annual vegetation cover of the typical area of the Antarctic Peninsula, and the value of the main body of the raster is the vegetation cover. The vegetation cover of the Antarctic Peninsula typical area obtained in this study is a mosaic of Antarctic pioneer plant abundance data products, including the plant abundance data products in and around the Antarctic Peninsula. The typical area of the Antarctic Peninsula including Adley, north and south were mosaicked by ArcGIS to obtain six vegetation cover maps identified by spectral angle matching method (SAM) and spectral information scatter method (SID) including 2008, 2017 and 2018.
YE Aizhong
The thickness of the active layer of the three pole permafrost combines two sets of data products. The main reference data is the annual value of the active layer thickness from 1990 to 2015 generated by GCM model simulation. The data format of this data set is netcdf4 format, with a spatial resolution of 0.5 ° and a temporal resolution of years. The reference correction data set is the average value of active layer thickness from 2000 to 2015 simulated by statistical and machine learning (ML) methods. The data format is GeoTIFF format, the spatial resolution is 0.1 °, and the data unit is m. Through post-processing operations such as data format conversion, spatial interpolation, data correction, etc., this research work generates the permafrost active layer thickness data in netcdf4 format, with a spatial resolution of 0.1 °, a temporal resolution of years, a time range of 1990-2015, and a data unit of CM.
YE Aizhong
The original data of carbon flux in the three pole permafrost region are generated by GCM model simulation, and the original data are from http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b 。 This data set contains the prediction of future scenarios under different representative concentration paths (RCPs) in the next 2046-2065 years, including rcp2.6 scenario, rcp4.5 scenario and rcp8.5 scenario. The original data include parameters representing carbon flux such as NPP and GPP in the permafrost region of the Qinghai Tibet Plateau. The data format is netcdf4 format, with a spatial resolution of 0.5 ° and a temporal resolution of years. Through data format conversion, spatial interpolation and other post-processing operations, the NPP and GPP data in permafrost region in netcdf4 format are generated. The spatial resolution is 0.1 °, the time resolution is years, the time range is 2046-2065, and the data unit is gc/m2yr.
YE Aizhong
The original thickness data of the active layer of the three pole permafrost are generated by GCM model simulation, and the original data are from http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b 。 This data set contains the prediction of future scenarios under different representative concentration paths (RCPs) in the next 2046-2065 years, including rcp2.6 scenario, rcp4.5 scenario and rcp8.5 scenario. The content of the original data is the thickness of the active layer in the permafrost area of the Qinghai Tibet Plateau. The data format is netcdf4, with a spatial resolution of 0.5 ° and a temporal resolution of years. Through data format conversion, spatial interpolation and other post-processing operations, the active layer thickness in permafrost area in netcdf4 format is generated, with a spatial resolution of 0.1 °, a time resolution of years, a time range of 2046-2065, and the unit is cm.
YE Aizhong
The original data of the three pole permafrost range are generated by GCM model simulation, and the original data are from http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b 。 This data set contains the prediction of future scenarios under different representative concentration paths (RCPs) in the next 2046-2065 years, including rcp2.6 scenario, rcp4.5 scenario and rcp8.5 scenario. The original data content is the spatial range of permafrost and seasonal frozen soil in the Qinghai Tibet Plateau. The data format is netcdf4 format, with a spatial resolution of 0.5 ° and a temporal resolution of years. Through data format conversion, spatial interpolation and other post-processing operations, this research work generates the permafrost range data in netcdf4 format, with a spatial resolution of 0.1 °, a time resolution of years, and a time range of 2046-2065. Permafrost is represented by 1, and seasonal permafrost is represented by 0.
YE Aizhong
The Qinghai Tibet Plateau is known as the "Asian water tower", and its runoff, as an important and easily accessible water resource, supports the production and life of billions of people around, and supports the diversity of ecosystems. Accurately estimating the runoff of the Qinghai Tibet Plateau and revealing the variation law of runoff are conducive to water resources management and disaster risk avoidance in the plateau and its surrounding areas. The glacier runoff segmentation data set covers the five river source areas of the Qinghai Tibet Plateau from 1971 to 2015, with a time resolution of year by year, covering the five river source areas of the Qinghai Tibet Plateau (the source of the Yellow River, the source of the Yangtze River, the source of the Lancang River, the source of the Nujiang River, and the source of the Yarlung Zangbo River), and the spatial resolution is the watershed. Based on multi-source remote sensing and measured data, it is simulated using the distributed hydrological model vic-cas coupled with the glacier module, The simulation results are verified with the measured data of the station, and all the data are subject to quality control.
WANG Shijin
As an important part of the global carbon pool, Arctic permafrost is one of the most sensitive regions to global climate change. The rate of warming in the Arctic is twice the global average, causing rapid changes in Arctic permafrost. The NDVI change data set of different types of permafrost regions in the Northern Hemisphere from 1982 to 2015 has a temporal resolution of every five years, covers the entire Arctic Rim countries, and a spatial resolution of 8km. Based on multi-source remote sensing, simulation, statistics and measured data, GIS method and ecological method are used to quantify the regulation and service function of permafrost in the northern hemisphere to the ecosystem, and all the data are subject to quality control.
WANG Shijin
Known as the "Asian water tower", the Qinghai Tibet Plateau is the source of many rivers in Southeast Asia. As an important and easily accessible water resource, the runoff provided by it supports the production and life of billions of people around it and the diversity of the ecosystem. The glacier runoff data set in the five river source areas of the Qinghai Tibet Plateau covers the period from 2005 to 2010, with a time resolution of every five years. It covers the source areas of the five major rivers in the Qinghai Tibet Plateau (the source of the Yellow River, the source of the Yangtze River, the source of the Lancang River, the source of the Nujiang River, and the source of the Yarlung Zangbo River). The spatial resolution is 1km. Based on multi-source remote sensing, simulation, statistics, and measured data, GIS methods and ecological economics methods are used, The value of water resources service in the cryosphere in the source area of the river and river is quantified, and all its data are subject to quality control.
WANG Shijin
This product provides the monthly runoff, evapotranspiration and soil water of major Arctic river basins in 2018-2065 based on the land surface model Vic. The spatial accuracy is 10km. Major Arctic river basins include Lena, Yenisey, ob, Kolyma, Yukon and Mackenzie basins. According to the rcp2.6 (low emission intensity) and rcp8.5 (high emission intensity) scenario results provided by the ipsl-cm5a-lr model in cmip5 in the fifth assessment report of IPCC, the future climate scenario driving data applicable to the Arctic region of 0.1 ° is obtained through statistical downscaling. Using the calibrated land surface hydrological model Vic on a global scale, based on the future climate scenario driven data of 0.1 °, the monthly time series of runoff, soil water and evapotranspiration of the Arctic River Basin in the middle of this century under future climate change are estimated.
TANG Yin , TANG Qiuhong , WANG Ninglian, WU Yuwei
Different forms of precipitation (snow, sleet, and rain) have divergent effects on the Earth’s surface water and energy fluxes. Therefore, discriminating between these forms is of significant importance, especially under a changing climate. We applied a state-of-the-art parameterization scheme with wet-bulb temperature, relative humidity, surface air pressure, and elevation as inputs, as well as observational gridded datasets with a maximum spatial resolution of 0.25◦, to generate a gridded dataset of different forms of daily precipitation (snow, sleet, and rain) and their temperature threshold across mainland China from 1961-2016. The annual snow, sleet, and rain amount were further calculated. The dataset may benefit various research communities, such as cryosphere science, hydrology, ecology, and climate change.
SU Bo , ZHAO Hongyu
Mountain glaciers are important freshwater resources in Western China and its surrounding areas. It is at the drainage basin scale that mountain glaciers provide meltwater that humans exploit and utilize. Therefore, the determination of glacierized river basins is the basis for the research on glacier meltwater provisioning functions and their services. Based on the Randolph glacier inventory 6.0, Chinese Glacier Inventories, China's river basin classifications (collected from the Data Centre for Resources and Environmental Sciences, Chinese Academy of Sciences), and global-scale HydroBASINS (www.hydrosheds.org), the following dataset was generated by the intersection between river basins and glacier inventory: (1) Chinese glacierized macroscale and microscale river basins; (2) International glacierized macroscale river basin fed by China’s glaciers; (3) Glacierized macroscale river basin data across High Mountain Asia. This data takes the common river basin boundaries in China and the globe into account, which is poised to provide basic data for the study of historical and future glacier water resources in China and its surrounding areas.
SU Bo
Soil freezing depth (SFD) is necessary to evaluate the balance of water resources, surface energy exchange and biogeochemical cycle change in frozen soil area. It is an important indicator of climate change in the cryosphere and is very important to seasonal frozen soil and permafrost. This data is based on Stefan equation, using the daily temperature prediction data and E-factor data of canems2 (rcp45 and rcp85), gfdl-esm2m (rcp26, rcp45, rcp60 and rcp85), hadgem2-es (rcp26, rcp45 and rcp85), ipsl-cm5a-lr (rcp26, rcp45, rcp60 and rcp85), miroc5 (rcp26, rcp45, rcp60 and rcp85) and noresm1-m (rcp26, rcp45, rcp60 and rcp85), The data set of annual average soil freezing depth in the Qinghai Tibet Plateau with a spatial resolution of 0.25 degrees from 2007 to 2065 was obtained.
PAN Xiaoduo, LI Hu
1) Data content: spatial and temporal dataset of near-surface monthly air temperature of Antarctic ice sheet from 2001 to 2018。 2) Data source and processing method: MODIS (MODerate resolution Imaging Spectroradiometer) Land Surface Temperature measurements in combination with in-situ air temperature records from 119 meteorological stations are used to reconstruct a monthly near-surface air temperature product over the Antarctic Ice Sheet (AIS) by means of a neural network model. The product is generated on a regular grid of 0.05°×0.05°, spanning from 2001 to 2018. 3) Data quality description: the accuracy is better than that of ERA5 reanalysis data. 4) Data application achievements and prospects: the database can be used to study the temporal and spatial distribution characteristics of near-surface air temperature of Antarctic ice sheet, and the impact of SAM and ENSO on the interannual variation of Antarctic temperature. In addition, the dataset has the potential application for climate model validation and data assimilation due to the independence of the input of a numerical weather prediction model.
ZHANG Xueying
The data set is the monthly average temperature data of China's multi scenario and multi-mode, with a spatial resolution of 0.0083333 ° (about 1km) from January 2021 to December 2100. The data is in NetCDF format. The data is generated in China through the delta spatial downscaling scheme according to the global > 100 km climate model data set released in the sixth phase of the IPCC coupled model comparison program (cmip6) and the global high-resolution climate data set released by worldclim. The data adopts the latest SSP scenarios (ssp119, ssp245, ssp585) released by IPCC. Each scenario contains three GCMS (ec-earth3, gfdl-esm4, mri-esm2-0) climate data. The geospatial range contained in the dataset is China's main land, excluding islands and reefs in the South China Sea. The unit is 0.1 ℃. The file name is GCM_ SSP_ Tmp-30s-serial number NC, 30s, i.e. 0.0083333 °, serial number from 1-40, serial number 1 represents 2021.1-2022.12, and represents the year in turn; Based on ec-earth3_ ssp119_ tmp-30s-1. NC file, for example, represents the monthly average temperature data of ec-earth3 climate model with 1km resolution from 2021.1 to 2022.12 under ssp119 scenario, including 24 layers. For a deeper understanding of the data, please refer to the data cited in the literature and the published papers of the authors.
PENG Shouzhang
This dataset consists of four files including (1) Lake ice thickness of 16 large lakes measured by satellite altimeters for 1992-2019 (Altimetric LIT for 16 large lakes.xlsx); (2) Daily lake ice thickness and lake surface snow depth of 1,313 lakes with an area > 50 km2 in the Northern Hemisphere modeled by a one-dimensional remote sensing lake ice model for 2003-2018 (in NetCDF format); (3) Future lake ice thickness and surface snow depth for 2071-2099 modeled by the lake ice model with a modified ice growth module (table S1.xlsx); (4) A lookup table containing lake IDs, names, locations, and areas. This daily lake ice and snow thickness dataset could provide a benchmark for the estimation of global lake ice and snow mass, thereby improving our understanding of the ecological and economical significance of freshwater ice as well as its response to climate change.
LI Xingdong, LONG Di, HUANG Qi, ZHAO Fanyu
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn