Under the summer sunlight, the snow covering the ice melts, forming different shapes and sizes of ice pools on the ice. The melting pool caused by the melting of the sea ice surface will reduce the sea ice albedo, which will have a significant impact on the energy balance in the polar region, increasing absorption and thus accelerating the sea ice melting process. Among the factors that affect the sea ice albedo, melting pool is one of the most important and most violent factors. With climate change, the rate of ice melting in summer is also getting faster and faster. The energy balance on the Earth's surface has a significant impact, and the acceleration of ice melting speed may also make the melting pool, an important natural phenomenon, one of the most significant ice surface features during the Arctic sea ice melting season. The albedo of melting pool is between sea water and sea ice. The study of melting pool on ice is also an important part of the study of the rapid change mechanism of Arctic sea ice. Due to the similar microwave signal characteristics between sea ice melting pools and the sea surface, and the significant uncertainty of using microwave data to map melting pool coverage due to factors such as wind speed and sea ice melting, the most reliable remote sensing method for melting pool coverage is to use medium resolution optical remote sensing data (such as MODIS) to map sub pixel melting pool coverage. This dataset includes the use of MODIS data for sub pixel decomposition inversion of Arctic sea ice melting pool coverage and sea ice concentration based on dynamic end element reflectance.
Xiong Chuan, REN Yan, QIU Yubao
This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation), simulated and output through the WEB-DHM distributed hydrological model of the Indus River basin, with temperature, precipitation, barometric pressure, etc. as input data.
WANG Lei, LIU Hu
Large-ensemble simulations of the atmosphere-only time-slice experiments for the Polar Amplification Model Intercomparison Project (PAMIP) were carried out by the model group of the Chinese Academy of Sciences (CAS) Flexible Global Ocean-Atmosphere-Land System (FGOALS-f3-L). Eight groups of experiments forced by different combinations of the sea surface temperature (SST) and sea ice concentration (SIC) for pre-industrial, present-day, and future conditions were performed and published. The time-lag method was used to generate the 100 ensemble members, with each member integrating from 1 April 2000 to 30 June 2001 and the first two months as the spin-up period. All of these model datasets will contribute to PAMIP multi-model analysis and improve the understanding of polar amplification.
HE Bian
CAS FGOALS-f3-H, with a 0.25° horizontal resolution, and CAS FGOALS-f3-L, with a 1° horizontal resolution, were forced by the standard external conditions, and two coordinated sets of simulations were conducted for 1950–2014 and 2015–50 with the Experiment IDs of ‘highresSST-present’ and ‘highresSST-future’, respectively. The model outputs contain multiple time scales including the required hourly mean, three-hourly mean, six-hourly transient, daily mean, and monthly mean datasets.
BAO Qing
Soil moisture is an important boundary condition of earth-atmosphere exchanges, and it has been defined as an essential climate variable by GCOS. Vegetation optical depth is a physical variable to measure the attenuation of vegetation in microwave radiative transfer model, and it has been proved to be a good indicator of vegetation water content and biomass. This dataset uses the multi-channel collaborative algorithm (MCCA) to retrieve both soil moisture and polarized vegetation optical depth with SMAP brightness temperature. The algorithm uses a self-constraint relationship between land parameters and an analytical relationship between brightness temperature at different channels to perform the retrieval process. The MCCA does not depend on other auxiliary data on vegetation properties and can be applied to a variety of satellites. The soil moisture product from this dataset includes the soil moisture content in the unfrozen period and the liquid water content in the frozen period. Both horizontal- and vertical-polarization vegetation optical depth are retrieved. So far as we know, it is the first polarization-dependent vegetation optical depth product at L-band. This dataset was validated by 19 dense soil moisture observation networks (9 core validation sites used by SMAP team and 13 sites not used by them), and the widely used soil climate analysis network (SCAN). It was found that ubRMSE (unbiased root mean square error) of MCCA retrieved soil moisture is generally smaller than that of other SMAP products.
ZHAO Tianjie, PENG Zhiqing , YAO Panpan, SHI Jiancheng
The water level observation data set of lakes on the Tibetan Plateau contains the daily variations of water levels for three lakes: Zhari Namco, Bamco and Dawaco. The lake water level was obtained by a HOBO water level gauge (U20-001-01) installed on the lakeshore, then corrected using the barometer installed on the shore or pressure data of nearby weather stations, and then the real water level changes were obtained. The accuracy was less than 0.5 cm. The items of this data set are as follows: Daily variation data of water level in Zhari Namco from 2009 to 2014; Daily variation data of water level in Bamco from 2013 to 2014; Daily variation data of water level in Dawaco from 2013 to 2014. Water level, unit: m.
LEI Yanbin
The Antarctic McMurdo Dry Valleys ice velocity product is based on the Antarctic Ice Sheet Velocity and Mapping Project (AIV) data product, which is post-processed with advanced algorithms and numerical tools. The product is mapped using Sentinel-1/2/Landsat data and provides uniform, high-resolution (60m) ice velocity results for McMurdo Dry Valleys, covering the period from 2015 to 2020.
JIANG Liming JIANG Liming JIANG Liming
Based on the data of GF-1 and GF-2 in China, the freeze-thaw disaster distribution data of Qinghai Tibet project corridor is produced by using the deep learning classification method and manual visual interpretation and correction. The geographical range of the data is 40km along the Xidatan Anduo section of Qinghai Tibet highway. The data include the distribution data of thermokast lakes and the distribution data of thermal melting landslides. The dataset can provide data basis for the research of freeze-thaw disaster and engineering disaster prevention and reduction in Qinghai Tibet engineering corridor. The spatial distribution of freezing and thawing disasters within 40km along the Xidatan-Anduo section of Qinghai Tibet highway is self-made based on the domestic GF-2 image data. Firstly, the deep learning method is used to extract the mud flow terrace block from GF-2 data; Then, ArcGIS is used for manual editing.
NIU Fujun, LUO Jing LUO Jing
The Qinghai Tibet Engineering Corridor starts from Golmud in the north and ends at Lhasa in the south. It passes through the core area of the Qinghai Tibet Plateau and is an important channel connecting the mainland and Tibet. Permafrost temperature is not only an important index to study ground thermal state in permafrost regions, but also a key factor to be considered in permafrost engineering construction. The core of GIPL1.0 is the Kudryavtesv method, which considers the thermophysical properties of snow cover, vegetation and different soil layers. However, Yin found that compared with the Kudryavtesv method, the accuracy of TTOP model was higher. Therefore, the model was improved in combination with the freezing/thawing index. Through the verification of field monitoring data, it was found that the simulation error of permafrost temperature was less than 1 ℃. Therefore, the improved GIPL1.0 model is used to simulate the permafrost temperature of the Qinghai Tibet project corridor, and predict the future permafrost temperature under the SSP2-4.5 climate change scenario.
NIU Fujun
Retrogressive thaw slumps (RTSs) are slope failures caused by the thawing of ice-rich permafrost. Once developed, they usually retreat at high speeds (meters to tens of meters) towards the upslope direction, and the mudflow may destroy infrastructure and release carbon stored in frozen ground. RTSs are frequently distributed in permafrost areas and increase dramatically but lack investigation. Qinghai Tibet Engineering Corridor crosses the permafrost, links the inland and the Tibet. However, in this critical area, we lack knowledge of the distribution and impact of RTSs. To compile the first comprehensive inventory of RTSs, this study uses an iterative semi-automatic method based on deep learning and manual inspection to delineate RTSs in 2019 images. The images from PlanetScope CubeSat have a resolution of 3 meters, have four bands, cover a corridor area of approximately 54,000 square kilometers. The method combines the high efficiency and automation of deep learning and the reliability of the manual inspection to map the entire region ninth, which minimize the missings and misidentification. The manual inspection is based on geomorphic features and temporal changes (2016 to 2020) of RTSs. The inventory which includes 875 RTSs with their attributes, including identification, Longitude and Latitude, possibilities and time, provides a benchmark dataset for quantifying permafrost degradation and its impact.
XIA Zhuoxuan, HUANG Lingcao, LIU Lin
The high-resolution atmosphere-hydrologic simulation dataset over Tibetan Plateau is prepared by WRFv4.1.1 model with grids of 191 * 355 and spatial resolution of 9 km, and a spatial range covering the entire plateau. The main physics schemes are configured with Thompson microphysics scheme, the rapid radiative transfer model (RRTM), and the Dudhia scheme for longwave and shortwave radiative flux calculations, respectively, the Mellor-Yamada-Janjic (MYJ) TKE scheme for the planetary boundary layer and the Unified Noah Land Surface Model. The time resolution is 3h and the time span is 2000-2010. Variables include: precipitation (Rain), temperature (T2) and water vapor (Q2) at 2m height on the ground, surface skin temperature (TSK), ground pressure (PSFC), zonal component (U10) and meridional component (V10) at 10m heigh on the ground, downward long-wave flux (GLW) and downward short-wave flux (SWDOWN) at surface, ground heat flux (GRDFLX), sensible heat flux (HFX), latent heat flux (LH), surface runoff (SFROFF) and underground runoff (UDROFF). The data can effectively support the study of regional climate characteristics, climate change and its impact over the Tibet Plateau, which will provide scientific basis for the sustainable development of the TP under the background of climate change.
MENG Xianhong, MA Yuanyuan
On the basis of RGI6.0, we use remote sensing and geographic information system technology to update the glacier inventory data in Alaska. The updated glacier inventory uses a data source for 2018 Landsat OLI spatial resolution 15m remote sensing image, and the method used is manual interpretation. The results show that the Alaska Glacier inventory includes 27043 glaciers with a total area of 81285km2. The uncertiany of this data is 4.3%. The data will provide important data support for the study of glacier change in Alaska and the regional and global impact of glacier change in the context of global change.
SHANGGUAN Donghui,
The Tibetan Plateau Subregional Dynamical Downscaling Dataset-Standard Year (TPSDD-Standard) is a high spatial-temporal resolution gridded dataset for the study of land-air exchange processes and lower atmospheric structure over the entire Tibetan Plateau, taking into account the climatic characteristics of each subregion of the Tibetan Plateau. Based on the 500 hPa multi-year average of the geopotential height field over the Tibetan Plateau, the year (2014) with the largest pattern correlation coefficient with this geopotential height field is selected as the standard year, which means that it can roughly reflect the multi-year average status of the atmosphere over the Tibetan Plateau. The temporal resolution of this data is 1 hour and the spatial resolution is 5 km. Meteorological elements of the dataset include near-surface land-air exchange parameters such as downward/upward long-wave/short-wave radiation fluxes, sensible heat fluxes, latent heat fluxes, etc. In addition, the 3-dimensional vertical distribution of wind, temperature, humidity, and pressure from the surface to the top of the troposphere is also included. The dataset was independently evaluated by comparing the observed data with the latest ERA5 reanalysis data. The results demonstrate the accuracy and superiority of the dataset, which offers great potential for future climate change studies.
LI Fei, Ma Shupo, ZHU Jinhuan, ZHOU Libo , LI Peng , ZOU Han
Meteorological elements of the dataset include the near-surface land-air exchange parameters, such as downward/upward longwave/shortwave radiation flux, momentum flux, sensible heat flux, latent heat flux, etc. In addition, the vertical distributions of 3-dimensional wind, temperature, humidity, and pressure from the surface to the tropopause are also included. Independent evaluations were conducted for the dataset by comparison between the observational data and the most recent ERA5 reanalysis data. The results demonstrate the accuracy and superiority of this dataset against reanalysis data, which provides great potential for future climate change research.
LI Fei, Ma Shupo, ZHU Jinhuan, ZOU Han , LI Peng , ZHOU Libo
This data is the simulation of Antarctic sea ice density data from 2020 to 2100 under the medium emission scenario (ssp245) of the 6th International Coupled Model Comparison Program (CMIP6). The 25 mode data of CMIP6 were uniformly interpolated and then aggregated averaged. The size of sea ice density data is 0-1, the data time range is from January 2020 to December 2100, the time resolution is month, the spatial range is south of 45 ° S, and the spatial resolution is 1 ° × 1°。 This data provides the status and evolution of Antarctic sea ice under the medium emission scenario, and can provide reference for future changes in Antarctica.
LI Shuanglin, WANG Hui
The extraction of glacier surface movement is of great significance in the study of glacier dynamics and material balance changes. In view of the shortcomings of the current application of autonomous remote sensing satellite data in glacier movement monitoring in China, the SAR data covering typical glaciers in alpine areas of the Qinghai Tibet Plateau from 2019 to 2020 obtained under the GF-3 satellite FSI mode was used to obtain the glacier surface velocity distribution in the study area with the help of a parallel offset tracking algorithm. With its good spatial resolution, GF-3 image has significant advantages in extracting glacier movement with small scale and slow movement, and can better reflect the details and differences of glacier movement. This study is helpful to analyze the movement law and spatio-temporal evolution characteristics of glaciers in the Qinghai Tibet Plateau under the background of climate change.
YAN Shiyong
The basic data of hydrometeorology, land use and DEM were collected through the National Meteorological Information Center, the Hydrological Yearbook, the China Statistical Yearbook and the Institute of Geographic Sciences and Resources of the Chinese Academy of Sciences. The distributed time-varying gain hydrological model with independent intellectual property rights is used for modeling, and the Qinghai Tibet Plateau is divided into 10937 sub basins with a threshold of 100 square kilometers. In Heihe River, Yarlung Zangbo River, the source of Yangtze River, the source of Yellow River, Yalong River, Minjiang River and Lancang River basins, 14 flow stations were selected to observe the daily flow data to develop and verify the model. The daily scale Naxi efficiency coefficient is above 0.7, and the correlation coefficient is above 0.8. The precipitation and temperature data output from 13 models and 4 scenarios provided by CMIP6 are used to post process the future precipitation and temperature data. The post processed precipitation and temperature driven hydrological model simulates the water cycle process from 2046 to 2065, and gives the possible future spatial and temporal distribution of 0.1 degree daily scale runoff across the Qinghai Tibet Plateau.
YE Aizhong
The data is an excel file, which includes four tables named as follows: Altay Snow DOC Time Series, Altay Snow Pit Data, Altay Snow MAC (absorption section) and Central Asia Mos Island Glacier BC, OC, DUST Data. Altay snow DOC table includes seven columns including sample number, sampling date, sampling time, sampling depth, DOC-PPM, BC-PPb and TN-PPM, and 47 sample data. Altay snow pit table includes 8 columns including snow pit number, sample number, sampling date, sampling time, sampling depth, DOC-PPM, BC-PPb and TN-PPM, and 238 sample data. Altay snow MAC table includes: sampling time, MAC and AAE, a total of three columns, and 46 sample data. The BC, OC and DUST data tables of glaciers in Central Asia's Muse Island include 8 columns: code no (sample number), Latitude (latitude), Longitude (longitude),/m a.s.l (altitude), snow type (snow type), BC, OC and DUST, which are analyzed by sampling time. There are 105 rows of data in total. Abbreviation explanation: DOC: Dissolved Organic Carbon MAC: mass absorption cross section BC: black carbon DUST: Dust OC: Organic carbon TN: Total Nitrogen PPM: ug g-1 (microgram per gram) PPb: ng g-1 (nanogram per gram)
ZHANG Yulan
This data set is a code file set of TCA (triple collision analysis) algorithm, which is used to generate the global daily-scale soil moisture fusion dataset from 2011 to 2018.
XIE Qiuxia, XIE Qiuxia, XIE Qiuxia, XIE Qiuxia, XIE Qiuxia, XIE Qiuxia, XIE Qiuxia, XIE Qiuxia, XIE Qiuxia, JIA Li , HU Guangcheng
This data is generated based on meteorological observation data, hydrological station data, combined with various assimilation data and remote sensing data, through the preparation of the Qinghai Tibet Plateau multi-level hydrological model system WEB-DHM (distributed hydrological model based on water and energy balance) coupling snow, glacier and frozen soil physical processes. The time resolution is monthly, the spatial resolution is 5km, and the original data format is ASCII text format, Data types include grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation in the month). If the asc cannot be opened normally in arcmap, please top the first 5 lines of the asc file.
WANG Lei, CHAI Chenhao
The data sets include four sets of data obtained from the Scanning Multi-channel Microwave Radiometer (SMMR), Special Sensor Microwave Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS) sensors using passive microwave remote sensing inversion. SMMR was aboard the Nimbus-7 satellite, and its working period was from October 26, 1978 to July 8, 1987. Since July 1987, the data provided by the SSM/I and the SSMIS aboard the US Defense Meteorological Satellite Program (DMSP) satellite group have been used. The first three data sets contain sea ice concentration data, covering the Antarctic region with a spatial resolution of 25 km: (1) The data were obtained from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Version 1 by applying the NASA Team algorithm inversion. The temporal coverage is from November 1978 to February 2017, with a temporal resolution of one month. A bin file is stored every month. (2) The data source is the same as the first set. The temporal coverage is from 1978-10-26 to 2017-2-28. The temporal resolution is two days, and the spatial resolution is 25 km. A folder was stored every year, and a bin file was stored every other day. (3) The data were obtained from near-real-time DMSP SSMIS by applying the NASA Team algorithm inversion. The temporal coverage is from 2015-1-1 to 2018-2-3, and the temporal resolution is one day. A bin file is stored every day. Each file consists of a 300-byte file title (data time information, projection pattern, file name) and a 316*332 matrix. The fourth set of data is the sea ice coverage and sea ice area time series. The temporal coverage is from November 1978 to December 2017. This data set is a time series sequence of sea ice coverage and sea ice area in the Antarctic. The temporal resolution is one month, and an ASCII file is stored every month. Each file consists of a file title (time, data type), a 39*1 sea ice cover matrix and a 39*1 sea ice area matrix. For further details on the data, please visit the US Ice and Snow Data Center NSIDC website - Data Description http://nsidc.org/data/NSIDC-0051; http://nsidc.org/data/NSIDC-0081; http://nsidc.org/data/G02135
LI Shuanglin, LIU Na
Based on the 33rd Antarctic Scientific Expedition in China, the data set of temporal and spatial distribution of metal element concentrations in snow and ice obtained on the section from Zhongshan Station to Dome A in East Antarctica mainly includes: 1. A shallow ice core obtained 202 km away from Zhongshan Station. The ice core covers the period from 1990 to 2017 with a resolution of years, including metal element iron, hydrogen and oxygen isotopes and other data. 2. Collect a sample every 10km along the Zhongshan Station Dome A section in East Antarctica. The metal elements include rare earth elements, barium and other elements. The data can be used to study the pollution and contribution of natural sources and human activities to Antarctic snow and ice.
Du Zhiheng
Glaciers are sensitive to climate change. With global warming, the melting of glaciers continues to accelerate all over the world. Surging glaciers are glaciers with intermittent and periodic acceleration, which is a sensitive indicator of climate change. Based on Landsat and Sentinel satellite images from 1980s to 2020, the study area images were obtained by filtering, stitching, and cropping. Among them, the L1GS level images collected by Landsat TM sensor were geo-registered using a second-order polynomial, and the error of the geo- registered images was less than one pixel. After image template matching with an orientation correlation algorithm, this data set provides the surface ice flow velocity of a typical surging glacier in the Greenland ice sheet, Sortebræ Glacier in different period from 1980s to 2020. It is expected to contribute to the research on the surging process of Sortebræ Glacier and the discussion on the mechanism of glacier surging in the context of global warming.
QIAO Gang , SUN Zixiang , YUAN Xiaohan
CMIP6 is the sixth climate model comparison plan organized by the World Climate Research Program (WCRP). Original data from https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6 。 This dataset contains four SSP scenarios of Scenario MIP in CMIP6. (1) SSP126: Upgrade of RCP2.6 scenario based on SSP1 (low forcing scenario) (radiation forcing will reach 2.6W/m2 in 2100). (2) SSP245: Upgrade of RCP4.5 scenario based on SSP2 (moderate forcing scenario) (radiation forcing will reach 4.5 W/m2 in 2100). (3) SSP370: New RCP7.0 emission path based on SSP3 (medium forcing scenario) (radiation forcing will reach 7.0 W/m2 in 2100). (4) SSP585: Upgrade the RCP8.5 scenario based on SSP5 (high forcing scenario) (SSP585 is the only SSP scenario that can make the radiation forcing reach 8.5 W/m2 in 2100). Using GRU data to correct the post-processing deviation of the original CMIP data, the post-processing data set of monthly precipitation (pr) and temperature (tas) estimates from 2046-2065 was obtained, with a reference period of 1985-2014.
YE Aizhong
Pine Island Glacier, Swett Glacier, etc. are distributed in the basins of the Antarctic Ice Sheet 21 and 22, which is one of the areas with the most severe melting in the Southwest Antarctica. This dataset first uses Cryosat-2 data (August 2010 to October 2018) to establish a plane equation in each regular grid, taking into account terrain items, seasonal fluctuations, backscattering coefficients, wave front width, lifting rails and other factors, and calculates the elevation change of ice cover surface in the grid through least square regression. In addition, we used ICESat-2 data (October 2018 to December 2020) to calculate the surface elevation change during the two periods by obtaining the elevation difference at the intersection of satellite lifting orbits in each regular grid. The spatial resolution of surface elevation change data in two periods is 5km × 5km, the file format is GeoTIFF, the projection coordinate is polar stereo projection (EPSG 3031), and it is named by the name of the satellite altimetry data used. The data can be opened using ArcMap, QGIS and other software. The results show that the average elevation change rate of the region from 2010 to 2018 is -0.34 ± 0.08m/yr, which belongs to the area with severe melting. The annual average elevation change rate from October 2018 to November 2020 is -0.38 ± 0.06m/yr, which is in an intensified state compared with CryoSat-2 calculation results.
YANG Bojin , HUANG Huabing , LIANG Shuang , LI Xinwu
Global solar radiation at Qomolangma station (The Tibetan Plateau) is measured by radiation sensor (pyranometers CM22, Kipp & Zonen Inc., The Netherlands), and water vapor pressure (hPa) at the ground is measured by HMP45C-GM (Vaisala Inc., Vantaa, Finland). This dataset includes hourly solar radiation and its absorbing and scattering losses caused by the absorbing and scattering atmospheric substances (MJ m-2, 200-3600 nm), and the albedos at the top of the atmosphere and the surface. The above solar radiations are calculated by using an empirical model of global solar radiation (Bai, J.; Zong, X.; Ma, Y.; Wang, B.; Zhao, C.; Yang, Y.; Guang, J.; Cong, Z.; Li, K.; Song, T. 2022. Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. Int. J. Environ. Res. Public Health, 19, 8906. https://doi.org/10.3390/ijerph19158906). The observed global solar radiation and meteorological variables are available at https://data.tpdc.ac.cn/zh-hans/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/. The data set can be used to study solar radiation and its attenuation at Qomolangma region.
BAI Jianhui
Based on the CMIP6 model data (see Table 1 for the model list), the distribution and thickness of frozen soil in the Qinghai Tibet Plateau and the circum Arctic region, as well as the terrestrial ecosystem carbon flux (total primary productivity GPP and ecosystem carbon source sink NEP) data in the frozen soil area under different climate change scenarios (including SSP126, SSP245 and SSP585) in the historical period (1990-2014) and the future (2046-2065) are estimated, with a spatial resolution of 1 ° × 1°。 Among them, the distribution of frozen soil is estimated under the future climate warming scenario by using the spatial constraint method (Chadburn et al., 2017), based on the probability of frozen soil occurrence under different temperature gradients at the current stage, and combined with the future temperature change simulated by the Earth system model. For the change of active layer thickness, the sensitivity of active layer thickness to temperature change estimated by remote sensing at this stage is used to constrain the change of active layer thickness simulated by the Earth System Model, so as to correct the error of the model in simulating the thickness of frozen soil active layer. The future permafrost carbon flux is the multi model ensemble average of the Earth system model simulation results. The simulation results show that the permafrost in the Qinghai Tibet Plateau will be significantly degraded under the future climate change scenario. With the future temperature rise, the continuous permafrost regions will be shown as carbon sources, but the temperature rise will promote the growth of vegetation, and the carbon sink capacity in the discontinuous permafrost regions will be enhanced. Similar to the Qinghai Tibet Plateau, the permafrost around the Arctic will also be generally degraded in the future, and the future climate warming will promote the growth of vegetation in the Arctic, thus enhancing regional carbon sinks.
WANG Tao, LIU Dan , WEI Jianjun
The ground-based observation dataset of aerosol optical properties over the Tibetan Plateau was obtained by continuous observation with a Cimel 318 sunphotometer, involving two stations: Qomolangma Station and Nam Co Station. These products have taken the process of cloud detection. The data cover the period from January 1, 2021 to December 31, 2021, and the time resolution is daily. The sunphotometer has eight observation channels from visible light to near infrared, and the central wavelengths are 340, 380, 440, 500, 670, 870, 940 and 1120 nm, respectively. The field of view angle of the instrument is 1.2°, and the sun tracking accuracy is 0.1°. Six bands of aerosol optical thickness can be obtained from direct solar radiation, and the accuracy is estimated to be 0.01-0.02. Finally, AERONET unified inversion algorithm was used to obtain the aerosol optical thickness, Ångström index, aerosol particle size distribution, single scattering albedo, phase function, complex refraction index and asymmetry factor.
CONG Zhiyuan
There are 396 temperature-sensitive proxy data for the past millennium over the Northern Hemisphere, including 370 tree rings, 15 ice cores, 9 lake sediments and 2 historical documents; This data is derived from the global temperature proxy dataset released by PAGES2k Consortum in 2017; During the process of temperature assimilation in the past millennium (1000-2000 AD) in the Northern Hemisphere, the data were further screened, and only the data with annual resolution were retained; The proxy data contained in the dataset have passed strict quality inspection and temperature signal verification; The data set can be used to reconstruct the temperature of the Northern Hemisphere at the hemispherical and regional scales for the past millennium.
FANG Miao
The active layer thickness in the Wudaoliang permafrost region of the Qinghai Tibet Plateau is retrieved based on the seasonal deformation obtained by SBAS-InSAR technology and ERA5-Land spatio-temporal multi-layer soil moisture data corrected by variational mode decomposition method. The time range of the is 2017-2020, and the spatial resolution is 1km. This data can be used to study the change of the active layer thickness in the permafrost region of the Qinghai Tibet Plateau and analyze its interaction with climate change, water cycle and energy cycle. It is significance to understand the permafrost degradation, environment evolution and the impact of permafrost degradation on ecology and climate.
LU Ping , HAO Tong , LI Rongxing
Both a decrease of sea ice and an increase of surface meltwater, which may induce ice-flow speedup and frontal collapse, have a significant impact on the stability of the floating ice shelf in Greenland. However, detailed dynamic precursors and drivers prior to a fast-calving process remain unclear due to sparse remote sensing observations. Here, we present a comprehensive investigation on hydrological and kinematic precursors before the calving event on 26 July 2017 of Petermann Glacier in northern Greenland, by jointly using remote sensing observations at high-temporal resolution and an ice-flow model. Time series of ice-flow velocity fields during July 2017 were retrieved with Sentinel-2 observations with a sub-weekly sampling interval. The ice-flow speed quickly reached 30 m/d on 26 July (the day before the calving), which is roughly 10 times quicker than the mean glacier velocity.
JIANG Liming
Data content: Industrial added value of national economy (monthly) (2010-2021) Data source and processing method: obtain the original data of the third pole (China) industrial economy in 2010-2021 from the official website of the World Bank and Sina.com, and obtain the industrial economy data set in 2010-2021 (China) through data sorting, screening and cleaning. The data starts from 2010 to 2021 in Microsoft Excel (xls) format. Data quality description: excellent Data application achievements and prospects: provide effective reference as social, industrial and economic data
FU Wenxue
Data content: foreign economy and trade_ Total import and export of goods (1991-2021) Data source and processing method: The original data of foreign trade and investment of the third pole (China region) from 2015 to 2021 were obtained from the official website of the World Bank and Sina.com, and the data set of foreign trade and investment of the third pole (China region) from 1991 to 2021 was obtained through data sorting, screening and cleaning. The data started from 1991 to 2021 in Microsoft Excel (xls) format. Data quality description: excellent Data application achievements and prospects: provide effective reference as socio-economic data
FU Wenxue
Data content: annual statistics of gross domestic product (GDP) (1991-2021), domestic assets and liabilities data (2011-2020) and domestic input and output data (2012-2018) Data source and processing method: The original macroeconomic data of the third pole (China) from 2015 to 2021 were obtained from the official website of the World Bank and Sina.com, and the macroeconomic data set of the third pole (China) from 1991 to 2021 was obtained through data sorting, screening and cleaning. The data was stored in Microsoft Excel (xls) format. Data quality description: excellent Data application achievements and prospects: provide effective reference as socio-economic data
FU Wenxue
Data content: price index_ Consumer Price Index (CPI) (2009-2022) Data source and processing method: The original data of the third pole (China) price index economy from 2015 to 2022 were obtained from the official website of the World Bank and Sina.com, and the economic data set of the third pole (China) price index from 2009 to 2022 was obtained through data collation, screening and cleaning. The data started from 2009 to 2022 in Microsoft Excel (xls) format. Data quality description: excellent Data application achievements and prospects: provide effective reference as socio-economic data
FU Wenxue
Data content: money supply (2012-2021) and assets and liabilities of financial institutions (2007-2020) Data source and processing method: The original data of the third pole (China) banks and currencies from 2015 to 2021 were obtained from the official website of the World Bank and Sina.com, and the data set of the third pole (China) banks and currencies from 2012 to 2021 was obtained through data sorting, screening and cleaning. The data started from 2012 to 2021 in Microsoft Excel (xls) format. Data quality description: excellent Data application achievements and prospects: provide effective reference as socio-economic data
FU Wenxue
The Qinghai-Tibet Engineering Corridor runs from Golmud to Lhasa. It passes through the core region of the Qinghai-Tibet Plateau and is an important passage connecting the interior and Tibet. The active layer thickness (ALT) is not only an important index to study the thermal state of ground in permafrost region, but also a key factor to be considered in the construction of permafrost engineering. The core of GIPL1.0 is kudryavtesv method, which takes into account the thermophysical properties of snow cover, vegetation and different soil layers. However, Yin Guoan et al. found that compared with kudryavtesv method, the accuracy of TTOP model is higher, so they improved the model in combination with freezing / thawing index. Through verification of field monitoring data, it was found that the simulation error of ALT is less than 50cm. Therefore, the ALT in the Qinghai Tibet project corridor is simulated by using the improved GIPL1.0 model, and the future ALT under the ssp2-4.5 climate change scenario is predicted.
NIU Fujun
The data product of ice flow velocity field of Rayner Glacier in East Antarctica in 1963 based on ARGON historical remote sensing images. Using two declassified satellite images taken in 1963 with an interval of two months, the early ice flow velocity field of the Reina Glacier in eastern Antarctica is estimated by hierarchical matching based on parallax decomposition. The accuracy of the estimated velocity map can reach 70 m/year. A method for estimating the surface velocity of cooperative glaciers based on the parallax decomposition of optical stereo images. First, the image to be matched generates the core image and the pyramid of the core image; Next, the ice flow area mask is used to divide the image into ice flow area and non ice flow area for matching respectively. In addition to the normal matching steps, the ice flow area also needs to perform parallax demarcation to distinguish the impact of ice flow movement on terrain parallax. Finally, through layer by layer matching, we can get the DTM and ice flow diagram of the object side at the bottom. This data is of great significance for reconstructing the early surface morphology and ice flow velocity of Rayner Glacier in East Antarctica.
LI Rongxing , QIAO Gang , YE Wenkai
In order to better understand the mechanism of the interaction between the global climate and the Fimbu and Jelbart ice shelves, it is important to obtain the long-term ice velocity changes in this region. 1960-1980s Ice Flow Velocity Field Data Product Set of the Fimbul and Jelbart Ice Shelves, East Antarctica: Using the early Argon, Landsat MSS and TM satellite images, based on pre-processing the early remote sensing images to obtain the orthophoto images with precise geometric status, a layered matching method under the constraint strategy of artificial point feature point grid point was proposed, and the historical ice flow velocity field data product of the Fimbul Jelbart Ice Shelf, East Antarctica was extracted. This study is of great significance for studying the historical ice velocity of the Fimbul Jelbart Ice Shelf in East Antarctica from 1963 to 1987, and can provide basic data for studying the response of the ice sheet to global climate change.
LI Rongxing , FENG Tiantian , LI Yanjun , CHENG Yuan , QIAO Gang
Based on ICESat r633 altimetry data from February 2004 to October 2008, the elevation changes of Lambert Glacier / Amery ice shelf system in Antarctica are obtained by using the repeated orbit plane fitting method. The GIA correction and projection area deformation correction are carried out with ij05 R2 model, and then 30km * 30km is obtained The surface elevation change rate of resolution is converted into material change by the grain snow density model, and compared with the Antarctic material change obtained by grace gravity satellite time-varying model.
XIE Huan, LI Rongxing
This phenological data is based on the MOD13A2 data of the Qinghai Tibet Plateau from 2000 to 2015 (with a temporal resolution of 16 days and a spatial resolution of 1km). The NDVI curve is fitted using the segmented Gaussian function in the TIMESAT software. The spring phenology, autumn phenology and the length of the growth season are extracted using the dynamic threshold method. The thresholds of spring phenology and autumn phenology are set to 0.2 and 0.7 respectively. The phenological data were masked. Among them, the mask rules are: 1) The maximum value of NDVI must be met between June and September; 2) The average value of NDVI from June to September shall not be less than 0.2; 3) The average NDVI in winter shall not exceed 0.3.
ZU Jiaxing , ZHANG Yangjian
This data set is the global vegetation productivity data, including total primary productivity (GPP), net primary productivity (NPP) and net ecosystem productivity (NEP). It is simulated by BCC-ESM1 model in Phase 6 of the Coupling Model Comparison Plan (CMIP6) under the historical scenario. The data time range is 1850-2014, the time resolution is month, and the spatial resolution is about 2.8125 °. Analog Data Details Visible Link https://www.wdc-climate.de/ui/cmip6?input=CMIP6.CMIP.BCC.BCC -ESM1。
ZHENG Zhoutao
The feedback of the biosphere to the atmosphere is one of the core contents of global change research. When the atmospheric CO2 concentration rises, the behavior of the terrestrial ecosystem is the main uncertainty factor to predict this feedback effect. Elevated CO2 concentration (eCO2) can directly stimulate plant growth and ecosystem C absorption by increasing carboxylation and inhibiting photorespiration rate. Through the impact of CO2 fertilization effect (CFE) on photosynthesis and carbon sequestration, the terrestrial ecosystem can buffer the surge of atmospheric CO2 concentration, thereby slowing down climate change. In order to study the impact of CO2 enrichment on vegetation productivity, CO2 enrichment experiments were conducted at Naqu Grassland Station (31 ° 38 ′ 31 ″ N, 92 ° 00 ′ 54 ″ E, 4600m above sea level) in the north of the Qinghai Tibet Plateau. The test is designed in zones, with CO2 as the main treatment factor and N as the secondary treatment factor; A total of four experimental treatments span two CO2 concentration levels [ambient CO2 (aCO2), increased CO2 (eCO2):+100ppm]. Considering the low vegetation height and windy weather in the study area, octagonal open top chambers (OTCs) are used to control the carbon dioxide concentration, rather than the free FACE system. The design height of OTC is 2.5 meters, the length of each side is 1.5 meters, and each OTC occupies 7.7 square meters.
ZHANG Yangjian
According to the data of three future scenarios of CMIP5 (RCP2.6、RCP4.5、RCP8.5), the spatial variation characteristics and temporal variation trend of the global mean annual air temperature from 2006 to 2100 are analyzed. Under rcp2.6 scenario, the mean annual air temperature shows an increasing trend, with the growth rate ranging from 0.0 ° c/decade to 0.2 ° c/decade (P<0.05), the growth in high latitude regions is faster, ranging from 0.1 ° c/decade to 0.2 ° C / decade. Based on the spatial and temporal characteristics of the mean annual air temperature in the northern hemisphere in the 21st century, under different scenarios, the mean annual air temperature shows a warming trend, and the high latitudes show a more sensitive and rapid growth.
NIU Fujun
This dataset is the daily vorticity related flux observation data of Naqu flux station (31.64 ° N 92.01 ° E, 4598 m a.s.l.), including net ecosystem productivity (NEP), total primary productivity (GPP), ecosystem respiration (ER), evapotranspiration, latent heat, sensible heat, air temperature, relative humidity, wind speed, soil temperature, soil moisture and other data. The main steps of data pre-processing include wild point removal (± 3 σ)、 Coordinate axis rotation (3D wind rotation), Webb Pearman Leuning correction, outlier elimination, carbon flux interpolation and decomposition, etc. Missing data are interpolated through the nonlinear empirical formula between CO2 flux value (Fc) and environmental factors.
ZHANG Yangjian
This data set is the daily vorticity related flux observation data of Naqu flux station (31.64 ° N 92.01 ° E, 4598 m a.s.l.), including ecosystem net ecosystem productivity (NEP), total primary productivity (GPP) and ecosystem respiration (ER) data. The main steps of data pre-processing include wild point removal (± 3 σ)、 Coordinate axis rotation (3D wind rotation), Webb Pearman Leuning correction, outlier elimination, carbon flux interpolation and decomposition, etc. Missing data are interpolated through the nonlinear empirical formula between CO2 flux value (Fc) and environmental factors.
ZHANG Yangjian
Vegetation survey data is essential for the study of ecosystem structure and function. The Qinghai Tibet Plateau contains a vast grassland ecosystem, mainly including alpine meadow, alpine grassland, and alpine desertification grassland. Due to the unique geographical location and high altitude anoxic environmental conditions, the community survey data in the northern Tibetan Plateau is relatively scarce. This data set includes the aboveground biomass and coverage data of 47 sampling points on the northern Tibet transect in 2019, and the sampling time is from July to August. The sample size is 50cm × 50cm, dry weight of the plant is weighed after drying. This data set can be used for spatial analysis of productivity and calibration of models.
ZHANG Yangjian, ZHU Juntao
The data set of ecological adjustment value of Arctic permafrost change from 1982 to 2015, with the time resolution of 1982, 2015 and the change rate of two phases, covers the entire Arctic tundra area, with the spatial resolution of 8km. Based on multi-source remote sensing, simulation, statistics and measured data, and combined with GIS and ecological methods, it quantifies the adjustment service value of Arctic permafrost to the ecosystem, The unit price refers to the correlation (0.35) between the active layer thickness and NDVI changes after excluding precipitation and snow water equivalent, and the grassland ecosystem service value (the unit price of tundra ecosystem service is based on 1/3 of the grassland ecosystem service value).
WANG Shijin
This dataset is global respiration data, including autotrophic respiration (ra) and heterotrophic respiration (rh). It is simulated by TaiESM1 model in Phase 6 of the Coupling Model Comparison Plan (CMIP6) under historical scenarios. The data time range is 1850-2014, the time resolution is month, and the spatial resolution is about 0.9 ° x1.25 °. Analog Data Details Visible Link https://www.wdc-climate.de/ui/cmip6?input=CMIP6.CMIP.AS -RCEC.TaiESM1.historical。
Program for Climate Model Diagnosis and Intercomparison (PCMDI)
The triple pole aerosol type data product is an aerosol type result obtained through a series of data pre-processing, quality control, statistical analysis and comparative analysis processes by comprehensively using MEERA 2 assimilation data and active satellite CALIPSO products. The key of the aerosol type fusion algorithm is to judge the aerosol type of CALIPSO. During the data fusion of aerosol type, the final aerosol type data (12 types in total) and quality control results in the three polar regions are obtained according to the types and quality control of CALIPSO aerosol types and referring to MERRA 2 aerosol types. The data product fully considers the vertical and spatial distribution of aerosols, and has a high spatial resolution (0.625 ° × 0.5 °) and time resolution (month).
ZHAO Chuanfeng
This data set is the conventional meteorological observation data of the Ngoring Lake Grassland Observation site (GS) in the source region of the Yellow River from 2017 to 2020, obtained by using Kipp&Zonen CNR4, Vaisala HMP155A, PTB110 and other instruments, with a time resolution of half an hour. Mainly include wind speed, wind direction, temperature, relative humidity(specific humidity in 2020), air pressure, downward short-wave radiation, downward long-wave radiation, precipitation.
MENG Xianhong, LI Zhaoguo
This data set is the conventional meteorological observation data of Maqu grassland observation site in the source region of the Yellow River from 2017 to 2020, obtained by using Kipp&Zonen CNR4, Vaisala HMP155A, PTB110 and other instruments, with a time resolution of half an hour. Mainly include wind speed, wind direction, temperature, relative humidity, air pressure, downward short-wave radiation, downward long-wave radiation, precipitation.
MENG Xianhong, LI Zhaoguo
Zoige Wetland observation point is located at Huahu wetland (102 ° 49 ′ 09 ″ E, 33 ° 55 ′ 09 ″ N) in Zoige County, Sichuan Province, with an initial altitude of 3435 m. The underlying surface is the alpine peat wetland, with well-developed vegetation, water and peat layer. This data set is the meteorological observation data of Zoige Wetland observation point from 2017 to 2019. It is obtained by using Kipp&Zonen CNR4, Vaisala HMP155A, PTB110 and other instruments. The time resolution is half an hour, mainly including wind speed, wind direction, air temperature, relative humidity, air pressure, downward short wave radiation, downward long wave radiation.
MENG Xianhong, LI Zhaoguo
This data set includes five periods of lake transparency data, including 1995, 2002, 2005, 2010 and 2015. The data sources are: Landsat 5, Landsat 7 and Landsat 8. Method of use: It is convenient to measure the spectral reflectance. On the basis of analyzing the relationship between the spectral reflectance and the transparency measured synchronously, the semi empirical method is used to select the best band combination, establish the transparency algorithm of Qinghai Tibet Plateau lakes, and obtain the water transparency. The verification of measured points shows that the relative error of water transparency estimation is 35%.
SONG Kaishan
The aerosol optical thickness data of the Arctic Alaska station is formed based on the observation data products of the US Department of Energy's atmospheric radiation observation program at the Arctic Alaska station. The data coverage time is from 1998 to 2020, the time resolution is hourly, the coverage site is the Arctic Alaska station, and the longitude and latitude coordinates are (71 ° 19 ′ 22.8 ″ N, 156 ° 36 ′ 32.4 ″ W). The observation data is obtained from the inversion of the radiation data observed by MFRSR instrument. The optical characteristic variable is aerosol optical thickness, and the observation inversion error range is about 15%. The data format is nc format.
ZHAO Chuanfeng
Aerosol Optical Depth (AOD) reflects the attenuation of solar radiation to the surface by aerosols. The aerosol type is calculated according to the aerosol optical thickness (AOD). This data set is derived from the latest MODIS aerosol secondary product MOD04_ L2 and MYD04_ L2, where MOD and MYD represent Terra and Aqua satellites respectively. At present, MODIS aerosol retrieval algorithms are Dark Target (DT) and Deep Blue (DB). According to the inversion accuracy of the metadata field table Quality Assurance Confidence (QAC), DT and DB algorithm products are integrated to deal with land, ocean and coast respectively. The index quality is optimal (QAF=3) or suboptimal (QAF=2) or meets the basic needs (QAF=1) to obtain high-resolution AOD products (0.1 degree, daily scale) with full coverage and long time series. According to AOD experience threshold (AOD: 0~0.2, clean type; 0.2~0.6, urban or industrial type; greater than 0.6, sand dust type) The aerosol types are classified into three types: clean type (1), urban or industrial type (2) and sand dust type (3). This dataset provides MOD, MYD and fusion products based on transit time.
YE Aizhong
Aerosol Optical Depth (AOD) reflects the attenuation of solar radiation to the surface by aerosols. This data set is derived from the latest MODIS aerosol secondary product MOD04_ L2 and MYD04_ L2, where MOD and MYD represent Terra and Aqua satellites respectively. At present, MODIS aerosol retrieval algorithms are Dark Target (DT) and Deep Blue (DB). According to the inversion accuracy of the metadata field table Quality Assurance Confidence (QAC), DT and DB algorithm products are integrated to deal with land, ocean and coast respectively. The index quality is optimal (QAF=3) or suboptimal (QAF=2) or meets the basic needs (QAF=1) to obtain high-resolution AOD products (0.1 degree, daily scale) with full coverage and long time series. This dataset provides MOD, MYD and fusion products based on transit time.
YE Aizhong
Plant functional types (PFT) is a combination of large plant species according to the ecosystem function and resource utilization mode of plant species. Each planting functional type shares similar plant attributes, which simplifies the diversity of plant species into the diversity of plant function and structure.The concept of plant-functional has been advocated by ecologists especially ecosystem modelers.The basic assumption is that globally important ecosystem dynamics can be expressed and simulated through limited plant functional types.At present, vegetation-functional model has been widely used in biogeographic model, biogeochemical model, land surface process model and global dynamic vegetation model. For example, the land surface process model of the national center for atmospheric research (NCAR) in the United States has changed the original land cover information into the applied plant-functional map (Bonan et al., 2002).Functional plant has been used in the dynamic global vegetation model (DGVM) to predict the changes of ecosystem structure and function under the global change scenario. 1. Functional classification system of Plant 1 Needleleaf evergreen tree, temperate 2 Needleleaf evergreen tree, boreal 3 Needleleaf deciduous tree 4 Broadleaf evergreen tree, tropical 5 Broadleaf evergreen tree, temperate 6 Broadleaf deciduous tree, tropical 7 Broadleaf deciduous tree, temperate 8 Broadleaf deciduous tree, boreal 9 Broadleaf evergreen shrub, temperate 10 Broadleaf deciduous shrub, temperate 11 Broadleaf deciduous shrub, boreal 12 C3 grass, arctic 13 C3 grass 14 C4 grass 15 Crop 16 Permanent wetlands 17 Urban and built-up lands 18 Snow and ice 19 Barren or sparsely vegetated lands 20 Bodies of water 2. Drawing method China's 1km plant function map is based on the climate rules of land cover and plant function conversion proposed by Bonan et al. (Bonan et al., 2002).Ran et al., 2012).MICLCover land cover map is a blend of 1:100000 data of land use in China in 2000, the Chinese atlas (1:10 00000) the type of vegetation, China 1:100000 glacier map, China 1:10 00000 marshes and MODIS land cover 2001 products (MOD12Q1) released the latest land cover data, using IGBP land cover classification system.The evaluation shows that it may be the most accurate land cover map on the scale of 1km in China.Climate data is China's atmospheric driven data with spatial resolution of 0.1 and temporal resolution of 3 hours from 1981 to 2008 developed by he jie et al. (2010).The data incorporates Princeton land-surface model driven data (Sheffield et al., 2006), gewex-srb radiation data (Pinker et al., 2003), TRMM 3B42 and APHRODITE precipitation data, and observations from 740 meteorological stations and stations under the China meteorological administration.According to the evaluation results of RanYouhua et al. (2010), GLC2000 has a relatively high accuracy in the current global land cover data set, and there is no mixed forest in its classification system. Therefore, the mixed forest in the MICLCover land cover diagram USES GLC2000 (Bartholome and Belward, 2005).The information in xu wenting et al., 2005) was replaced.The data can be used in land surface process model and other related researches.
RAN Youhua, LI Xin
The 0.1 º aerosol optical thickness dataset (also known as the "Poles AOD Collection 1.0" aerosol optical thickness (AOD) dataset) in the polar regions from 2000 to 2020 was produced by combining Merra-2 mode data and MODIS satellite sensor AOD. The data covers the period from 2000 to 2020, with a daily time resolution, covering the "tri polar" (Antarctic, Arctic and Qinghai Tibet Plateau) region, and a spatial resolution of 0.1 degree. The verification of the measured stations shows that the relative deviation of the data is within 35%, which can effectively improve the coverage and accuracy of AOD in the polar region.
GUANG Jie GUANG Jie
This data includes bacterial 16S ribosomal RNA gene sequence data from 25 lakes in the middle of the Qinghai Tibet Plateau. The sample was collected from July to August 2015, and the surface water was sampled three times with a 2.5 liter sampler. The samples were immediately taken back to the Ecological Laboratory of the Beijing Qinghai Tibet Plateau Research Institute, and the salinity gradient of the salt lake was 0.14~118.07 g/L. This data is the result of amplification sequencing. Concentrate the lake water to 0.22 at 0.6 atm filtration pressure μ The 16S rRNA gene fragment amplification primers were 515F (5 '- GTGCCAAGCCGCGGTAA-3') and 909r (5 '- GGACTACHVGGGTWTCTAAT-3'). The Illumina MiSeq PE250 sequencer was used for end-to-end sequencing. The original data was analyzed by Mothur software. The sequence was compared with the Silva128 database and divided into operation classification units (OTUs) with 97% homology. This data can be used to analyze the microbial diversity of lakes in the Qinghai Tibet Plateau.
KONG Weidong
This data includes the distribution data of soil bacteria in Namco region of the Qinghai Tibet Plateau, which can be used to explore the seasonal impact of fencing and grazing on soil microorganisms in Namco region. The sample was collected from May to September 2015, and the soil samples were stored in ice bags and transported back to the Ecological Laboratory of Beijing Institute of Qinghai Tibet Plateau Research; This data is the result of amplification sequencing, using MoBio Powersoil ™ Soil DNA was extracted with DNA isolation kit, and the primers were 515F (5 '- GTGCCAAGCGCCGGTAA-3') and 806R (5'GGACTACNVGGGTWTCTAAT-3 '). The amplified fragments were sequenced by Illumina Miseq PE250. The original data is analyzed by Qiime software, and then the similarity between sequences is calculated, and the sequences with a similarity of more than 97% are clustered into an OTU. The Greengenes reference library is used for sequence alignment to remove the sequence that only appears once in the database. The soil moisture content and soil temperature were measured by a soil hygrometer, and the soil pH was measured by a pH meter (Sartorius PB-10, Germany). The soil nitrate nitrogen (NO3 −) and ammonium nitrogen (NH4+) concentrations were extracted with 2 M KCl (soil/solution, 1:5), and analyzed with a Smartchem200 discrete automatic analyzer. This data set is of great significance to the study of soil microbial diversity in arid and semi-arid grasslands.
KONG Weidong
Data on soil bacterial diversity of grassland in Qinghai Tibet Plateau. The samples were collected from July to August 2017, including 120 samples of alpine meadow, typical grassland and desert grassland. The soil surface samples were collected and stored in ice bags, and then transported back to the ecological laboratory of the Beijing Qinghai Tibet Plateau Research Institute. The soil DNA was extracted by MO BIO PowerSoil DNA kit. The 16S rRNA gene fragment amplification primers were 515F (5 '- GTGCCAAGCCGGTAA-3') and 806R (5 ´ GGACTACNVGGGTWTCTAAT-3 ´). The amplified fragments were sequenced by Illumina Miseq PE250. The original data is analyzed by Qiime software, and the sequence classification is based on the Silva128 database. Sequences with a similarity of more than 97% are clustered into an operation classification unit (OTU). This data systematically compares the bacterial diversity of soil microorganisms in the Qinghai Tibet Plateau transect, which is of great significance to the study of the distribution of microorganisms in the Qinghai Tibet Plateau.
KONG Weidong
The Tibet-Obs established in 2008 consists of three regional-scale soil moisture (SM) monitoring networks, i.e. the Maqu, Naqu, and Ngari (including Ali and Shiquanhe) networks. This surface SM dataset includes the original 15-min in situ measurements collected at a depth of 5 cm by multiple SM monitoring sites of all the networks, and the spatially upscaled SM records produced for the Maqu and Shiquanhe networks.
ZHANG Pei, ZHENG Donghai, WEN Jun, ZENG Yijian, WANG Xin, WANG Zuoliang, MA Yaoming, SU Zhongbo
As the “water tower of Asia”, Tibetan Plateau (TP) are the resource of major rivers in Asia. Black carbon (BC) aerosol emitted from surrounding regions can be transported to the inner TP by atmospheric circulation and consequently deposited in snow, which can significantly influence precipitation and mass balance of glaciers. By drilling and sampling ice cores and snow samples and measuring BC concentration, historical record and spatial distribution can be abtained. It can provide basic dataset to study the effects of BC to the environment and climate over the Tibetan Plateau, as well as the pollutants transport.
XU Baiqing
This data set contains sequence data of the number variation of livestock in the major cities and counties of the Tibetan Plateau from 1970 to 2006. It is used to study the social and economic changes of the Tibetan Plateau. The table has ten fields. Field 1: Year Interpretation: Year of the data Field 2: Province Interpretation: The province from which the data were obtained Field 3: City/Prefecture Interpretation: The city or prefecture from which the data were obtained Field 4: County Interpretation: The name of the county Field 5: Large livestock (10,000) Interpretation: The number of large livestock such as cattle, horses, mules, donkeys, and camels. Field 6: Cattle herd (10,000) Interpretation: Number of cattle Field 7: Equine animals(10,000) Interpretation: The number of equine animals such as horses, mules and donkeys. Field 8: Horses (10,000) Interpretation: The number of horses Field 9: Sheep (10,000) Interpretation: The number of sheep Field 10: Data Sources Interpretation: Source of Data The data come from the statistical yearbook and county annals. Some are listed as follows. [1] Gansu Yearbook Editorial Committee. Gansu Yearbook [J]. Beijing: China Statistics Press, 1984, 1988-2009 [2] Statistical Bureau of Yunnan Province. Yunnan Statistical Yearbook [J]. Beijing: China Statistics Press, 1988-2009 [3] Statistical Bureau of Sichuan Province, Sichuan Survey Team. Sichuan Statistical Yearbook [J]. Beijing: China Statistics Press, 1987-1991, 1996-2009 [4] Statistical Bureau of Xinjiang Uighur Autonomous Region . Xinjiang Statistical Yearbook [J]. Beijing: China Statistics Press, 1989-1996, 1998-2009 [5] Statistical Bureau of Tibetan Autonomous Region. Tibet Statistical Yearbook [J]. Beijing: China Statistics Press, 1986-2009 [6] Statistical Bureau of Qinghai Province. Qinghai Statistical Yearbook [J]. Beijing: China Statistics Press, 1986-1994, 1996-2008. [7] County Annals Editorial Committee of Huzhu Tu Autonomous County. County Annals of Huzhu Tu Autonomous County [J]. Qinghai: Qinghai People's Publishing House, 1993 [8] Haiyan County Annals Editorial Committee. Haiyan County Annals[J]. Gansu: Gansu Cultural Publishing House, 1994 [9] Menyuan County Annals Editorial Committee. Menyuan County Annals[J]. Gansu: Gansu People's Publishing House, 1993 [10] Guinan County Annals Editorial Committee. Guinan County Annals [J]. Shanxi: Shanxi People's Publishing House, 1996 [11] Guide County Annals Editorial Committee. Guide County Annals[J]. Shanxi: Shanxi People's Publishing House, 1995 [12] Jianzha County Annals Editorial Committee. Jianzha County Annals [J]. Gansu: Gansu People's Publishing House, 2003 [13] Dari County Annals Editorial Committee. Dari County Annals [J]. Shanxi: Shanxi People's Publishing House, 1993 [14] Golmud City Annals Editorial Committee. Golmud City Annals [J]. Beijing: Fangzhi Publishing House, 2005 [15] Delingha City Annals Editorial Committee. Delingha City Annals [J]. Beijing: Fangzhi Publishing House, 2004 [16] Tianjun County Annals Editorial Committee. Tianjun County Annals [J]. Gansu: Gansu Cultural Publishing House, 1995 [17] Naidong County Annals Editorial Committee. Naidong County Annals [J]. Beijing: China Tibetology Press, 2006 [18] Gulang County Annals Editorial Committee. Gulang County Annals [J]. Gansu: Gansu People's Publishing House, 1996 [19] County Annals Editorial Committee of Akesai Kazak Autonomous County. County Annals of Akesai Kazakh Autonomous County [J]. Gansu: Gansu People's Publishing House, 1993 [20] Minxian County Annals Editorial Committee. Minxian County Annals [J]. Gansu: Gansu People's Publishing House, 1995 [21] Dangchang County Annals Editorial Committee. Dangchang County Annals [J]. Gansu: Gansu Cultural Publishing House, 1995 [22] Dangchang County Annals Editorial Committee. Dangchang County Annals(Sequel) (1985-2005) [J]. Gansu: Gansu Cultural Publishing House, 2006 [23] Wenxian County Annals Editorial Committee. Wenxian County Annals[J]. Gansu: Gansu Cultural Publishing House, 1997 [24] Kangle County Annals Editorial Committee. Kangle County Annals [J]. Shanghai: Sanlian Bookstore. 1995 [25] County Annals Editorial Committee of Jishishan (Baoan, Dongxiang, Sala) Autonomous County. County Annals of Jishishan (Baoan, Dongxiang, Sala) Autonomous County[J], Gansu: Gansu Cultural Publishing House, 1998 [26] Luqu County Annals Editorial Committee. Luqu County Annals [J]. Gansu: Gansu People's Publishing House, 2006 [27] Zhouqu County Annals Editorial Committee. Zhouqu County Annals [J]. Shanghai: Sanlian Bookstore. 1996 [28] Xiahe County Annals Editorial Committee. Xiahe County Annals [J]. Gansu: Gansu Cultural Publishing House, 1999 [29] Zhuoni County Annals Editorial Committee. Zhuoni County Annals [J]. Gansu: Gansu Nationality Publishing House, 1994 [30] Diebu County Annals Editorial Committee. Diebu County Annals [J]. Gansu: Lanzhou University Press, 1998 [31] Pengxian County Annals Editorial Committee. Pengxian County Annals [J]. Sichuan: Sichuan People's Publishing House, 1989 [32] Guanxian County Annals Editorial Committee. Guanxian County Annals [J]. Sichuan: Sichuan People's Publishing House, 1991 [33] Wenjiang County Annals Editorial Committee. Wenjiang County Annals [J]. Sichuan: Sichuan People's Publishing House, 1990 [34] Shifang County Annals Editorial Committee. Shifang County Annals [J]. Sichuan: Sichuan University Press, 1988 [35] Tianquan County Annals Editorial Committee. Tianquan County Annals [J]. Sichuan: Sichuan Science and Technology Press, 1997 [36] Shimian County Annals Editorial Committee. Shimian County Annals [J]. Sichuan: Sichuan Cishu Publishing House, 1999 [37] Lushan County Annals Editorial Committee. Lushan County Annals [J]. Sichuan: Fangzhi Publishing House, 2000 [38] Hongyuan County Annals Editorial Committee. Hongyuan County Annals [J]. Sichuan: Sichuan People's Publishing House, 1996 [39] Wenchuan County Annals Editorial Committee. Wenchuan County Annals [J]. Sichuan: Bayu Shushe, 2007 [40] Derong County Annals Editorial Committee. Derong County Annals [J]. Sichuan: Sichuan University, 2000 [41] Baiyu County Annals Editorial Committee. Baiyu County Annals [J]. Sichuan: Sichuan University Press, 1996 [42] Batang County Annals Editorial Committee. Batang County Annals [J]. Sichuan: Sichuan Nationality Publishing House, 1993 [43] Jiulong County Annals Editorial Committee. Jiulong County Annals(Sequel) (1986-2000) [J]. Sichuan: Sichuan Science and Technology Press, 2007 [44] County Annals Editorial Committee of Derung-Nu Autonomous County Gongshan. County Annals of Derung-Nu Autonomous County Gongshan [J]. Beijing: Nationality Publishing House, 2006 [45] Lushui County Annals Editorial Committee. Lushui County Annals [J]. Yunnan: Yunnan People's Publishing House, 1995 [46] Deqin County Annals Editorial Committee. Deqin County Annals [J]. Yunnan: Yunnan Nationality Publishing House, 1997 [47] Yutian County Annals Editorial Committee. Yutian County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 2006 [48] Cele County Annals Editorial Committee. Cele County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 2005 [49] Hetian County Annals Editorial Committee. Hetian County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 2006 [50] Qiemo County Local Chronicles Editorial Committee. Qiemo County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1996 [51] Shache County Annals Editorial Committee. Shache County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1996 [52] Yecheng County Annals Editorial Committee. Yecheng County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1999 [53] Akto County Local Chronicles Editorial Committee. Akto County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1996 [54] Wuqia County Local Chronicles Editorial Committee. Wuqia County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1995
National Bureau of Statics of China
This dataset is the monthly precipitation data of China, with a spatial resolution of 0.0083333 ° (about 1km) and a time range of 1901.1-2021.12. The data format is NETCDF, i.e.. Nc format. This dataset is generated in China through the Delta spatial downscaling scheme based on the global 0.5 ° climate dataset released by CRU and the global high-resolution climate dataset released by WorldClim. In addition, 496 independent meteorological observation point data are used for verification, and the verification results are reliable. This data set covers the main land areas in China (including Hong Kong, Macao and Taiwan), excluding islands and reefs in the South China Sea. In order to facilitate storage, the data are all int16 type and stored in nc files, with precipitation units of 0.1mm. NC data can be mapped using ArcMAP software; Matlab software can also be used for extraction processing. Matlab has released the function to read and store nc files. The read function is ncread, and switch to the nc file storage folder. The statement is expressed as: ncread ('XXX.nc ',' var ', [i j t], [leni lenj lent]), where XXX.nc is the file name, and is the string required' '; Var is from XXX The variable name read in NC. If it is a string, '' is required; i. J and t are the starting row, column and time of the read data respectively, and leni, lenj and lent i are the length of the read data in the row, column and time dimensions respectively. In this way, this function can be used to read in any region and any time period in the study area. There are many commands about NC data in the help of Matlab, which can be viewed. WGS84 is recommended for data coordinate system.
PENG Shouzhang
The data include the night light data of Tibetan Plateau with a spatial resolution of 1km*1km, a temporal resolution of 5 years and a time coverage of 2000, 2005 and 2010.The data came from Version 4 dmsp-ols products. DMSP/OLS sensors took a unique approach to collect radiation signals generated by night lights and firelight.DMSP/OLS sensors, working at night, can detect low-intensity lights emitted by urban lights, even small-scale residential areas and traffic flows, and distinguish them from dark rural backgrounds.Therefore, DMSP/OLS nighttime light images can be used as a representation of human activities and become a good data source for human activity monitoring and research.
FANG Huajun
1. Data content: air temperature, relative humidity, precipitation, air pressure, wind speed, average total radiation, total net radiation value and daily average water vapor pressure data. 2. Data source and processing method: Observed by American campel high-altitude automatic weather station, air temperature and humidity sensor model HMP155A; wind speed and wind direction model: 05103-45; net radiometer: CNR 4 Net Radiometer four component; atmospheric pressure sensor: CS106; Rain gauge: TE525MM. The automatic weather station automatically collects data every 10 minutes, and collects daily statistical data to obtain daily average weather data. 3. Data quality description: Data is automatically acquired continuously. 4. Data application results and prospects: The weather station is located in the middle of the glacier, and the meteorological data can provide data guarantee for simulating the response of oceanic glacier changes to global climate change in the context of future climate change.
LIU Jing
The alpine region of Asia is the third pole in the world, and it is called the "Asian water tower". Affected by climate warming, glaciers continue to lose money, which has profoundly changed the supply-demand relationship of glacial water resources. In order to systematically understand the response of glaciers to climate change, the project reveals the relationship between the change of glacier material balance and climate factors through the sensitivity of glacier material balance. The data includes two maps: the sensitivity distribution map of material balance to temperature and precipitation and the climate sensitivity zoning. In the past 70 years, there have been significant differences in the evolution sequence of glacier material balance among mountain systems in the high mountain region of Asia. The glaciers in the Karakoram and West Kunlun regions have shown a stable state, and the material balance is a weak positive balance, while the Himalayas, Tianshan and Qilian Mountains have shown an accelerated trend after 1990. This is mainly due to the sensitivity of material balance to temperature and precipitation. The monthly scale material balance model is driven by 0.5 ° resolution era5 temperature and precipitation data, and the material balance calibration parameters of 43 monitored glaciers are 1 ° from 2000 to 2016 × The parameters are spatially constrained by the 1 ° aster material balance data, and the material balance sequences of 95085 glaciers in the high mountain region of Asia from 1951 to 2020 are reconstructed by using the method of extrapolation of spatial parameters. The sensitivity of glacier material balance to temperature (± 0.5K, ± 1K, ± 1.5k) and precipitation (± 10%, ± 20%, ± 30%) is analyzed, In combination with the influencing factors of glacier material balance (distribution of summer temperature, ratio of summer precipitation, distribution of glacier types, distribution of clear sky solar radiation in summer, etc.), the glacial climate sensitivity in the high mountain region of Asia is classified and divided into four categories, as shown in Fig. 4: the main control area of air temperature: the temperature is the main control factor of glacier material balance change, and precipitation occupies a secondary position; Precipitation control area: the glacier is mainly controlled by precipitation, and the temperature in the glacier area is lower than 0 ° C throughout the year; Temperature and precipitation control area of accumulated glacier in winter: refers to that the glacier is mainly supplied by precipitation in winter, and the change of material balance of the glacier is the result of the joint action of temperature and precipitation; Summer cumulative glacier temperature and precipitation control area: refers to the supply mode of glacier is summer precipitation, and the material balance of glacier is the result of the joint action of temperature and precipitation.
SHANGGUAN Donghui
The Qinghai-Tibet Engineering Corridor runs from Golmud to Lhasa. It passes through the core region of the Qinghai-Tibet Plateau and is an important passage connecting the interior and Tibet. As the primary parameter in the surface energy balance, the land surface temperature represents the degree of energy and water exchange between the earth and the atmosphere, and is widely used in the research of climatology, hydrology and ecology. The annual average surface land temperature is obtained by using the four day and night observations of Aqua and Terra. Therefore, the 8-day land surface temperature synthesis products MOD11A2 and MYD11A2 with a resolution of 1km were downloaded first, and then the data were batch projected by MRT (MODIS Reprojection Tool). Finally, the annual average MODIS land surface temperature data after 2010 was calculated by IDL.
NIU Fujun
The fractional snow cover (FSC) is the ratio of snow cover area (SCA) to unit pixel area. The data set is made by bv-blrm snow area proportional linear regression empirical model; The source data used are mod09ga 500m global daily surface reflectance products and mod09a1 500m 8-day synthetic global surface reflectance products; The production platform uses Google Earth engine; The data range is global, the data preparation time is from 2000 to 2021, the spatial resolution is 500 meters, and the temporal resolution is year by year. This set of data can provide quantitative information of snow cover distribution for regional climate simulation and hydrological models.
MA Yuan
As a huge elevated surface and atmospheric heat source in spring and summer, the Qinghai Tibet Plateau (TP) has an important impact on regional and global climate and climate. In order to explore the thermal forcing effect of TP, the sensitivity test data set of sensible heat anomaly on the Qinghai Tibet Plateau was prepared. This data includes three groups of sensitivity tests: (1) in the fully coupled model cesm1.2.0, the plateau sensible heat is stronger CGCM from March to may in spring_ lar_ mon_ 3-12-2.nc and plateau thermal sensitivity are weak (CGCM)_ sma_ mon_ 3-12-2. Sensitivity test of NC; (2) In the single general circulation model cam4.0, the sensible heat of the plateau is stronger in spring (March may)_ lar_ Mon 3-8.nc and low sensible heat cam_ sma_ Mon3-8.nc sensitivity test. Including: 3D wind, potential height, air temperature, surface temperature, specific humidity, sensible heat flux, latent heat flux, precipitation and other conventional variables Space scope: global simulation results
DUAN Anmin
The normalized difference vegetation index (NDVI) can accurately reflect the surface vegetation coverage. At present, NDVI time series data based on spot / vegetation and MODIS satellite remote sensing images have been widely used in the research of vegetation dynamic change monitoring, land use / cover change detection, macro vegetation cover classification and net primary productivity estimation at various scales. Evi is similar to the normalized difference vegetation index (NDVI) and can be used to quantify vegetation greenness. However, evi corrects for some atmospheric conditions and canopy background noise and is more sensitive in areas with dense vegetation. It contains an "L" value to adjust the canopy background, a "C" value as the atmospheric drag coefficient, and a value from the blue band (b). These enhancements allow the ratio between R and NIR values to be calculated exponentially while reducing background noise, atmospheric noise and saturation in most cases. This research work mainly focuses on post-processing NDVI and evi data, and gives a more reliable vegetation situation of the Qinghai Tibet Plateau in 2013 and 2018 through transformation of projection coordinate system, data fusion, maximum value synthesis method, elimination of outliers and clipping. The spatial resolution of the data is 0.05 °, and the temporal resolution is month.
YE Aizhong
The data set includes the observation data of river water level and velocity at No. 6 point in the dense observation of runoff in the middle reaches of Heihe River from January 1, 2014 to December 31, 2014. The observation point is located in Gaoya National Hydrological Station, zhaojiatunzhuang, Ganzhou District, Zhangye City, Gansu Province. The riverbed is sandy gravel with stable section. The longitude and latitude of the observation point are n39 ° 08'06.35 ", E100 ° 25'58.23", 1420 m above sea level, and 50 m wide river channel. Hobo pressure water level gauge is used for water level observation, with acquisition frequency of 60 minutes. Data description includes the following two parts: Water level observation, 60 minutes in unit (cm) in 2014; Data covers the period of January 1, 2014 solstice December 31, 2014; Flow observation, unit (m3); According to the monitoring flow of different water levels, the flow curve of water levels was obtained, and the change process of runoff was obtained by observing the process of water levels.The missing data are uniformly represented by the string -6999. For information of hydrometeorological network or station, please refer to Li et al.(2013), and for observation data processing, please refer to He et al.(2016).
HE Xiaobo, LIU Shaomin, LI Xin, XU Ziwei
This dataset contains the annual variation of runoff from the major hydrological stations in the Yarlung Zangbo River (annual average runoff volume, annual extremum ratio, coefficient of variation, etc.). It can be used to study the hydrological characteristics of the Yarlung Zangbo River. The original data are the national hydrological station data, and the quality requirements are the same as the national standards. Spatial Coverage: 4 hydrological stations in the main streams of the Yarlung Zangbo River basin, which are Lazi, Nugesha, Yangcun and Nuxia. This data sheet has five fields. Field 1: Station Name Field 2: Annual average runoff volume Field 3: Annual Extreme Ratio Field 4: Coefficient of variation Field 5: Data Series Length
YAO Zhijun
Solar global and direct radiation are measured by radiation sensors (Model TBQ-4-1, TBS-2, China), and temperature and humidity are measured by a HOBO weather station (Model H21, onset company, USA). This dataset is solar radiation and meteorological variables, including solar globla and direct radiation in the wavelength range of 270-3200nm, unit: w/m2. The units of temperature, humidity and water vapor pressure are ℃, %, hPa, respectively. The dataset of solar radiation and meteorological elements come from the measurements of data providers. Data coverage time is 2013-2016. The data set can be used to study the solar radiation and its change mechanism in a subtropical region, China.
BAI Jianhui
Meteorological forcing dataset for Arctic River Basins includes five elements: daily maximum, minimum and average temperature, daily precipitation and daily average wind speed. The data is in NetCDF format with a horizontal spatial resolution of 0.083°, covering Yenisy, Lena, ob, Yukon and Mackenzie catchments. The data can be used to dirve hydrolodical model (VIC model) for hydrological process simulation of the Arctic River Basins. The further quality control were made for daily observation data from Global Historical Climatology Network Daily database(GHCN-D), Global Summary of the Day (GSPD),The U.S. Historical Climatology Network (USHCN),Adjusted and homogenized Canadian climate data (AHCCD) and USSR / Russia climate data set (USSR / Russia). The thin plate spline interpolating method, which similar to the method used in PNWNAmet datasets (Werner et al., 2019), was employed to interpolate daily station data to 5min spatial resolution daily gridded forcing data using WorldClim and ClimateNA monthly climate normal data as a predictor.
ZHAO Qiudong, WU Yuwei
This data set includes 2002/04-2019/12 Greenland ice sheet mass changes derived from satellite gravimetry measurements. The satellite gravimetry data come from the joint NASA/DLR Gravity Recovery And Climate Experiment mission twin satellites (GRACE, 2002/04 to 2017/06) and its successor, GRACE Follow-On (GRACE-FO, 2018/06 to present). In order to fill the data gap between GRACE and GRACE-FO, we further utilize gravity field solutions derived from high-low GNSS tracking data of ESA's Swarm 3-satellite constellation whose primary scientific objective is geomagnetic surveying. The data set is provided in Matlab data format, the ice sheet mass changes are transformed to equivalent water height in meters, expressed on 0.25°x0.25° grid with monthly temporal resolution. This data set can be used to study the characteristics of Greenland ice sheet mass changes in recent two decades and their relation with the global climate change.
C.K. Shum
Based on GRACE Level-1b satellite gravity data, a time series of mass change over Greenland for the period 2002 to 2016, with a spatial resolution of 1 degree × 1 degree and a time resolution of one month was developed by the satellite gravity team led by Professor Shen Yunzhong from Tongji University. The reference time of this time series is the mean time span between January 2004 and December 2009. During data processing, ICE5G model was used to reduce the effect of GIA, and the contribution of GAD was added back by using AOD1B RL06 from GFZ
SHEN Yunzhong
From 1982 to 2015, the NDVI change data sets of different types of permafrost regions in the northern hemisphere have a temporal resolution of once every five years, covering the entire Arctic countries with a spatial resolution of 8km. Based on multi-source remote sensing, simulation, statistics and measured data, the regulation and service functions of Permafrost on Ecosystem in the northern hemisphere are quantified by using GIS and ecological methods, All the data are under quality control.
WANG Shijin
In recent years, the Antarctic Ice Sheet experiences substantial surface melt, and a large amount of meltwater formed on the ice surface. Observing the spatial distribution and temporal evolution of surface meltwater is a crucial task for understanding mass balance across the Antarctic Ice Sheet. This dataset provides a 30 m surface meltwater coverage, extracted from Landsat images, in the typical ablation zone of the ice sheet (Alexandria Island, Antarctic Peninsula) from 2000 to 2019. The projection of this dataset is South Polar Stereographic. The formats of the dataset are vector (.shp) and raster (.tif).
YANG Kang
Data content: national economy_ Industrial value added (monthly) (2010-2019) Data source and processing method: the original industrial economic data of China (including the third pole) from the official website of the world bank and sina.com from 2010 to 2019 are obtained through data sorting, screening and cleaning. The data start time is from 2010 to 2019 in Microsoft Excel (xlsx) format.
FU Wenxue
Data content: Foreign Economic and trade_ Total import and export of goods (1952-2019) and foreign economic and trade_ Total import and export by trade (1981-2019) Data sources and processing methods: the original data of China's foreign trade and investment from 2015 to 2019 (including the third pole) were obtained from the official website of the world bank and sina.com, and the foreign trade and investment data set of China (including the third pole) from 1952 to 2019 was obtained through data sorting, screening and cleaning. The data start time is from 1952 to 2019 in Microsoft Excel (xlsx) format.
FU Wenxue
Data content: annual GDP statistics (1990-2019), quarterly cumulative GDP statistics (1990-2019) and GDP (2010-2019) Data sources and processing methods: the original macroeconomic data of China (including the third pole) from the official website of the world bank and sina.com from 1990 to 2019 are obtained through data sorting, screening and cleaning. The data are stored in Microsoft Excel (xlsx) format.
FU Wenxue
In recent years, the melting of the Antarctic ice sheet has accelerated, and a large amount of surface melt water has appeared on the surface of the Antarctic ice sheet. Understandings of the spatial distribution and dynamics of surface melt water on the Antarctic ice sheet is of great significance for the study of the mass balance of the Antarctic ice sheet. This dataset is 2000-2020 surface melt water dataset of Antarctica Ice Sheet typical melting area (Prydz bay) based on 10-30m Landsat-7, 8 and Sentinel-2 images. The projections are polar azimuthal projections in vector format (ESRI Shapefile) and raster format (GeoTIFF) and the time is Southern Hemisphere summer (December-to-February).
YANG Kang
The surface elevation of the ice sheet is very sensitive to climate change, so the elevation change of the ice sheet is considered as an important variable to evaluate climate change. The time series of long-term ice sheet surface elevation change has become a fundamental data for understanding climate change. The longest time series of ice sheet surface elevation can be established by combining the observation records of radar satellite altimetry missions. However, the previous methods for correcting the intermission bias still have error residue when cross-calibrating different missions. Therefore,we modify the commonly used plane-fitting least-squares regression model by restricting the correction of intermission bias and the ascending–descending bias at the same time to ensure the self-consistency and coherence of surface elevation time series across different missions. Based on this method, we use Envisat and CryoSat-2 data to construct the time series of Antarctic ice sheet elevation change from 2002 to 2019. The time series is the monthly grid data, and the spatial grid resolution is 5 km×5 km. Using airborne and satellite laser altimetry data to evaluate the results, it is found that compared with the traditional method, this method can improve the accuracy of intermission bias correction by 40%. Using the merged elevation time series, combining with firn densification-modeled volume changes due to surface processes, we find that ice dynamic processes make the ice sheet along the Amundsen Sea sector the largest volume loss of the Antarctic ice sheet. The surface processes dominate the volume changes in Totten Glacier sector, Dronning Maud Land, Princess Elizabeth Land, and the Bellingshausen Sea sector. Overall, accelerated volume loss in the West Antarctic continues to outpace the gains observed in the East Antarctic. The total volume change during 2002–2019 for the AIS was −68.7 ± 8.1 km3/y, with an acceleration of −5.5 ± 0.9 km3/y2.
ZHANG Baojun, WANG Zemin, YANG Quanming, LIU Jingbin, AN Jiachun, LI Fei, GENG Hong
Population growth resilience reflects the level of resilience of population growth in the countries along the belt and road, and the higher the value, the stronger the resilience of population growth in the countries along the belt and road. The data on the resilience of population growth is prepared by referring to the World Bank's statistical database, using the year-on-year changes in the population of countries along the Belt and Road from 2000 to 2019, taking into account the year-on-year changes in each indicator, and through comprehensive diagnosis based on sensitivity and adaptability analysis. The resilience of population growth product.
XU Xinliang
Population age structure resilience reflects the level of population age structure resilience in the countries along the Belt and Road. The World Bank's statistical database was used to prepare the data on the resilience of the population age structure of the countries along the Belt and Road. Based on the sensitivity and adaptability analysis, a comprehensive diagnosis was made based on the year-on-year change of each indicator, and the product on the resilience of population age structure was prepared.
XU Xinliang
Known as the "Asian water tower", the Qinghai Tibet Plateau is the source of many rivers in Southeast Asia. As an important and easily accessible water resource, the runoff provided by it supports the production and life of billions of people around it and the diversity of the ecosystem. The glacier runoff data set in the five river source areas of the Qinghai Tibet Plateau covers the period from 2005 to 2010, with a time resolution of every five years. It covers the source areas of the five major rivers in the Qinghai Tibet Plateau (the source of the Yellow River, the source of the Yangtze River, the source of the Lancang River, the source of the Nujiang River, and the source of the Yarlung Zangbo River). The spatial resolution is 1km. Based on multi-source remote sensing, simulation, statistics, and measured data, GIS methods and ecological economics methods are used, The value of water resources service in the cryosphere in the source area of the river and river is quantified, and all its data are subject to quality control.
