Current Browsing: 2013


Surface DEM for typical glaciers on the Tibetan Plateau (Version 1.0) (2003)

The DEMs of the typical glaciers on the Tibetan Plateau were provided by the bistatic InSAR method. The data were collected on November 21, 2013. It covered Puruogangri and west Qilian Mountains with a spatial resolution of 10 meters, and an elevation accuracy of 0.8 m which met the requirements of national 1:10 000 topographic mapping. Considering the characteristics of the bistatic InSAR in terms of imaging geometry and phase unwrapping, based on the TanDEM-X bistatic InSAR data, and adopting the improved SAR interference processing method, the surface DEMs of the two typical glaciers above were generated with high resolution and precision. The data set was in GeoTIFF format, and each typical glacial DEM was stored in a folder. For details of the data, please refer to the Surface DEMs for typical glaciers on the Tibetan Plateau - Data Description.

2021-10-26

Water Plan of California (2005)

"Hydrologic - ecological - economic process coupling and evolution of heihe river basin governance under the framework of Water rights" (91125018) project data exchange to 5-water-plan-california 1. Data overview: California's water resources plan for 2005 for catchment comparison 2. Data content: the public plan

2020-07-31

Physical and chemical index data of deep drilling strata in the middle reaches of Heihe River (2013)

This data set contains the element content data of a deep drilled formation near the open sea in the middle reaches of Heihe River. The borehole is located at 99.432 E and 39.463 n with a depth of 550m. The element scanning analysis was carried out at 1-3cm intervals for the drilled strata. The scanning was completed in the Key Laboratory of Western Ministry of environmental education, Lanzhou University, and 38705 effective element data were obtained.

2020-07-30

Moraine distributions in the upstream of the Heihe River (2013-2014)

From 2013 to 2014, the Glacial Geomorphology of the upper reaches of Heihe River in the late Quaternary was investigated and sampled. Based on the field investigation and remote sensing image, the distribution map of moraine at different levels near the ridge of the upper reaches of the Bailang river was obtained.

2020-07-30

Vegetation quadrat survey data in the middle of Heihe River Basin (2013-2014)

The survey data of vegetation quadrat in the middle reaches of Heihe River consists of the field survey data in 2013 and 2014, including the vegetation and soil data of the survey quadrat. The data of each survey sample includes the following information: sample longitude and latitude, sample size, elevation, sample overview, plant name, plant height, crown width, coverage, total coverage, number of trees, plant spacing, row spacing, large row spacing, DBH. The soil is divided into 6 layers according to 0-100cm below the ground, which are 0-10cm, 10-20cm, 20-40cm, 40-60cm, 60-80cm and 80-100cm respectively.

2020-07-30

Distribution data of geomorphic surface in the upper reaches of Heihe River

The landform near Qilian in the upper reaches of Heihe River includes the first level denudation surface (wide valley surface) and the Ninth level river terrace. The stage surface distribution data is mainly obtained through field investigation. GPS survey is carried out for the distribution range of all levels of geomorphic surface. The field data is analyzed in the room, and then combined with remote sensing image, topographic map, geological map and other data, the distribution map of all levels of geomorphic surface in the upper reaches of Heihe river is drawn. The age of the denudation surface is about 1.4ma, and the formation of Heihe terrace is later than this age, all of which are terraces since late Pleistocene.

2020-07-28

HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of A’rou Superstation, 2013)

This dataset contains the flux measurements from the A’rou Superstation eddy covariance system (EC) in the upper reaches of the Heihe hydrometeorological observation network from 29 December, 2012, to 19 November, 2013. The site (100.464° E, 38.047° N) was located in the Alpine grassland, Caodaban village, A’rou Country, Qilian County in Qilian Province. The elevation is 3033 m. The EC was installed at a height of 3.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3 & Li7500A) was 0.15 m. The raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), as proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened using a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The data from 14 February to 28 February were missing due to a storage problem of CF card in the datalogger. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. For more information, please refer to Liu et al. (2018) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

2020-04-10

HiWATER: Dataset of hydrometeorological observation network (an observation system of meteorological elements gradient of A’rou Superstation, 2013)

This dataset includes data recorded by the Hydrometeorological observation network obtained from an observation system of Meteorological elements gradient of A’rou Superstation between 14 October, 2012, and 31 December, 2013. The site (100.464° E, 38.047° N) was located on a cold grassland surface in the Caodaban village, A’rou Town, Qilian County, Qinghai Province. The elevation is 3033 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45C; 1, 2, 5, 10, 15 and 25 m, towards north), wind speed profile (010C; 1, 2, 5, 10, 15 and 25 m, towards north), wind direction profile (020C; 2 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 5 m, towards south), four-component radiometer (CNR4; 5 m, towards south), two infrared temperature sensors (SI-111; 5 m, towards south, vertically downward), photosynthetically active radiation (PAR-LITE; 5 m, towards south, vertically upward), soil heat flux (HFP01SC; 3 duplicates, -0.06 m, 2 m in the south of tower), a TCAV averaging soil thermocouple probe (TCAV; -0.02, -0.04 m, 2 m in the south of tower), soil temperature profile (109; 0, -0.02, -0.04, -0.06, -0.1, -0.15, -0.2, -0.3, -0.4, -0.6, -0.8, -1.2, -1.6, -2, -2.4, -2.8 and -3.2 m, 3 duplicates in -0.04 m and -0.1 m), and soil moisture profile (CS616; -0.02, -0.04, -0.06, -0.1, -0.15, -0.2, -0.3, -0.4, -0.6, -0.8, -1.2, -1.6, -2, -2.4, -2.8 and -3.2 m, 3 duplicates in -0.04 m and -0.1 m). The observations included the following: air temperature and humidity (Ta_1 m, Ta_2 m, Ta_5 m, Ta_10 m, Ta_15 m and Ta_25 m; RH_1 m, RH_2 m, RH_5 m, RH_10 m, RH_15 m and RH_25 m) (℃ and %, respectively), wind speed (Ws_1 m, Ws_2 m, Ws_5 m, Ws_10 m, Ws_15 m and Ws_25 m) (m/s), wind direction (WD_2 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/(s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm_1, Ts_4 cm_2, Ts_4 cm_3, Ts_6 cm, Ts_10 cm_1, Ts_10 cm_2, Ts_10 cm_3, Ts_15 cm, Ts_20 cm, Ts_30 cm, Ts_40 cm, Ts_60 cm, Ts_80 cm, Ts_120 cm, Ts_160 cm, Ts_200 cm, Ts_240 cm, Ts_280 cm and Ts_320 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm_1, Ms_4 cm_2, Ms_4 cm_3, Ms_6 cm, Ms_10 cm_1, Ms_10 cm_2, Ms_10 cm_3, Ms_15 cm, Ms_20 cm, Ms_30 cm, Ms_40 cm, Ms_60 cm, Ms_80 cm, Ms_120 cm, Ms_160 cm, Ms_200 cm, Ms_240 cm, Ms_280 cm and Ms_320 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day (The AWS data were averaged over intervals of 30 min before 4 December, 2012 for a total of 48 records per day). The average soil temperature, soil heat flux, soil temperature and soil moisture were missing during 30 November, 2012 and 8 December, 2012, 21 April, 2013 and 31 May, 2013 because of insufficient power supply; Wind speed in 2 m and 5 m were missing during 28 December, 2012 and 28 March, 2012 because of datalogger repairing. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-6-10 10:30. (6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al.(2018), and for observation data processing, please refer to Liu et al.(2011).

2020-04-10

HiWATER: Dataset of hydrometeorological observation network (automatic weather station of A’rou sunny slope station, 2013)

This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of A’rou sunny slope station between 8 August, 2013, and 31 December, 2013. The site (100.520° E, 38.090° N) was located on a cold grassland surface in the sunny slope, which is near north of A’rou town, Qilian county, Qinghai Province. The elevation is 3529 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45AC; 5 m, north), wind speed and direction profile (034B; 10 m, north), air pressure (CS100; in the tamper box on the ground), rain gauge (TE525M; 10 m), four-component radiometer (CNR1; 6 m, south), two infrared temperature sensors (SI-111; 6 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (109; 0, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (CS616; -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and two photosynthetically active radiation (PQS-1; 6 m, south, one vertically downward and one vertically upward). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content), and photosynthetically active radiation of upward and downward (PAR_up and PAR_down) (μmol/(s m-2)). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

2020-04-10

HiWATER: Dataset of hydrometeorological observation network (automatic weather station of A’rou shady slope station, 2013)

This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of A’rou shady slope station between 8 August, 2013, and 31 December, 2013. The site (100.411° E, 37.984° N) was located on a cold grassland surface on the shady slope, which is near south of A’rou township, Qilian county, Qinghai Province. The elevation is 3536 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45AC; 5 m, north), wind speed and direction profile (010C/020C; 10 m, north), air pressure (278; in the tamper box on the ground), rain gauge (TE525M; 10 m), four-component radiometer (CNR4; 6 m, south), two infrared temperature sensors (SI-111; 6 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (109-L; 0, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (CS616; -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and two photosynthetically active radiation (PQS-1; 6 m, south, one vertically downward and one vertically upward). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content), and photosynthetically active radiation of upward and downward (PAR_up and PAR_down) (μmol/ (s m-2)). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

2020-04-10