Current Browsing: Terrestrial Surface Remote Sensing


HiWATER: Land cover map in the core experimental area of flux observation matrix

The dataset contains vegetation type in the middle reaches of the Heihe River Basin, which was used to validate products from remote sensing. It was generated from investigating the land cover strips of CASI during 2012. Instruments: High-precision handheld GPS (2-3 m) and digital camera were used as main tools in the survey. Measurement method: Hierarchical classification is applied based on CASI data. According to various land types, pixel classifications is used for forest, grassland, bare land and building lands; in-situ observations and investigations are used for different crops. Dataset contains: land types, including maize, leek, poplar trees, cauliflower, bell pepper, potatoes, endive sprout, orchard, watermelon, kidney bean, pear orchard, shadow, and non-vegetation, except for 14 others which are not classified. Observation site: core experimental areas with 5*5 matrix structure in the middle reaches of the Heihe river basin Date: From 25 June in 2012 (UTC+8) on.

2019-09-15

HiWATER: Thermal-Infrared hyperspectral radiometer (30th, June, 2012)

On 30 June 2012 (UTC+8), TASI sensor carried by the Harbin Y-12 aircraft was used in a visible near Infrared hyperspectral airborne remote sensing experiment, which is located in the observation experimental area (30×30 km), Linze region and Heihe riverway. The relative flight altitude is 2500 meters. The wavelength of TASI is 8-11.5 μm with a spatial resolution of 3 meters. Through the ground sample points and atmospheric data, the data are recorded in surface radiance processed by geometric correction and atmospheric correction. Land surface temperature (LST) data was retrieved by temperature/emissivity separation algorithm.

2019-09-15

HiWATER: Airborne LiDAR-DEM data production in Tianlaochi catchment

On 25 July 2012, a Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was used to obtain the point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 4800 m with the point cloud density 1 points per square meter. Aerial LiDAR-DEM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.

2019-09-15

HiWATER: Vegetation Height product in the middle of the Heihe River Basin on July. 19, 2012

In July 19, 2012 (UTC+8), the airborne LIDAR data is acquired in the foci area in the Heihe,middle reaches, which can provide high spatial resolution (m) and high precision (20 cm) of the surface elevation information. Based on airborne LIDAR data processing, the land surface DEM, DSM and point cloud density map were generated. By subtracting DSM and DEM directly, a Vegetation height product in the middle reaches of the Heihe River Basin was obtained. The product overall accuracy is 88%.

2019-09-15

HiWATER: 2m DEM data production in Dayekou watershed

Trough the select tasking, we obtained the WorldView-2 stereo image data in Dayekou Basin production in mid-May 2012. In the same year from July to August, 27 GPS ground control points (GCP) and checkpoints were measured based on the watershed differential GPS control network. Based on the full-field GCPs, the rational polynomial coefficients (RPC) files of WorldView-2 images were corrected in the digital photogrammetry software system. In the stereo model, 60 high-precision tie points evenly distributed were got through image matching technology, and the 1-m and 2-m resolution digital elevation model (DEM) were rapid extracted. Moreover, the DEM was edited in some key areas, such as the shady forest coverage and Dayekou reservoir. The terrain feature points and line data were added to improve the accuracy of the results in large variation of terrain feature. Check points were composed of GPS points and model confidential points, which used for quantitative validation. And they root mean square errors RMSE were 1.9 meters and 1.2 meters respectively, which achieve the requirements of two degree accuracy of 2.0 m at a scale of 1:2000 in high mountains.

2019-09-15

HiWATER: Airborne LiDAR-DSM data production in Tianlaochi catchment on July. 25, 2012

On 25 July 2012, a Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was used to obtain the point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 4800 m with the point cloud density 1 points per square meter. Aerial LiDAR- DSM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.

2019-09-15

HiWATER: Airborne LiDAR-DEM data production in Hulugou Catchment on July. 25, 2012

On 25 July 2012, a Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was used to obtain the point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 5500 m with the point cloud density 1 points per square meter. Aerial LiDAR-DEM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.

2019-09-15

HiWATER: Airborne LiDAR-DEM data production in the middle reaches of the Heihe River Basin on July. 19, 2012

On 19 July 2012 (UTC+8), Leica ALS70 airborne laser scanner carried by the Harbin Y-12 aircraft was used in a LiDAR airborne optical remote sensing experiment. The relative flight altitude is 1500 m (the elevation of 2700 m). Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm with the point cloud density 4 points per square meter. Based on the original Airborne LiDAR-DEM data production were obtained through parameter calibration, automatic classification of point cloud density and manual editing.

2019-09-15

HiWATER: Airborne LiDAR-DEM data production in the sample strip in the upper of Heihe River Basin on Aug. 25, 2012

On 25 August 2012, Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was utilized to obtain point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 5200 m with the point cloud density 1 point per square meter. Aerial LiDAR-DEM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.

2019-09-14

WATER: Dataset of ground truth measurements for snow synchronizing with the airborne PHI mission in the Binggou watershed foci experimental area (Mar. 24, 2008)

The dataset of ground truth measurements for snow synchronizing with the airborne PHI mission was obtained in the Binggou watershed foci experimental area on Mar. 24, 2008. Observation items included: (1) Snow density, snow complex permittivity, snow volumetric moisture and snow gravimetric moisture by the Snowfork in BG-A. (2) Snow parameters as the snow surface temperature by the handheld infrared thermometer, the snow layer temperature by the probe thermometer, the snow grain size by the handheld microscope, and snow density by the aluminum case in BG-A1, BG-A2, BG-B, BG-D, BG-E and BG-F5 (three sampling units each) from 11:11-12:35 (BJT) with the airplane overpass. 64 points were selected by four groups. (3) Snow albedo by the total radiometer in BG-A. (4) The snow spectrum by ASD (Xinjiang Meteorological Administration) in BG-A11 Two files including raw data and preprocessed data were archived.

2019-09-14