Current Browsing: Human-nature Relationship

Change of management system of water resources

Based on the historical documents, the changes of water resources management organization and management system in Heihe River Basin are sorted out. In this paper, the historical records of water resource management institutions, official positions and their positions, water resource management laws and regulations, and water affairs contradictions in the Heihe River Basin since the Western Han Dynasty are reviewed. From the Western Han Dynasty to the 1950s.


Validation dataset of ecological model in the Heihe River Basin (2018)

This data set is collected according to the output results of tesim ecological process model, including biomass, plant N and P content, evapotranspiration, NPP and other model output results. Some of the results are obtained by field measurement, some by laboratory analysis of field samples, some by literature.


Landscape structure changes dataset of the terminal lakes and wetlands of the China's Heihe River Basin in the recent 50 years

Taking Landsat series data as the main data source, including KH in 1965 (only including Gurinai and Guaizi Lake), MSS in 1975, TM in 1990, 1995, 2006 and 2010, and ETM in 2000. Before information extraction, remote sensing images are preprocessed by image synthesis, mosaic, fusion, geometric correction and image enhancement. In the process of correction, ETM + image in 2000 is corrected by 1:100000 topographic map and used as reference image. The 4, 3 and 2 band standard pseudocolor synthesis scheme is selected for image synthesis; during correction, 7 × 8 control points are evenly selected on each image, and the average positioning error is less than 1 pixel, that is, the ground distance is less than 30m. In other years, the datum image of 2000 is used as the reference image for image registration, so that the pixels with the same name on different images have the same geographical coordinates. After correction and registration, the whole image maintains the 30 m spatial resolution of TM. Through field correction, the accuracy of qualitative analysis can be ensured to be over 95%.


Landuse/landcover data of the Heihe River Basin in 2000

The Landuse/Landcover data of the Heihe River Basin in 2000 ( newly compiled in 2012), was finished by the Remote Sensing Laboratory of Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, using satellite remote sensing, based on the LandsaTM and ETM remote sensing data around 2000, combing field investigation and verification, thus leading to the establishment of the Heihe River Basin 1:10. 10,000 land use/land cover imagery and vector database. The main contents are: 1:100,000 land use graphic data and attribute data in the Heihe River Basin. The Heihe River Basin 1:100,000 (2011) land cover data and the previous land cover data use the same layered land cover classification system, the whole basin is divided into six first-class categories (cultivated land, woodland, grassland, waters, urban and rural residents, industrial and mining land and unused land), 25 secondary classes; data types are vector polygons, stored as Shape format. Land cover classification attributes: Primary type, secondary type, attribute coding, spatial distribution position Cultivated land: Plain dry land, 123, is mainly distributed in basin, Piedmont zone, river alluvial, diluvial plain or lacustrine plain (lack of water, irrigation condition is poor). Hilly dry land, 122, is mainly distributed in Hilly areas. Generally speaking, land blocks distribute on gentle slopes, ridges and mats of hills. Mountainous dry land, 121, is mainly distributed in mountainous areas, with the elevation below 4000 meters (gentle slope, mountainside, steep slope platform, etc.) and the Piedmont zones. Woodland: There is woodland (arbor), 21, is mainly distributed in the mountains (below 4000 meters ) or on the slopes of the mountains, valleys, hills, plains and so on. Shrub land, 22, is mainly distributed in higher mountain areas (below 4500 meters), most of which distribute in hillsides, valleys and sandy land. Sparse forest land, 23, is mainly distributed in the mountains, hills, plains and sandy land, and on the edge of the Gobi (loam, gravel). Other woodlands, 24, are mainly distributed in the oasis field, around rivers, roadsides and rural settlements. Grassland: Highly covered grassland, 31, is mainly distributed in mountainous areas (slow slopes), hills (steep slopes) and inter-river beaches, Gobi, sand dunes, etc.  Mid-covered grassland, 32, is mainly distributed in relatively dry areas (Gobi, low-lying land and sandy land,sand dunes, etc.). The low-cover grassland, 33, grows mainly in drier areas (on the loess hills and on the edge of the sand). Waters: Channel, 41 is mainly distributed in plains, inter-river cultivated land and inter-mountain valleys. Lake, 42, is mainly distributed in low-lying areas. Reservoir pit, 43, is mainly distributed in plains and valleys between rivers, surrounded by residential areas and cultivated land. Glacier and permanent snow cover, 44, mainly distribute at the top of (over 4000) alpine regions. Flood land, 46, is mainly distributed in the high and low hillside gullies, the piedmont, the plain lowlands, and the edge of the river and lake basins. Residents land: Urban land, 51, is mainly distributed in plains, mountain basins, slopes and valleys. Rural residential land, 52, are mainly distributed in oases, cultivated land and roadsides, on the tablelands and the slopes. Industrial land and traffic land, 53, are generally distributed in the periphery of towns, areas with fairly developed transportation and industrial mining areas. Unutilized land: Sandy land, 61, is mostly distributed in the basin, on both sides of the river, in the river bay and on the periphery of the Piedmont and Gobi. Gobi, 62, is mainly distributed in the Piedmont belt with strong wind erosion and sediment transport. Saline and alkaline land, 63, is mainly distributed in dry lakes, lakeside and areas relatively low with easy water accumulation. Swamp, 64, is mainly distributed in relatively low areas with easy water accumulation. Bare soil, 65, is mainly distributed in arid areas (steep hillsides, hills and gobi), with vegetation coverage less than 5%. Bare rock, 66, is mainly distributed in extremely arid rocky mountainous areas (windy and rainless). The other, 67 mainly distributes in bare rocks formed by freezing and thawing above 4000 meters, also known as alpine tundra.


WATER: Annual report of the Zhangye water conservancy bureau (2008-2009)

The annual report (2008 and 2009) of the Zhangye water conservancy bureau included: (1) the water management staff statistics; (2) irrigation statistics; (3) projects status statistics; (4) project management statistics; (5) the technical and economic index of the irrigation area management; (6) water management tasks status statistics; (7) water management planning index. Those provide reliable information for water resources analysis in the middle stream.


Dataset of wild animal distribution investigation in Three River Source National Park (2017)

The data set was obtained from the background survey of wildlife diversity in Three River Source National Park by Northwest Institute of Plateau Biology, Chinese Academy of Sciences. The time range of the data set is 2017, and the survey area is Three River Source National Park. The survey species include a variety of rare wildlife such as Equus kiang, Canis lupus, Vulpes vulpes, Cervus elaphus, Accipiter nisus, Phoenicurus erythrogastrus, Prionailurus bengalensis, Buteo hemilasius, Procapra picticaudata, Tetraogallus tibetanus, Perdix hodgsoniae, Falco cherrug, etc.