Location of automatic weather station: longitude and latitude 38.43n, 99.93e, altitude 3100m. The observation time is from May 9, 2013 to September 3, 2013, the parameter scale is hourly scale, and the data is recorded in 10min. The observation parameters include average wind speed (M / s), maximum wind speed (M / s), 40-60cm soil moisture, 0-20 soil moisture, 20-40 soil moisture, air pressure, par, air temperature, relative humidity, solar radiation, total precipitation, 20-40 soil temperature, 0-20 soil temperature, 40-60 soil temperature.
2020-03-10
This data is soil evapotranspiration data of subalpine grassland in tianlaochi small watershed of Qilian Mountain. Lysimeter was used to observe soil evapotranspiration and provide basic data for the development of watershed evapotranspiration model. Six repeated experiments were conducted to observe the soil evapotranspiration of subalpine grassland during the whole growing season. At 8:00 and 20:00 every day, use an electronic scale with an accuracy of 1G to weigh the inner barrel. In case of rainfall, observe whether there is leakage in the leakage barrel. If there is leakage, measure the leakage water in the leakage barrel at the same time. Observation instrument: 1) standard 20 cm diameter rain gauge. 2) Lysimeter was made by ourselves (diameter 30.5cm, barrel height 28.5). 3) Electronic balance (accuracy 1g) is used to observe the weight change of lysimeter.
2020-03-10
It is of great significance to carry out the quantitative study on the evapotranspiration of forest vegetation in Qilian Mountain, to correctly understand the hydrological function of the forest ecosystem in Qilian Mountain, to understand the water cycle process and to develop the hydrological model of the watershed, and to make a reasonable forest management plan. Forest evapotranspiration is mainly composed of soil surface evaporation, vegetation transpiration and canopy interception water evaporation. Traditional evapotranspiration research methods can be divided into two categories: actual measurement and estimation. The actual measurement methods include hydrology method, micro meteorology method and plant physiology method; the estimation method is to calculate Evapotranspiration by model, mainly including analysis model and empirical model. However, none of these methods can effectively distinguish forest transpiration from evaporation. The trunk liquid flow method can effectively calculate the transpiration of forest land by measuring the transpiration water consumption of trees. The trunk liquid flow method can effectively calculate the transpiration of forest land by measuring the transpiration water consumption of trees. The transpiration water consumption of Picea crassifolia forest was measured by thermal pulse technique, and the scale was extended to the stand scale to indicate the transpiration water consumption of Picea crassifolia forest.
2020-03-10
As determined in mid-august 2013, planting species: bubbly spines (different habitats are mid-range intermountain lowland and gobi), red sand (different habitats are mid-range gobi and downstream gobi). Using the brother company of LI - 6400 Portable Photosynthesis System (Portable Photosynthesis System, LI - COR, USA) and LI - 3100 leaf area meter, etc., to the desert plant photosynthetic physiological characteristics were observed. The symbolic meaning of the observed data is as follows: Obs,observation frequency ; Photo ,net photosynthetic rate,μmol CO2•m–2•s–1; Cond stomatal conductance,mol H2O•m–2•s–1 ; Ci, Intercellular CO2 concentration, μmol CO2•mol-1; Trmmol,transpiration rate,mmol H2O•m–2•s–1; Vpdl,Vapor pressure deficit,kPa; Area,leaf area,cm2; Tair,free air temperature ,℃; Tleaf,Leaf temperature,℃; CO2R,Reference chamber CO2 concentration,μmol CO2•mol-1; CO2S,Sample chamber CO2 concentration,μmol CO2•mol-1; H2OR,Reference chamber moisture,mmol H2O•mol-1; H2OS,Sample chamber moisture,mmol H2O•mol-1; PARo,photon flux density,μmol•m–2•s–1; RH-R,Reference room air relative humidity,%; RH-S,Relative humidity of air in sample room,%; PARi,Photosynthetic effective radiation,μmol•m–2•s–1; Press,barometric pressure,kPa; Others are the state parameters of the instrument at the time of measurement.
2020-03-10
1. Data overview The data set of the base camp integrated environmental observation system is a set of ENVIS (IMKO, Germany) which was installed at the base camp observation point by qilian station.It is stored automatically by ENVIS data mining system. 2. Data content This data set is the daily scale data from January 1, 2013 to December 31, 2013.Including air temperature 1.5m, humidity 1.5m, air temperature 2.5m, humidity 2.5m, soil moisture 0cm, precipitation, wind speed 1.5m, wind speed 2.5m, wind direction 1.5m, geothermal flux 5cm, total radiation, surface temperature, ground temperature 20cm, ground temperature 40cm, ground temperature 60cm, ground temperature 80cm, ground temperature 120cm, ground temperature 160cm, CO2, air pressure. 3. Space and time scope Geographical coordinates: longitude: 99° 53’e;Latitude: 38°16 'N;Height: 2980.2 m
2020-03-10
The data set is the physiological and ecological parameters of the dominant species of each ecosystem in Heihe River Basin. According to the requirements of tesim model, the data set divides Heihe River basin into seven ecosystems: deciduous broad-leaved forest ecosystem (BRD), evergreen coniferous forest ecosystem (CNF), agricultural field ecosystem (CRP), desert ecosystem (DST), meadow grassland ecosystem (MDS) Shrubbery ecosystem (SHB) and grassland ecosystem (STP). Some of the data in this data set are based on the measured data, some are obtained by reference documents, but after verification, they are applied to the Heihe River Basin. For the data in this data, each parameter of each ecosystem has three values, which are the value in the model, the minimum value and the maximum value of this parameter. The data can provide input parameters for the ecological process model, and the data set is still in further optimization.
2020-03-06
The dataset investigated the growth status of plants and leaf morphological indexes of single and conjoined red sand and pearl in the middle and lower reaches of heihe river basin in 2013. The growth indexes were crown width, plant height, and biomass of fine roots and thick roots.Leaf shape indicators are: length, width, thickness, and leaf area, volume, etc.The experimental observation indexes are: leaf nitrogen content, water potential, gas exchange data, chlorophyll fluorescence data. Data include: field observation data and explanatory documents.
2020-03-05
"Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. The topographic map of Heihe River Basin is one of the basic geographic part of the atlas, with a scale of 1:2500000, positive axis isometric conic projection, and a shading map made of 90m SRTM DEM data. Data source: 90 m SRTM DEM, 1 million administrative data of Heihe River Basin in 2008, road distribution data of Heihe River Basin in 2010, residential area distribution data in 2009, and 100000 River distribution data in 2009.
2020-03-05
The data include different observation data of Sunan, Gansu Province: 1) The soil properties of grassland under different management measures, soil compactness, water permeability and soil moisture content of 4-5 grazing intensity grassland; 2) The observation data of soil compactness, permeability and water content of different grazing management measures; 3) Correlation analysis data of grassland community characteristic productivity and soil moisture; 4) Correlation analysis data of height, coverage, biomass, flower shape, tiller and leaf characters of main plants with soil water content;
2020-02-20
The No. 6 hydrological section is located at Gaoya Hydrological Station (100.433° E, 39.135° N, 1420 m a.s.l.) in the midstream of the Heihe River Basin, Zhangye city, Gansu Province. This hydrological section is for intercomparison of flow measurement between ADCP and manual method. The dataset contains recorded by the No. 6 hydrological section from 10 August, 2012 to 31 December, 2013. The width of this section is 58 meters. The water level was measured using an HOBO pressure range and the discharge was measured using cross-section reconnaissance by the StreamPro ADCP. The dataset includes the following parameters: water level (recorded every 30 minutes) and discharge. The missing and incorrect (outside the normal range) data were replaced with -6999. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), He et al. (2016) (for data processing) in the Citation section.
2019-09-15
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn