Current Browsing: 2013


HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Shenshawo desert Station, 2013)

This dataset contains the flux measurements from the Shenshawo desert station eddy covariance system (EC) in the middle reaches of the Heihe hydrometeorological observation network from 15 September, 2012, to 31 December, 2013. The site (100.493° E, 38.789° N) was located in the desert surface, near Zhangye city in Gansu Province. The elevation is 1594 m. The EC was installed at a height of 4.6 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.15 m. The raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), as proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened using a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The 10 Hz data were missing during 8 December to 22 December, 2012, and data in this period were replaced with 30 min flux output by data logger. Data during 25 May to 29 May, 2013 were missing due to calibration of CO2/H2O gas analyzer. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

2019-09-15

The parameters data of radar inversion in Tianlaochi Catchment in Qilian Mountain (2013)

Leaf area index (LAI), as a structural parameter of vegetation canopy, is an important input parameter for many inversion models such as energy and biomass inversion model. Firstly, vegetation points and ground points are separated in Terrasolid software. Then the transmittance of laser points is calculated, and the transmittance is the proportion of ground points to all points. After laser pulse hits the canopy, some energy passes through the voids between branches and leaves and continues to move forward until the energy is blocked, so some laser points will finally reach the ground. In this study, the ratio of the energy passing through the avoids to the energy of the canopy is used as the Laser Penetration Index (LPI). The LPI of each sample point at each scale in the study area was calculated.

2019-09-14

HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Huazhaizi desert Station, 2013)

This dataset contains the flux measurements from the Huazhaizi desert station eddy covariance system (EC) in the middle reaches of the Heihe hydrometeorological observation network from 24 September, 2012, to 31 December, 2013. The site (100.319° E, 38.765° N) was located in the desert steppe surface, near Zhangye city in Gansu Province. The elevation is 1731 m. The EC was installed at a height of 2.85 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.15 m. The raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), as proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened using a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The 10 Hz data were missing during 8 December to 22 December, 2012, and data in this period were replaced with 30 min flux output by data logger. Due to the malfunction of data logger in July, the 10 Hz data were missing, and data during this period were replaced by the 30 min data logger output data. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

2019-09-14

HiWATER: Dataset of hydrometeorological observation network (automatic weather station of Huangcaogou station, 2013)

This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Huangcaogou station between 7 June, 2013, and 31 December, 2013. The site (100.731° E, 38.003° N) was located on a cold grassland surface in the Huangcaogou village, E’bao town, Qilian County, Qinghai Province. The elevation is 3137 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45D; 5 m, north), wind speed and direction profile (03001; 10 m, north), air pressure (CS100; in the tamper box on the ground), rain gauge (TE525M; 10 m), four-component radiometer (CNR1; 6 m, south), two infrared temperature sensors (IRTC3; 6 m, south, vertically downward), soil heat flux (HFT3; 3 duplicates, -0.06 m), soil temperature profile (AV-10T; 0, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and soil moisture profile (ECh2o-5; -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), and soil moisture (Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The data of wind direction were missing during 12 June, 2013 and 24 September, 2013. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

2019-09-14

HiWATER: Dataset of hydrometeorological observation network (large aperture scintillometer of Sidaoqiao Superstation, 2013)

This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Sidaoqiao Superstation (two sites) in the hydrometeorological observation network of Heihe River Basin. There were two types of LASs at site 1: German BLS900 and Netherlands Kipp&zonen. The north tower was set up with the BLS900/Kipp&zonen receiver, and the south tower was equipped with the BLS900/Kipp&zonen transmitter. The observation period of BLS900_1 and Kipp&zonen were from 11 July to 13 November, 2013, and 11 July to 12 September, 2013, respectively. There was one type of LAS at site 2: German BLS900. The north tower was set up with the BLS900 receiver, and the south tower was equipped with the BLS900 transmitter. BLS900_2 has been in use since 16 September, 2013. The Sidaoqiao Superstation (site1, north: 101.147° E, 42.005° N, south: 101.131° E, 41.987° N; site 2, north: 101.137° E, 42.008° N, south: 101.121° E, 41.990° N) was located in Ejinaqi, Inner Mongolia. The underlying surfaces between the two towers were tamarisk, populus, bare land and farmland. The elevation is 873 m. The effective height of the LASs was 25.5 m, and the path length of site 1 and site 2 were 2390 m and 2380 m, respectively. The data were sampled at 5 Hz and 1 Hz intervals for BLS900 and zzlas, respectively, and then averaged over 1 min. The raw data acquired at 1 min intervals were processed and quality controlled. The data were subsequently averaged over 30 min periods, in which sensible heat flux was iteratively calculated by combining Cn2 with meteorological data according to the Monin-Obukhov similarity theory. The main quality control steps were as follows: (1) The data were rejected when Cn2 exceeded the saturated criterion (BLS900_1: Cn2>7.25E-14, Kipp&zonen: Cn2>7.84E-14, BLS900_2: Cn2>7.33E-14). (2) The data were rejected when the demodulation signal was small (BLS900: Average X Intensity<1000; Kipp&zonen: Demod>-20mv). (3) The data were rejected when collected during precipitation. (4) The data were rejected if collected at night when weak turbulence occurred (u* was less than 0.1 m/s). In the iteration process, the universal functions of Thiermann and Grassl, 1992 and Andreas, 1988 were selected for BLS900 and Kipp&zonen, respectively. Several instructions were included with the released data. (1) The data of site 1 were primarily obtained from BLS900_1 measurements, and missing flux measurements from the BLS900_1 instrument were substituted with measurements from the Kipp&zonen instrument. The missing data were denoted by -6999. The data of site 2 were obtained from BLS900_2 measurements, missing data were denoted by -6999. Due to the problems of BLS900_1 transmitter, the data after 13 November, 2013, were not collected. (2) The dataset contained the following variables: data/time (yyyy-m-d h:mm), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). In this dataset, a time of 0:30 corresponds to the average data for the period between 0:00 and 0:30, and the data were stored in *.xls format. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

2019-09-14

HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Populus forest station, 2013)

This dataset contains the flux measurements from the Populus forest station eddy covariance system (EC) in the lower reaches of the Heihe hydrometeorological observation network from 12 July to 31 December, 2013. The site (101.124° E, 41.993° N) was located in the Populus surface, Ejin Banner in Inner Mongolia. The elevation is 876 m. The EC was installed at a height of 22 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.17 m. The raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), as proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened using a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.2 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Due to the CF card storage problem, data during 17 September to 9 December were replaced with the 30 min output flux data in the data logger. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

2019-09-14

HiWATER: Dataset of hydrometeorological observation network (No.1 runoff observation system of 213 bridge on the Heihe River, 2013)

The No. 1 hydrological section is located at 213 Heihe River Bridge (100.345° E, 38.912° N, 1546 m) in the midstream of the Heihe River Basin, Zhangye city, Gansu Province. The dataset contains observations recorded by the No.1 hydrological section from 13 June, 2012, to 6 September, 2013. This section consists of two river sections, i.e., the east section,which is denoted as No. 1 and the west section, which is denoted as No. 2. The width of this section is 330 meters and consists of a gravel bed; the cross-sectional area is unstable because of human factors. The water level was measured using an SR50 ultrasonic range and the discharge was measured using cross-section reconnaissance by the StreamPro ADCP. The dataset includes the following parameters: water level (recorded every 30 minutes) and discharge. The missing and incorrect (outside the normal range) data were replaced with -6999. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), He et al. (2016) (for data processing) in the Citation section.

2019-09-14

HiWATER: Dataset of hydrometeorological observation network (automatic weather station of Jingyangling station, 2013)

This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Jingyangling station between 15 August, 2013, and 31 December, 2013. The site (101.116° E, 37.838° N) was located on a cold meadow surface in the Jingyangling, Qilian County, Qinghai Province. The elevation is 3750 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45AC; 5 m, north), wind speed and direction profile (034B; 10 m, north), air pressure (CS100; in the tamper box on the ground), rain gauge (TE525M; 10 m), four-component radiometer (CNR1; 6 m, south), two infrared temperature sensors (SI-111; 6 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (109-L; 0, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and soil moisture profile (CS616; -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), and soil moisture (Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The radiation data were missing because of wiring problem. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

2019-09-14

HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of mixed forest station, 2013)

This dataset contains the flux measurements from the mixed forest station eddy covariance system (EC) in the lower reaches of the Heihe hydrometeorological observation network from 12 July to 31 December, 2013. The site (101.134° E, 41.990° N) was located in the Populus and Tamarix surface, Ejin Banner in Inner Mongolia. The elevation is 874 m. The EC was installed at a height of 22 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.17 m. The raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), as proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened using a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.2 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Due to the malfunction of sonic anemometer, data during 16 August to 17 September were missing. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

2019-09-14

HiWATER: Dataset of hydrometeorological observation network (automatic weather station of Zhangye wetland station, 2013)

This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Daman Superstation between 22 September, 2012, and 31 December, 2013. The site (100.4464° E, 38.9751° N) was located on a wetland (reed surface) in Zhangye National Wetland Park, Gansu Province. The elevation is 1460 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45AC; 5 and 10 m, north), wind speed profile (03002; 5 and 10 m, north), wind direction profile (03002; 10 m, north), air pressure (CS100; 2 m), rain gauge (TE525M; 10 m), four-component radiometer (CNR1; 6 m, south), two infrared temperature sensors (SI-111; 6 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (109ss-L; 0, -0.02, -0.04, -0.1, -0.2 and -0.4 m), and four photosynthetically active radiation (PQS-1; install on 28 July, 2013, two above the plants, 6 m, south, one vertically downward and one vertically upward; two below the plants, 0.25 m, south, one vertically downward and one vertically upward). The observations included the following: air temperature and humidity (Ta_5 m and Ta_10 m; RH_5 m and RH_10 m) (℃ and %, respectively), wind speed (Ws_5 m and Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm and Ts_40 cm) (℃), on the plants photosynthetically active radiation of upward and downward (PAR_U_up and PAR_U_down) (μmol/ (s m^-2)), and below the plants photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m^-2)). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Data were missing during 10 May, 2013 and 30 May, 2013 because of datalogger malfunction; the wind speed data were missing during 1 September, 2013 and 5 September, 2013 because of sensor malfunction. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

2019-09-14