Current Browsing: Terrestrial Surface Remote Sensing


HiWATER: Thermal-Infrared yyperspectral radiometer(Jul. 4, 2012)

On 4 July 2012 (UTC+8), a TASI sensor boarded on the Y-12 aircraft was used to obtain the thermal-infrared hyperspectral image, which is located in the observation experimental area, Linze region and Heihe riverway. The relative flight altitude is 1000 meters. The wavelength of TASI is 8-11.5 μm with a spatial resolution of 3 meters. Through the ground sample points and atmospheric data, the data are recorded in surface radiance processed by geometric correction and atmospheric correction. Land surface temperature (LST) data was retrieved by temperature/emissivity separation algorithm.

2019-09-13

HiWATER: the albedo in the middle reaches of the Heihe River Basin (Jun. 29, 2012)

The albedo product was obtained based on the visible and near-infrared hyperspectral radiometer (29 June, 2012) which covered the artificial oasis eco-hydrology experimental area (5.5 km*5.5 km)with a 5 m spatial resolution.

2019-09-13

HiWATER: Airborne LiDAR-DEM data production in the Shenshawo desert area of the Heihe River Basin

On 19 August 2012, a Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was used to obtain the Lidar point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 2900 m with the point cloud density 1 point per square meter. Aerial LiDAR-DEM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.

2019-09-12

HiWATER: Simultaneous observation dataset of river surface temperature in the middle reaches of the Heihe River Basin on Jul. 3 and Jul. 4, 2012

The aim of the simultaneous observation of river surface temperature is obtaining the river surface temperature of different places, while the sensor of thermal infrared go into the experimental areas of artificial oases eco-hydrology on the middle stream. All the river surface temperature data will be used for validation of the retrieved river surface temperature from thermal infrared sensor and the analysis of the scale effect of the river surface temperature, and finally serve for the validation of the plausibility checks of the surface temperature product from remote sensing. 1. Observation sites and other details Ten river sections were chosen to observe surface temperature simultaneously in the midstream of Heihe River Basin on 3 July and 4 July, 2012, including Sunan Bridge, Binhe new area, Heihe Bridge, Railway Bridge, Wujiang Bridge, Gaoya Hydrologic Station, Banqiao, Pingchuan Bridge, Yi’s Village, Liu’s Bridge. Self-recording point thermometers (observed once every 6 seconds) were used in Railway Bridge and Gaoya Hydrologic Station while handheld infrared thermometers (observed once of the river section temperature for every 15 minutes) were used in other eight places. 2. Instrument parameters and calibration The field of view of the self-recording point thermometer and the handheld infrared thermometer are 10 and 1 degree, respectively. The emissivity of the latter was assumed to be 0.95. All instruments were calibrated on 6 July, 2012 using black body during observation. 3. Data storage All the observation data were stored in excel.

2019-09-12

HiWATER: Simultaneous observation dataset of land surface temperature in the middle reaches of the Heihe River Basin

The aim of the simultaneous observation of land surface temperature is obtaining the land surface temperature of different kinds of underlying surface, including greenhouse film, the roof, road, ditch, concrete floor and so on, while the sensor of thermal infrared go into the experimental areas of artificial oases eco-hydrology on the middle stream. All the land surface temperature data will be used for validation of the retrieved land surface temperature from thermal infrared sensor and the analysis of the scale effect of the land surface temperature, and finally serve for the validation of the plausibility checks of the surface temperature product from remote sensing. 1. Observation time and other details On 25 June, 2012, ditch and asphalt road surface temperatures were observed once every five minutes using handheld infrared thermometers recorded. On 26 June, 2012, ditch and asphalt road surface temperatures were observed once every five minutes using handheld infrared thermometers while greenhouse film and concrete floor surface temperatures were observed once every one second using self-recording point thermometer. On 29 June, 2012, concrete floor surface temperatures were observed continuously using handheld infrared thermometers during the sensor of TASI go into the region. At the same time, greenhouse film and concrete floor surface temperatures were observed once every one second using self-recording point thermometer. On 30 June, 2012, asphalt road, ditch, bare soil, melonry and ridge of field surface temperatures were observed continuously using handheld infrared thermometers during the sensor of TASI go into the region. At the same time, greenhouse film and concrete floor surface temperatures were observed once every one second using self-recording point thermometer. On 10 July, 2012, asphalt road, ditch, bare soil, melonry and ridge of field surface temperatures were observed once every one minute using handheld infrared thermometers during the sensor of TASI go into the region. At the same time, concrete floor surface temperatures were observed once every six second using self-recording point thermometer. On 26 July, 2012, asphalt road, concrete floor, bare soil and melonry surface temperatures were observed once every one minute using handheld infrared thermometers during the sensor of WiDAS go into the region. At the same time, greenhouse film and concrete floor surface temperatures were observed once every six second using self-recording point thermometer. On 2 August, 2012, corn field and concrete floor surface temperatures were observed using handheld infrared thermometers. At the same time, greenhouse film and concrete floor surface temperatures were observed once every six second using self-recording point thermometer. For corn field, twelve sites were selected according to the flight strip of the WiDAS sensor, and for each site one plot surface temperatures were recorded continuously during the sensor of WiDAS go into the region. On 3 August, 2012, corn field and concrete floor surface temperatures were observed using handheld infrared thermometers. At the same time, greenhouse film and concrete floor surface temperatures were observed once every six second using self-recording point thermometer. For corn field, fourteen sites were selected according to the flight strip of the WiDAS sensor, and for each site three plots surface temperatures were recorded continuously during the sensor of WiDAS go into the region. 2. Instrument parameters and calibration The field of view of the self-recording point thermometer and the handheld infrared thermometer are 10 and 1 degree, respectively. The emissivity of the latter was assumed to be 0.95. The observation heights of the self-recording point thermometer for the greenhouse film and the concrete floor were 0.5 m and 1 m, respectively. All instruments were calibrated three times (on 6 July, 5 August and 20 September, 2012) using black body during observation. 3. Data storage All the observation data were stored in excel.

2019-09-12

HiWATER: ASTER dataset

This dataset includes 12 scenes, covering the artificial oasis eco-hydrology experimental area of the Heihe River Basin, which were acquired on (yy-mm-dd) 2012-05-30, 2012-06-15, 2012-06-24, 2012-07-10, 2012-08-02, 2012-08-11, 2012-08-18, 2012-08-27, 2012-09-03, 2012-09-12, 2012-09-19, 2012-09-28. The data were all acquired around 12:00 (BJT) at Level 1A, i.e., without atmospheric and geometric correction. ASTER dataset was purchased from Japan Aerospace Exploration Agency (JAXA).

2019-09-11

WATER: Dataset of ground truth measurements for snow synchronizing with MODIS in the Binggou watershed foci experimental area on Mar. 14, 2008

The dataset of ground truth measurements for snow synchronizing with MODIS was obtained in the Binggou watershed foci experimental area on Mar. 14, 2008. Those provide reliable data for snow-cover extent mapping and the retrieval of the snow surface temperature from MODIS remote sensing approaches. Observation items included: (1) Snow parameters including the snow surface temperature, the snow-soil interface temperature, the land surface (ground surface) temperature by the handheld infrared thermometer, the snow layer temperature by the probe thermometer, snow depth by the ruler, snow density by the snow shovel, the snow grain size by the handheld microscope and the snow surface temperature synchronizing with MODIS. (2) Snow albedo by the total radiometer in BG-A from 11:10-13:24 on Mar. 14, 2008. (3) The snow spectrum by the portable ASD (Xinjiang Meteorological Administration) synchronizing with MODIS in BG-A and BG-I. Two files including raw data and the preprocessed data were archived.

2019-05-23

WATER: Dataset of fresh snow properties observations at the temporary sampling plot in Qilian, in the Binggou watershed foci experimental area on Mar. 20, 2008

The dataset of fresh snow properties observations was obtained at the temporary sampling plot in the Qilian county on Mar. 20, 2008. Those provide reliable data for retrieval of snow parameters from remote sensing approaches. Observation items included: (1) Snow parameters such as snow depth, snow grain size by the handheld microscope, and snow density by the snow shovel (2) Fresh snow albedo by the total radiometer (3) Fresh snow spectrum by ASD Two files including raw data and preprocessed data were archived.

2019-05-23

HiWATER: Airborne LiDAR-DSM point cloud data in Hulugou Catchment

On 25 July 2012, a Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was used to obtain the point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 5500 m with the point cloud density 1 points per square meter. Aerial LiDAR- DSM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.

2019-05-23

WATER: Dataset of ground truth measurement synchronizing with the airborne microwave radiometers (L&K bands) mission in the Biandukou foci experimental area on Jul. 4, 2008

The dataset of ground truth measurement synchronizing with the airborne microwave radiometers (L&K bands) mission was obtained in the Biandukou foci experimental area on Jul. 4, 2008. Observation items included: (1) the soil temperature by the handheld infrared thermometer from L1 to L8 (1km from one another) in Biandukou and soil moisture by ML2X; nine samples were collected every 200 m along each line (1.6km). (2) 5 quadrates (50cm×50cm) investigations including GPS, the vegetation cover types and the height, the actual numbering, the valve bag numbering, wet weight+the refuse bag (g), dry weight+the envelope (g), the envelope (g) and the photo numbering. The data were archived as Excel files.

2019-05-23