WANG Shijin
The data is the result of the prediction of Arctic sea ice density and sea ice coverage by the climate system model FGOALS independently developed by the project members. The correct selection of assimilation technology is an important factor for Arctic sea ice prediction. In the sea ice data assimilation technology, the singular value evolutionary interpolation Kalman filter (seik) is a relatively early but still commonly used filtering algorithm. However, due to the calculation of error covariance between all grid points, there is a false teleconnection error. Therefore, it is considered to develop a local filtering method to assimilate sea ice density and sea ice thickness. In the climate system model FGOALS, the project will initialize and process the sea ice thickness data retrieved by the European Space Agency (ESA) cryosat-2 and soil moisture and ocean salinity (SMOs) satellite remote sensing.
SONG Mirong
The data is the result of the prediction of Arctic sea ice density and sea ice coverage by the climate system model FGOALS independently developed by the project members. The correct selection of assimilation technology is an important factor for Arctic sea ice prediction. In the sea ice data assimilation technology, the singular value evolutionary interpolation Kalman filter (seik) is a relatively early but still commonly used filtering algorithm. However, due to the calculation of error covariance between all grid points, there is a false teleconnection error. Therefore, it is considered to develop a local filtering method to assimilate sea ice density and sea ice thickness. In the climate system model FGOALS, the project will initialize and process the sea ice thickness data retrieved by the European Space Agency (ESA) cryosat-2 and soil moisture and ocean salinity (SMOs) satellite remote sensing.
SONG Mirong
This data is a simulated output data set of 5km monthly hydrological data obtained by establishing the WEB-DHM distributed hydrological model of the source regions of Yangtze River and Yellow River, using temperature, precipitation and pressure as input data, and GAME-TIBET data as verification data. The dataset includes grid runoff and evaporation (if the evaporation is less than 0, it means deposition; if the runoff is less than 0, it means that the precipitation in the month is less than evaporation). This data is a model based on the WEB-DHM distributed hydrological model, and established by using temperature, and precipitation (from itp-forcing and CMA) as input data, GLASS, MODIA, AVHRR as vegetation data, and SOILGRID and FAO as soil parameters. And by the calibration and verification of runoff,soil temperature and soil humidity, the 5 km monthly grid runoff and evaporation in the source regions of Yangtze River and Yellow River from 1998 to 2017 was obtained. If asc can't open normally in arcmap, please delete the blacks space of the top 5 lines of the asc file.
WANG Lei
This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation). This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation).
WANG Lei
The data set of bacterial post-treatment products and conventional water quality parameters of some lakes in the third pole in 2015 collected the bacterial analysis results and conventional water quality parameters of some lakes in the Qinghai Tibet Plateau during 2015. Through sorting, summarizing and summarizing, the bacterial post-treatment products of some lakes in the third pole in 2015 are obtained. The data format is excel, which is convenient for users to view. The samples were collected by Mr. Ji mukan from July 1 to July 15, 2015, including 28 Lakes (bamuco, baimanamuco, bangoso (Salt Lake), Bangong Cuo, bengcuo, bieruozhao, cuo'e (Shenza), cuo'e (Naqu), dawaco, dangqiong Cuo, dangjayong Cuo, Dongcuo, eyaco, gongzhucuo, guogencuo, jiarehbu Cuo, mabongyong Cuo, Namuco, Nier CuO (Salt Lake), Norma Cuo, Peng yancuo (Salt Lake), Peng Cuo, gun Yong Cuo, Se lincuo, Wu rucuo, Wu Ma Cuo, Zha RI Nan Mu Cuo, Zha Xi CuO), a total of 138 samples. The extraction method of bacterial DNA in lake water is as follows: the lake water is filtered onto a 0.45 membrane, and then DNA is extracted by Mo bio powerOil DNA kit. The 16S rRNA gene fragment amplification primers were 515f (5'-gtgccagcmgcgcggtaa-3') and 909r (5'-ggactachvggtwtctaat-3'). The sequencing method was Illumina miseq PE250. The original data were analyzed by mothur software, including quality filtering and chimera removal. The sequence classification was based on the silva109 database. The archaeal, eukaryotic and unknown source sequences had been removed. OTU classifies with 97% similarity and then removes sequences that appear only once in the database. Conventional water quality detection parameters include dissolved oxygen, conductivity, total dissolved solids, salinity, redox potential, nonvolatile organic carbon, total nitrogen, etc. The dissolved oxygen is determined by electrode polarography; Conductivity meter is used for conductivity; Salinity is measured by a salinity meter; TDS tester is used for total dissolved solids; ORP online analyzer was used for redox potential; TOC analyzer is used for non-volatile organic carbon; The water quality parameters of total nitrogen were obtained by Spectrophotometry for reference.
YE Aizhong
NDVI reflects the background effects of plant canopy, such as soil, wet ground, snow, dead leaves, roughness, etc., and is related to vegetation cover. It is one of the important parameters to reflect the crop growth and nutrient information. According to this parameter, the N demand of crops in different seasons can be known, which is an important guide to the reasonable application of N fertilizer. Correct NDVI (C-NDVI) is the value of NDVI after excluding the influence of climate elements (temperature, precipitation, etc.) on NDVI. Taking precipitation as an example, studies on the lag effect of precipitation on vegetation growth show that the lag time of precipitation effects varies in different regions due to differences in vegetation composition and soil types. In this study, we post-processed the MODIS NDVI data and firstly correlated the NDVI value of the current month with the precipitation of the current month, the average value of the precipitation of the current month with that of the previous month, and the average value of the precipitation of the current month with that of the previous two months to determine the optimal lag time. The NDVI was regressed on precipitation and air temperature to obtain the correlation coefficients, and then the corrected NDVI values were calculated by the difference between the MODIS NDVI and the NDVI regressed on climate factors. We corrected NDVI using climate data to give reliable vegetation correction indices for the circum-Arctic Circle (range north of 66°N) and the Tibetan Plateau (range 26°N to 39.85°N and 73.45°E to 104.65°E) for 2013 and 2018. The spatial resolution of the data is 0.5 degrees and the temporal resolution is monthly values.
YE Aizhong
In recent years, with the acceleration of the melting of the Antarctic ice sheet, a large amount of ice melt has formed on the surface of the ice sheet from 2000 to 2019. It is of great significance to study the material balance of the Antarctic ice sheet to deeply understand the spatial-temporal distribution and dynamic changes of the melt water on the Antarctic ice sheet. This data set is based on Landsat7 and landsat8 images with 30 m spatial resolution from 2000 to 2019. By using normalized water body index, Gabor filtering and morphological path opening operations, the ice melt grid data set is generated, and the grid water body mask is converted into vector data in ArcGIS. This data set is based on the 250m ice surface melt water data set of the Antarctic ice sheet melting area (Alexander Island, Antarctic Peninsula) from 2000 to 2019 extracted from Landsat images. The time is concentrated from December to February (Southern Hemisphere summer)
YANG Kang
The microbial reprocessing products of polar ice and snow in typical years collected the analysis results of bacteria sampled from glaciers, Glacial Snow and ice in the polar regions and the Qinghai Tibet Plateau from 2010 to 2018. Through sorting, summarizing and summarizing, the post-processing data products of soil microorganisms in the three pole region are obtained, and the data format is excel, which is convenient for users to view. Among them, the prokaryotes of Glacial Snow and ice in the polar regions and Qinghai Tibet Plateau are the sequences of bacterial 16S ribosomal RNA gene collected by teacher Liu Yongqin's experimental group from NCBI database from 2010 to 2018. The collected sequences calculate the similarity between sequences by using dotour software. Sequences with a similarity of more than 97% are clustered into an OTU, and OTU representative sequences are defined. OTU representative sequences were compared with RDP database through "Classifier" software, and were identified to the first level when the reliability was greater than >80%; The glaciers on the Qinghai Tibet Plateau were collected from 2010 to 2018, including the bacterial 16S ribosomal RNA gene sequence of seven glaciers on the Qinghai Tibet Plateau (East Rongbu glacier on Mount Everest, Tianshan No. 1 glacier, Guliya glacier, Laohugou glacier, muzitang glacier, July 1st glacier and yuzhufeng glacier) isolated by teacher Liu Yongqin's experimental group, Malan glacier isolated by teacher Xiang Shurong and ruogangri glacier isolated by teacher Zhang Xinfang. Glacier samples were collected and brought back to the ecological Laboratory of the Institute of Qinghai Tibet Plateau Research in Beijing and the Lanzhou cryosphere National Laboratory. After coating the plate, it was cultured at different temperatures (4-25 ℃) for 20-90 days, and a single colony was picked for purification. The isolated bacteria extracted DNA, amplified 16S ribosomal RNA gene fragments with 27f/1492r primers, and sequenced with Sanger method. 16S ribosomal RNA gene sequence was compared with RDP database through "Classifier" software, and was identified to the first level when the reliability was greater than >80%.
YE Aizhong
This product provides the data set of key variables of the water cycle of Arctic rivers (North America:Mackenzie, Eurasia:Lena) from 1998 to 2017, including 7 variables: precipitation, evapotranspiration, surface runoff, underground runoff, glacier runoff, snow water equivalent and three-layer soil humidity, which are numerically simulated by the land surface model vic-cas developed by the project team. The spatial resolution of the data set is 50km and the temporal resolution is month. This data set can be used to analyze the change of water balance in the Arctic River Basin under climate change, and can also be used to compare and verify remote sensing data products and the simulations of other models.
ZHAO Qiudong, WANG Ninglian, WU Yuwei
The data set includes the observed and simulated runoff into the sea and the composition of each runoff component (total runoff, glacier runoff, snowmelt runoff, rainfall runoff) of two large rivers in the Arctic (North America: Mackenzie, Eurasia: Lena), with a time resolution of months. The data is a vic-cas model driven by the meteorological driving field data produced by the project team. The observed runoff and remote sensing snow data are used for correction. The Nash efficiency coefficient of runoff simulation is more than 0.85, and the model can also better simulate the spatial distribution and intra/inter annual changes of snow cover. The data can be used to analyze the runoff compositions and causes of long-term runoff change, and deepen the understanding of the runoff changes of Arctic rivers.
ZHAO Qiudong, WU Yuwei
This product provides the monthly runoff, evapotranspiration and soil water of major Arctic river basins in 2018-2065 based on the land surface model Vic. The spatial accuracy is 10km. Major Arctic river basins include Lena, Yenisey, ob, Kolyma, Yukon and Mackenzie basins. According to the rcp2.6 (low emission intensity) and rcp8.5 (high emission intensity) scenario results provided by the ipsl-cm5a-lr model in cmip5 in the fifth assessment report of IPCC, the future climate scenario driving data applicable to the Arctic region of 0.1 ° is obtained through statistical downscaling. Using the calibrated land surface hydrological model Vic on a global scale, based on the future climate scenario driven data of 0.1 °, the monthly time series of runoff, soil water and evapotranspiration of the Arctic River Basin in the middle of this century under future climate change are estimated.
TANG Yin , TANG Qiuhong , WANG Ninglian, WU Yuwei
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn