These datasets include mean annual ground temperature (MAGT) at the depth of zero annual amplitude (approximately 3 m to 25 m), active layer thickness (ALT), the probability of the permafrost occurrence, and the new permafrost zonation based on hydrothermal condition for the period of 2000-2016 in the Northern Hemisphere with an 1-km resolution by integrate unprecedentedly large amounts of field data (1,002 boreholes for MAGT and 452 sites for ALT) and multisource geospatial data, especially remote sensing data, using statistical learning modelling with an ensemble strategy, and thus more accurate than previous circumpolar maps.
RAN Youhua, LI Xin, CHENG Guodong, CHE Jinxing, Juha Aalto, Olli Karjalainen, Jan Hjort, Miska Luoto, JIN Huijun, Jaroslav Obu, Masahiro Hori, YU Qihao, CHANG Xiaoli
This dataset includes Fraction Vegetation Coverage (FVC) data for five countries in Central Asia (Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan) during 2010, 2015 and 2020. The data is calculated from the MODIS-NDVI data set (product number MOD13A2.006) based on the empirical relationship between FVC in arid areas and NDVI. The product has a time resolution of 1 year and a spatial resolution of 1 km. The algorithm selects the best available pixel value based on low cloud, low detection angle and highest NDVI value from all the observation data of the year, and performs conversion.
XU Xiaofan, TAN Minghong
The global monthly all-sky land surface temperature (2000-2020) is produced by the method from Chen et al. 2017 JHM.
CHEN Xuelong, BOB Su, MA Yaoming
Kara batkak glacier weather station in Western Tianshan Mountains of Kyrgyzstan (42 ° 9'46 ″ n, 78 ° 16'21 ″ e, 3280m). The observational data include hourly meteorological elements (hourly rainfall (mm), instantaneous wind direction (°), instantaneous wind speed (M / s), 2-minute wind direction (°), 2-minute wind speed (M / s), 10 minute wind direction (°), 10 minute wind speed (M / s), maximum wind direction (°), maximum wind speed (M / s), maximum wind speed time, maximum wind direction (°), maximum wind speed (M / s), maximum wind speed time, maximum instantaneous wind speed within minutes) Direction (°), maximum instantaneous wind speed in minutes (M / s), air pressure (HPA), maximum air pressure (HPA), time of maximum air pressure, time of minimum air pressure (HPA), time of minimum air pressure. Meteorological observation elements, after accumulation and statistics, are processed into climate data to provide important data for planning, design and research of agriculture, forestry, industry, transportation, military, hydrology, medical and health, environmental protection and other departments.
HUO Wen
We comprehensively estimated water volume changes for 1132 lakes larger than 1 km2. Overall, the water mass stored in the lakes increased by 169.7±15.1 Gt (3.9±0.4 Gt yr-1) between 1976 and 2019, mainly in the Inner-TP (157.6±11.6 or 3.7±0.3 Gt yr-1). A substantial increase in mass occurred between 1995 and 2019 (214.9±12.7 Gt or 9.0±0.5 Gt yr-1), following a period of decrease (-45.2±8.2 Gt or -2.4±0.4 Gt yr-1) prior to 1995. A slowdown in the rate of water mass increase occurred between 2010 and 2015 (23.1±6.5 Gt or 4.6±1.3 Gt yr-1), followed again by a high value between 2015 and 2019 (65.7±6.7 Gt or 16.4±1.7 Gt yr-1). The increased lake-water mass occurred predominately in glacier-fed lakes (127.1±14.3 Gt) in contrast to non-glacier-fed lakes (42.6±4.9 Gt), and in endorheic lakes (161.9±14.0 Gt) against exorheic lakes (7.8±5.8 Gt) over 1976−2019.
ZHANG Guoqing
This data is from the hydrological station of kafinigan River, a tributary of the upper Amu Darya River. The station is jointly built by Urumqi Institute of desert meteorology of China Meteorological Administration, Institute of water energy and ecology of Tajik National Academy of Sciences and Tajik hydrometeorological Bureau. The data can be used for scientific research such as water resources assessment and water conservancy projects in Central Asia. Data period: November 3, 2019 to December 3, 2020. Data elements: Hourly velocity (M / s), hourly water level (m) and hourly rainfall (m). Site location: 37 ° 36 ′ 01 ″ n, 68 ° 08 ′ 01 ″ e, 420m 1、 300w-qx River velocity and water level observation instrument (1) Flow rate parameters: 1 power supply voltage 12 (9 ~ 27) V (DC) The working current is 120 (110 ~ 135) MA 3 working temperature (- 40 ~ 85) ℃ 4 measurement range (0.15 ~ 20) m / S The measurement accuracy is ± 0.02m/s The resolution is less than 1 mm The detection range is less than 0.1 ~ 50 m 8 installation height 0.15 ~ 25 m 9 sampling frequency < 20sps (2) Water level parameters: 1 measuring range: 0.5 ~ 20 m The measurement accuracy is ± 3 mm The resolution is less than 1 mm The repeatability was ± 1 mm 2、 SL3-1 tipping bucket rain sensor 1. Water bearing diameter Φ 200mm 2. The measured precipitation intensity is less than 4mm / min 3. Minimum precipitation of 0.1 mm 4. The maximum allowable error is ± 4% mm 3、 Flow velocity, frequency of data acquisition of the observation instrument: the sensor measures the flow velocity and water level data every 5S 4、 Calculation of hourly average velocity: the hourly average velocity and water level data are obtained from the average of all the velocity and water level data measured every 5S within one hour 5、 Description of a large number of values of 0 in water level data: the value of 0 in water level data is caused by power failure and restart of sensor due to insufficient power supply. The first data of initial start-up is 0, resulting in the hourly average value of 0. After the power supply transformation on July 26, 2020, the data returned to normal. At the end of September 2020, the power supply began to be insufficient. After the secondary power supply transformation on December 25, 2020, the data returned to normal 6、 Description of water level monitoring (such as line 7358, 2020 / 11 / 3, 16:00, maximum water level 6.7m, minimum water level 0m, how to explain? In addition, the maximum value of the highest water level is 6.7m, which appears many times in the data. It seems that 6.7m is the limit value of the monitoring data. Is this the case? ): 6.7m is the height from the initial sensor to the bottom of the river bed. The appearance of 6.7m is the abnormal data when the sensor is just started. The sensor is restarted due to the power failure caused by the insufficient power supply of the equipment. This abnormal value appears in the initial start-up. After the power supply transformation on December 25, 2020, the data returns to normal
HUO Wen, SHANG Huaming
Based on the meteorological data of 105 meteorological stations in and around the Qinghai Tibet Plateau from 1980 to 2019 (data from China Meteorological Administration and National Meteorological Science Data Center), the oxygen content was calculated. It was found that there was a significant linear correlation between oxygen content and altitude, y = -0.0263x + 283.8, R2 = 0.9819. Therefore, the oxygen content distribution map can be calculated based on DEM data grid. Due to the limitation of the natural environment in the Qinghai Tibet Plateau, there are few related fixed-point observation institutions. This data can reflect the distribution of oxygen content in the Qinghai Tibet Plateau to a certain extent, and has certain reference significance for the research of human living environment in the Qinghai Tibet Plateau.
Based on a large number of measured aboveground biomass data of grassland, the temperate grassland types were divided according to the vegetation type map of China in 1980s Based on the Landsat remote sensing data of engine platform, the random forest model of grassland aboveground biomass and remote sensing data was constructed for different grassland types. On the basis of reliable verification, the annual aboveground biomass of grassland from 1993 to 2019 was estimated, and the annual spatial data set of aboveground biomass of temperate grassland in Northern China from 1993 to 2019 was formed. Aboveground biomass is defined as the total amount of organic matter of vegetation living above the ground in unit area. The original grid value has been multiplied by a factor of 100, unit: 0.01 g / m2 (g / m2). This data set can provide a scientific basis for the dynamic monitoring and evaluation of temperate grassland resources and ecological environment in northern China.
ZHANG Na
Based on a large number of measured aboveground biomass data of grassland, the temperate grassland types were divided according to the vegetation type map of China in 1980s Based on the Landsat remote sensing data of engine platform, the random forest model of grassland aboveground biomass and remote sensing data was constructed for different grassland types. On the basis of reliable verification, the annual aboveground biomass of grassland from 1993 to 2019 was estimated, and the annual spatial data set of aboveground biomass of temperate grassland in Northern China from 1993 to 2019 was formed. Aboveground biomass is defined as the total amount of organic matter of vegetation living above the ground in unit area. The original grid value has been multiplied by a factor of 100, unit: 0.01 g / m2 (g / m2). This data set can provide a scientific basis for the dynamic monitoring and evaluation of temperate grassland resources and ecological environment in northern China.
ZHANG Na
Temporal aliasing caused by the incomplete reduction of high frequency atmosphere and ocean variability contributes as a major error source in the time-variable gravity field products recovered from the Gravity Recovery and Climate Experiment (GRACE) and GRACE-Follow On (GRACE-FO), and likely future gravity missions. The current state-of-the-art of satellite gravity data processing makes use of de-aliasing products to reduce high-frequency mass anomalies, for example, the most recent official Atmosphere and Ocean De-aliasing products (AOD1B-RL06) are applied to model non-tidal mass changes in the ocean and atmosphere. The products already achieved a temporal resolution of 3 hours that greatly improved the quality of gravity inversion compared to the previous releases. In this study, we explore a refined mass integration approach of the atmosphere that considers geometrical, physical, and numerical modifications of the current AOD1B method. Then, the newly available ERA-5 global climate data of 31 km spatial and 1-hour temporal resolution are used to produce a new set of non-tidal atmosphere de-aliasing product (HUST-ERA5) that is computed in terms of spherical harmonics up to degree/order 100 covering 2002 onwards. Despite of an overall agreement with the AOD1B-RL06 (correlation of low-degree coefficients are all greater than 0.99), discrepancy is still distinguished for spatial-temporal analysis, i.e., a better consistency of HUST-ERA5 from 2007 to 2010. The factors contributing the differences, including the input data, method and temporal resolution, are therefore respectively analyzed and quantified through extensive assessments. We find the difference of HUST-ERA5 and AOD1B-RL06 has led to a mean variation of 7.34 nm/s on the the LRI (Laser Ranging Interferometry) range-rate residual on Jan 2019, which is close to the LRI precision already. This impact is invisible for GRACE(-FO) gravity inversion because of the less accurate onboard KBR(K-band ranging) instrument, however, it will be nonnegligible and should be considered when the LRI completely replaces KBR in the future gravity mission. In addition, HUST-ERA5 can also be widely used in LEO satellite orbit determination and superconducting gravimeter atmospheric correction.
YANG Fan, LUO Zhicai
This data set includes daily, annual and multi-year surface mass balance data from Antarctic ice cap poles, ice (snow) cores / snow pits, automatic weather station altimeters and ground penetrating radar observations. The data come from published literature, data reports and international data sharing platform. After quality control, the most perfect data set of daily, annual and multi-year resolution of surface mass balance of Antarctic ice sheet has been formed. Its middle-aged resolution data span the past 1000 years. The data set is mainly used in glaciology, climatology, hydrology and other disciplines, especially in the quantitative analysis of the temporal and spatial changes of Antarctic surface mass balance, climate model validation, driving ice sheet model and snow granulation model, etc.
WANG Yetang
In 1970, land use was visually interpreted from MSS images, with an overall interpretation accuracy of more than 90%. Land classification was carried out in accordance with the land use classification system of the Chinese Academy of Sciences. For detailed classification rules, please read the data description document. The 2005 and 2015 data sets were collected from the European Space Agency (ESA) Data acquisition of global land cover types includes five Central Asian countries (Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan) and Xinjiang, China. There are 22 land use types in the data set. The IPCC land use classification system is adopted. Please refer to the documentation for specific classification details.
LUO Geping
The long-time series data set of extreme precipitation index in the arid region of Central Asia contains 10 extreme precipitation index long-time series data of 49 stations. Based on the daily precipitation data of the global daily climate historical data network (ghcn-d), the data quality control and outlier elimination were used to select the stations that meet the extreme precipitation index calculation. Ten extreme precipitation indexes (prcptot, SDII, rx1day, rx5day, r95ptot, r99ptot, R10, R20) defined by the joint expert group on climate change detection and index (etccdi) were calculated 、CWD、CDD)。 Among them, there are 15 time series from 1925 to 2005. This data set can be used to detect and analyze the frequency and trend of extreme precipitation events in the arid region of Central Asia under global climate change, and can also be used as basic data to explore the impact of extreme precipitation events on agricultural production and life and property losses.
YAO Junqiang, CHEN Jing, LI Jiangang
The data content mainly includes the main and micro data of the whole rock of some magmatic rocks in the Hoh Xil Lhasa plate of the Qinghai Tibet Plateau. The samples were mainly distributed in Hoh Xil lake, South Qiangtang guoganjianian, Dugur, and Gangdise Nasongduo and Saga counties. There are more than 300 major and trace elements in the samples, including olivine leucite, quartz monzonite, diorite and granite, which are of great significance to the study of the lithospheric evolution of the Qinghai Tibet Plateau. Data mainly come from published articles or being accepted. XRF spectroscopy was used to determine the major elements and ICP-MS was used to determine the trace elements. The data quality is highly reliable, and the testing units include the State Key Laboratory of Guangzhou Institute of geochemistry, Chinese Academy of Sciences, etc. The data are published in high-level journals, including geology, BSA bulletin and Journal of petroleum.
TANG Gongjian, WANG Jun, QI Yue, ZHOU Jinsheng, DAN Wei
This is Northern Hemispheric (NH) annual near-surface temperature dataset during the past millennium with a 2° spatial resolution, which is produced using the paleoclimate data assimilation approach with EnSRF method, MPI-ESM-P model and 396 multi-proxies from the PAGES2k Consoritum. This dataset agrees well with several observational temperature datasets during the instrumental period, and has a similar level of reliability as the Twentieth Century Reanalysis which assimilates surface pressure observations. In addition, the dataset shows a high level of agreement with previous proxy-based reconstructions (average correlation of annual mean NH temperatures is r = 0.61). The dataset can be used to study the temperature variability over the NH and some regions of the NH during the past millennium (1000-2000 AD).
FANG Miao, LI Xin, CHEN Hans , CHEN Deliang
Based on the medium resolution long time series remote sensing image Landsat, the data set obtained six periods of ecosystem type distribution maps of the Qinghai Tibet Plateau in 1990 / 1995 / 2002 / 2005 / 2010 / 2015 through image fusion, remote sensing interpretation and data inversion, and made the original ecological base map of the Qinghai Tibet Plateau in 25 years (1990-2015). According to the area statistics of various ecosystems in the Qinghai Tibet Plateau, the area of woodland and grassland decreased slightly, the area of urban land, rural residential areas and other construction land increased, the area of rivers, lakes and other water bodies increased, and the area of permanent glacier snow decreased from 1990 to 2015. The atlas can be used for the planning, design and management of ecological projects in the Qinghai Tibet Plateau, and can be used as a benchmark for the current situation of the ecosystem, to clarify the temporal and spatial pattern of major ecological projects in the Qinghai Tibet Plateau, and to reveal the change rules and regional differences of the pattern and function of the ecosystem in the Qinghai Tibet Plateau.
ZHAO Hui, WANG Xiaodan
The Qinghai Tibet Plateau is known as "the third pole of the Earth". The long-term and large-scale observation data of permafrost is of great significance to understand the changes and effects of Permafrost on the Qinghai-Xizang Plateau (QXP). Especially in such a cold and anoxic area, the extreme shortage of data resources greatly limits the development, improvement and validation of various remote sensing inversion algorithms, as well as the earth system simulation and scientific research of the QXP. In the past few decades, our research team has established a synthesis network in the permafrost region of the QXP. For the first time, the database systematically integrates the long-time series observation data of 6 automatic meteorological stations, 12 active layer sites and 84 boreholes. In the process of data collection and processing, all observation data have been strictly controlled. The data set will be released to scientists with multi-disciplinary backgrounds (e.g., cryosphere, hydrology, ecology and meteorology), which will greatly promote the validation, development and improvement of hydrological model, land surface process model and climate model of the QXP.
Zhao Lin, ZHAO Lin, ZHOU Defu, ZOU Defu, ZOU Defu, Wu Tonghua, Du Erji, DU Erji, Liu Guangyue, LIU Guangyue, Xiao Yao, Li Ren, Pang Qiangqiang, Qiao Yongping, WU Xiaodong, SUN Zhe, Xing Zangping, Zhao Yonghua, Shi Jianzong, Xie Changwei, Wang Lingxiao, Wang Chong, CHENG Guodong
The data set records the water quality evaluation results of the monitoring sections of the Yangtze River, Yellow River and Huangshui (2010-2012). The data is collected from Yushu ecological environment bureau. The data set contains 18 files, which are: water quality assessment of national control section of Yangtze River in April 2010, water quality assessment of national control section of Yangtze River in May 2010, water quality assessment of national control section of Yangtze River in September 2010, water quality assessment of national control section of Yangtze River in October 2010, etc. the data table structure is the same. There are seven fields in each data table Field 1: monitoring section Field 2: classification of water environment functional areas Field 3: water quality category Field 4: main pollution indicators Field 5: water quality status Field 6: water quality last month Field 7: water quality in the same period of last year
Ecological Environment Bureau of Yushu Prefecture
The data set records the main distribution of sudden geological disasters in Qinghai Province from 2011 to 2018. The data are collected from the Department of ecological environment of Qinghai Province. The data set contains seven tables, which are: the main distribution of sudden geological disasters in 2011, 2012, 2014, 2015 and 2016 Distribution statistics table, 2017 Qinghai Province sudden geological disasters distribution table, 2018 Qinghai Province sudden geological disasters distribution table, the data table structure is the same. Each data table has five fields, such as the statistical table of the main distribution of sudden geological disasters in Qinghai Province in 2016 Field 1: county (city) Field 2: landslide Field 3: collapse Field 4: debris flow Field 5: loess collapsibility
Department of Ecology and Environment of Qinghai Province
The data set records the operation of the pollution source monitoring center in Haixi Prefecture of Qinghai Province from July 2018 to September 2019. The data is collected from the Department of ecological environment of Haixi Prefecture. The data set contains 42 text files, recording the weekly report of Haixi pollution source monitoring center from July 2018 to September 2019, and each file records the content of the weekly report once. Including the video monitoring system operation, online monitoring system operation, new online monitoring system construction acceptance, online monitoring system construction acceptance, online monitoring data analysis and transmission efficiency. Data coverage time range: July 16, 2018 to September 1, 2019.
Ecological Environment Bureau of Haixi Prefecture Qinghai Province
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn